Automatic Colorization Of Grayscale Images

Aman Kumar (11070)
Tapas Agarwal (11764)
Problem and Motivation

• Given one or more gray-scale image(s), we want to automatically colorize it using a similar colored image (provided by the user).

• The application of such method is in colorization of old photographs & cinemas, IR images, CCTV cameras, astronomical photography, etc.
In this problem, instead of working in RGB color space, we will use YUV color space. In YUV space, Y stands for Luminance component of image (gray scale part of the image). U and V are Chrominance component of the image. This is an advantage for this problem as we already have Luminance part (Y) in the target image. Hence we only need to determine (U, V) components.
Our Approach

The approach consists of the following main conceptual stages:

- **Segmentation** of reference image.
- **Training** based on feature vector and labelled segment of reference image.
- Segmentation of target image and its **classification** based on above trained model.
- **Colorization** using optimized method.
Segmentation

- Image segmentation is done on the Luminance (Y) channel of the reference image.
- Since the target image (only having Y) is also to be segmented.
Feature Descriptor

• For a reliable classification, training must be based on texture feature of the reference image.
• We will use the Discrete Cosine Transform (DCT) coefficients of a $k \times k$ neighbourhood around the pixel as its feature vector (dimension k^2)
• DCT feature are known to be better texture descriptors which are invariant to Translation and Rotation.
Training Stage

• Intra-difference: difference between vectors of similar segments.
• Inter-difference: difference between vectors of different segments.
• Our classifier must ignore Intra-difference between vectors and must decide on basis of inter-difference.
Training And Classification

- We use PCA and Projections.
- Randomly sample intra-different vectors, apply PCA, keep eigenvectors corresponding to **Low** values (minimizing intra-difference)
- Randomly sample inter-different vectors, apply PCA, keep eigenvectors corresponding to **High** values. (maximizing inter-difference)
- Project data points onto above space and Use **K Nearest Neighbour** during classification.
Image Space Voting

- There can still be many misclassification. A pixel p in target image, may be surrounded by pixels of different classes.
- To rectify this we replace the label of p with dominant label in $N(p)$. Where $N(p)$ is $k \times k$ neighbourhood of p.
- Dominant label is label with highest confidence, $\text{conf}(p, l)$.

$$
\text{conf}(p, \ell) = \frac{\sum_{q \in N(p, \ell)} W_q}{\sum_{r \in N(p)} W_r}.
$$

$$
W_q = \frac{\exp(-D(q, M_q))}{\sum_{r \in N(q)} \exp(-D(r, M_r))}.
$$

Source: reference 1

- Here, D is Euclidian distance between feature vectors and M_q is nearest neighbour of vector q in feature space.
Colorization

- Let $C(p)$ be the Chrominance coordinate (U,V) of a pixel p.
- After Classification each p in target image, the color of p (with label l) is given by

$$C(p) = \sum_{q \in N(p, l)} W_q C(M_q(p)).$$

Source: reference 1
Optimization

• Since there might be some misclassifications, hence assigning colors to all pixels using above method will not be correct.

• We only assign colors to the pixels whose confidence in their label is sufficiently large (\(\text{conf}(p,l) > \text{threshold} \)).

• This process is called “micro-scribbling”.
Optimization

• Colorization using Optimization by Anat Levin et al (2004), describes method to colorize gray scale images annotated by user.

• We feed our “micro-scribbled” image this Levin’s algorithm for better results.

Source: reference 2
Dataset

- We will use Local IITK copy of Berkeley Segmentation Dataset BSD 300
 http://web.cse.iitk.ac.in/users/cs676/data/BSDS300-images.tgz
- It contains test and training data of similar images.
- We will also collect some similar images manually.
Overview of the method

Source: reference 1
We have segmented the images and obtained the Texture feature vectors of the reference and target image in 5x5 neighbourhood of a pixel.
References

1. Colorization by Example, R.Irony, D.CohenOr, and D.Lischinski, Eurographics symposium on Rendering (2005)

Any Questions?
Algorithm Of Colorization Using Optimization

• This method colorizes user provided annotated gray-scale image or a video clip with few annotated frames.

• $Y(r), U(r), V(r)$ denote YUV component of pixel (r) at (x,y) at time t.

• Colorization of a pixel r is transformed into minimization of following quantity.

$$J(U) = \sum_r \left(U(r) - \sum_{s \in N(r)} w_{rs} U(s) \right)^2$$

$$w_{rs} \propto 1 + \frac{1}{\sigma_r^2} (Y(r) - \mu_r)(Y(s) - \mu_r)$$

Source: reference 2