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In this paper, we present a comprehensive survey of Markov Random Fields (MRFs) in computer vision
and image understanding, with respect to the modeling, the inference and the learning. While MRFs were
introduced into the computer vision field about two decades ago, they started to become a ubiquitous
tool for solving visual perception problems around the turn of the millennium following the emergence
of efficient inference methods. During the past decade, a variety of MRF models as well as inference and
learning methods have been developed for addressing numerous low, mid and high-level vision prob-
lems. While most of the literature concerns pairwise MRFs, in recent years we have also witnessed sig-
nificant progress in higher-order MRFs, which substantially enhances the expressiveness of graph-based
models and expands the domain of solvable problems. This survey provides a compact and informative
summary of the major literature in this research topic.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction main tasks: modeling, inference and learning. The modeling has to
The goal of computer vision is to enable the machine to under-
stand the world – often called visual perception – through the pro-
cessing of digital signals. Such an understanding for the machine is
done by extracting useful information from the digital signals and
performing complex reasoning. Mathematically, let D denote the
observed data and x a latent parameter vector that corresponds
to a mathematical answer to the visual perception problem. Visual
perception can then be formulated as finding a mapping from D to
x, which is essentially an inverse problem [1]. Mathematical meth-
ods usually model such a mapping through an optimization prob-
lem as follows:

xopt ¼ arg min
x

Eðx;D; wÞ; ð1Þ

where the energy (or cost, objective) function E(x, D; w) can be
regarded as a quality measure of a parameter configuration x in
the solution space given the observed data D, and w denotes
the model parameters.1 Hence, visual perception involves three
accomplish: (i) the choice of an appropriate representation of
the solution using a tuple of variables x; and (ii) the design of
the class of energy functions E(x, D; w) which can correctly mea-
sure the connection between x and D. The inference has to search
for the configuration of x leading to the optimum of the energy
function, which corresponds to the solution of the original prob-
lem. The learning aims to select the optimal model parameters
w based on the training data.

The main difficulty in the modeling lies in the fact that most
of the vision problems are inverse, ill-posed and require a large
number of latent and/or observed variables to express the ex-
pected variations of the perception answer. Furthermore, the ob-
served signals are usually noisy, incomplete and often only
provide a partial view of the desired space. Hence, a successful
model usually requires a reasonable regularization, a robust data
measure, and a compact structure between the variables of inter-
est to adequately characterize their relationship (which is usu-
ally unknown). In the Bayesian paradigm, the model prior, the
data likelihood and the dependence properties correspond respec-
tively to these terms, and the maximization of the posterior
probability of the latent variables corresponds to the minimiza-
tion of the energy function in Eq. (1). In addition to these, an-
other issue that should be taken into account during the
modeling is the tractability of the inference task, in terms of
computational complexity and optimality quality, which intro-
duces additional constraints on the modeling step.
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Probabilistic graphical models (usually referred to as graphical
models) combine probability theory and graph theory towards a
natural and powerful formalism for modeling and solving infer-
ence and estimation problems in various scientific and engineering
fields. In particular, one important type of graphical models – Mar-
kov Random Fields (MRFs) – has become a ubiquitous methodol-
ogy for solving visual perception problems, in terms of both the
expressive potential of the modeling process and the optimality
properties of the corresponding inference algorithm, due to their
ability to model soft contextual constraints between variables
and the significant development of inference methods for such
models. Generally speaking, MRFs have the following major useful
properties that one can benefit from during the algorithm design.
First, MRFs provide a modular, flexible and principled way to com-
bine regularization (or prior), data likelihood terms and other use-
ful cues within a single graph-formulation, where continuous and
discrete variables can be simultaneously considered. Second, the
graph theoretic side of MRFs provides a simple way to visualize
the structure of a model and facilitates the choice and the design
of the model. Third, the factorization of the joint probability over
a graph could lead to inference problems that can be solved in a
computationally efficient manner. In particular, development of
inference methods based on discrete optimization enhances the
potential of discrete MRFs and significantly enlarges the set of vi-
sual perception problems to which MRFs can be applied. Last but
not least, the probabilistic side of MRFs gives rise to potential
advantages in terms of parameter learning (e.g., [2–5]) and uncer-
tainty analysis (e.g., [6,7]) over classic variational methods [8,9],
due to the introduction of probabilistic explanation to the solution
[1]. The aforementioned strengths have resulted in the heavy
adoption of MRFs towards solving many computer vision, com-
puter graphics and medical imaging problems. During the past
decade, different MRF models as well as efficient inference and
learning methods have been developed for addressing numerous
low, mid and high-level vision problems. While most of the litera-
ture is on pairwise MRFs, we have also witnessed significant pro-
gress of higher-order MRFs during the recent years, which
substantially enhances the expressiveness of graph-based models
and expands the domain of solvable problems. We believe that a
compact and informative summary of the major literature in this
research topic will be valuable for the reader to rapidly obtain a
global view and hence better understanding of such an important
tool.

To this end, we present in this paper a comprehensive survey of
MRFs in computer vision and image understanding, with respect to
the modeling, the inference and the learning. The remainder of this
paper is organized as follows. Section 2 introduces preliminary
knowledge on graphical models. In Section 3, different important
subclasses of MRFs as well as their important applications in visual
perception are discussed. Representative techniques for MAP infer-
ence in discrete MRFs are presented in Section 4. MRF learning
techniques are discussed in Section 5. Finally, we conclude the sur-
vey in Section 6.

2. Preliminaries

A graphical model consists of a graph where each node is asso-
ciated with a random variable and an edge between a pair of nodes
encodes probabilistic interaction between the corresponding vari-
ables. Each of such models provides a compact representation for a
family of joint probability distributions which satisfy the condi-
tional independence properties determined by the topology/struc-
ture of the graph: the associated family of joint probability
distributions can be factorized into a product of local functions
each involving a (usually small) subset of variables. Such a factor-
ization is the key idea of graphical models.

There are two common types of graphical models: Bayesian Net-
works (also known as Directed Graphical Models or Belief Networks)
and Markov Random Fields (also known as Undirected Graphical
Models or Markov Networks), corresponding to directed and undi-
rected graphs, respectively. They are used to model different fam-
ilies of distributions with different kinds of conditional
independences. It is usually convenient to covert both of them into
a unified representation which is called Factor Graph, in particular
for better visualizing potential functions and performing inference
in higher-order models. As preliminaries for the survey, we will
proceed with a brief presentation on Markov Random Fields and
factor graphs in the remainder of this section. We suggest the read-
er being interested in a larger and more in depth overview the fol-
lowing publications [10–13].

2.1. Notations

Let us introduce the necessary notations that will be used
throughout this survey. For a graphical model, let G ¼ ðV; EÞ denote
the corresponding graph consisting of a set V of nodes and a set E
of edges. Then, for each node iði 2 VÞ, let Xi denote the associated
random variable, xi the realization of Xi, and X i the state space of
xi (i.e., xi 2 X i). Also, let X ¼ ðXiÞi2V denote the joint random vari-
able and x ¼ ðxiÞi2V the realization (configuration) of the graphical
model taking values in its space X which is defined as the Cartesian
product of the spaces of all individual variables, i.e., X ¼

Q
i2VX i.

For simplification and concreteness, ‘‘probability distribution’’
is used to refer to ‘‘probability mass function’’ (with respect to
the counting measure) in discrete cases and ‘‘probability density
function’’ (with respect to the Lebesgue measure) in continuous
cases. Furthermore, we use p(x) to denote the probability distribu-
tion on a random variable X, and use xc (c # V) as the shorthand for
a tuple c of variables, i.e., xc = (xi)i2c. Due to the one-to-one mapping
between a node and the associated random variable, we often use
‘‘node’’ to refer to the corresponding random variable in case there
is no ambiguity.

2.2. Markov Random Fields (undirected graphical models)

A Markov Random Field (MRF) has the structure of an undirected
graph G, where all edges of E are undirected (e.g., Fig. 1(a)), and
holds the following local independence assumptions (referred to
as local Markov property) which impose that a node is independent
of any other node given all its neighbors:

8 i 2 V;Xi ? XV�figjXN i
; ð2Þ

where N i ¼ fjjfi; jg 2 Eg denotes the set of neighbors of node i
in the graph G, and Xi ? XjjXk denotes the statement that Xi and
Xj are independent given Xk. An important notion in MRFs is
clique, which is defined as a fully connected subset of nodes in
the graph. A clique is maximal if it is not contained within any
other larger clique. The associated family of joint probability
distributions are those satisfying the local Markov property (i.e.,
Eq. (2)). According to Hammersley-Clifford theorem [14,15], such
a family of distributions are Gibbs distributions which can be
factorized into the following form:

pðxÞ ¼ 1
Z

Y
c2C

wcðxcÞ; ð3Þ

where Z is the normalizing factor (also known as the partition func-
tion), wc(xc) denotes the potential function of a clique c (or: clique po-
tential) which is a positive real-valued function on the possible



(a) (b) (c)
Fig. 1. Examples of Markov Random Fields and factor graphs. Note that the Markov Random Field in (a) can be represented by the two factor graphs (b) and (c). Nevertheless,
the factor graph in (c) contains factors corresponding to non-maximal cliques, whereas the one in (b) contains only factors corresponding to maximal cliques.
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configuration xc of the clique c, and C denotes a set of cliques2 con-
tained in the graph G. We can verify that any distribution with the
factorized form in Eq. (3) satisfies the local Markov property in Eq.
(2).

The global Markov property consists of all the conditional inde-
pendences implied within the structure of MRFs, which are defined
as: 8V1;V2;V3 #V, if any path from a node in V1 to a node in V2 in-
cludes at least one node in V3, then XV1 ? XV2 jXV3 . Let IðGÞ denote
the set of such conditional independences. The identification of
these independences boils down to a ‘‘reachability’’ problem in
graph theory: considering a graph G0 which is obtained by remov-
ing the nodes in V3 as well as the edges connected to these nodes
from G; XV1 ? XV2 jXV3 is true if and only if there is no path in G0 that
connects any node in V1 n V3 and any node in V2 n V3. This problem
can be solved using standard search algorithms such as breadth-
first search (BFS) [16]. Note that the local Markov property and
the global Markov property are equivalent for any positive distri-
bution. Hence, if a positive distribution can be factorized into the
form in Eq. (3) according to G, then it satisfies all the conditional
independences in IðGÞ. Nevertheless, a distribution instance that
can be factorized over G, may satisfy more independences than
those in IðGÞ [13].

MRFs provide a principled probabilistic framework to model vi-
sion problems, thanks to their ability to model soft contextual con-
straints between random variables [17,18]. The adoption of such
constraints is important in vision problems, since the image and/
or scene modeling usually involves interactions between a subset
of pixels and/or scene components. Often, these constraints are re-
ferred to as ‘‘prior’’ of the whole system. Through MRFs, one can
use nodes to model variables of interest and combine different
available cues that can be encoded by clique potentials within a
unified probabilistic formulation. Then the inference can be per-
formed via Maximum a posteriori (MAP) estimation:

xopt ¼ arg max
x2X

pðxÞ: ð4Þ

Since the potential functions are positive, we can define clique
energy hc as a real function on a clique cðc 2 CÞ:

hcðxcÞ ¼ � log wcðxcÞ: ð5Þ

Due to the one-to-one mapping between hc and wc, we also refer to
hc as potential function (or clique potential) on clique c in the remain-
2 Note that any quantities defined on a non-maximal clique can always be
redefined on the corresponding maximal clique, and thus C can also consist of only
the maximal cliques. However, using only maximal clique potentials may obscure the
structure of original cliques by fusing together the potentials defined on a number of
non-maximal cliques into a larger clique potential. Compared with such a maximal
representation, a non-maximal representation clarifies specific features of the
factorization and often can lead to computational efficiency in practice. Hence,
without loss of generality, we do not assume that C consists of only maximal cliques
in this survey.
der of this survey, leading to a more convenient representation of
the joint distribution p(x):

pðxÞ ¼ 1
Z

expf�EðxÞg; ð6Þ

where E(x) denotes the energy of the MRF and is defined as a sum of
clique potentials:

EðxÞ ¼
X
c2C

hcðxcÞ: ð7Þ

Since the ‘‘-log’’ transformation between the distribution p(x) and
the energy E(x) is a monotonic function, the MAP inference in MRFs
(Eq. (4)) is equivalent to the minimization of E(x) as follows:

xopt ¼ arg min
x2X

EðxÞ: ð8Þ

In cases of discrete MRFs where the random variables are dis-
crete3 (i.e., "i 2 V;X i consists of a discrete set), the above optimiza-
tion becomes a discrete optimization problem. Numerous works
have been done to develop efficient MRF inference algorithms using
discrete optimization theories and techniques (e.g., [23–31]), which
have been successfully employed to efficiently solve many vision
problems using MRF-based methods (e.g., [32–36]). Due to the
advantages regarding both the modeling and the inference, as dis-
cussed previously, discrete MRFs have been widely employed to
solve vision problems. We will provide a detailed survey on an
important number of representative MRF-based vision models in
Section 3 and MAP inference methods in Section 4.

2.3. Factor graphs

Factor graph [37,38] is a unified representation for both BNs and
MRFs, which uses additional nodes, named factor nodes,4 to explic-
itly describe the factorization of the joint distribution in the graph.
More specifically, a set F of factor nodes are introduced into the
graph, each corresponding to an objective function term defined
on a subset of usual nodes. Each factor encodes a potential function
defined on a clique in cases of MRFs5 (see Eq. (3) or Eq. (7)). The asso-
ciated joint probability is a product of factors:

pðxÞ ¼ 1
Z

Y
f2F

/f ðxf Þ: ð9Þ

Similar to MRFs, we can define the energy of the factor graph as:
3 We should note that continuous MRFs have also been used in the literature (e.g.,
[19–21]). An important subset of continuous MRFs that has been well studied is
Gaussian MRFs [22].

4 We call the nodes in original graphs usual nodes when an explicit distinction
between the two types of nodes is required to avoid ambiguities.

5 Each factor encodes a local conditional probability distribution defined on a usual
node and its parents in cases of BNs.



Fig. 2. Examples of MRFs with grid-like structures.
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EðxÞ ¼
X
f2F

hf ðxf Þ; ð10Þ

where hf ðxf Þ ¼ � log /f ðxf Þ. Note that there can be more than one
factor graphs corresponding to a BN or MRF. Fig. 1(b) and (c) shows
two examples of factor graphs which provide two different possible
representations for the MRF in Fig. 1(a).

Factor graphs are bipartite, since there are two types of nodes
and no edge exists between two nodes of same types. Such a rep-
resentation conceptualizes in a clear manner the underlying factor-
ization of the distribution in the graphical model. In particular for
MRFs, factor graphs provide a feasible representation to describe
explicitly the cliques and the corresponding potential functions
when non-maximal cliques are also considered (e.g., Fig. 1(c)).
The same objective can be hardly met using the usual graphical
representation of MRFs. Computational inference is another
strength of factor graphs representations. The sum-product and
min-sum (or: max-product6) algorithms in the factor graph [38,11]
generalize the classic counterparts [39,40] in the sense that the order
of factors can be greater than two. Furthermore, since an MRF with
loops may have no loop in its corresponding factor graph (e.g., see
the MRF in Fig. 1(a) and the factor graphs in Fig. 1(b) and (c)), in such
cases the min-sum algorithm in the factor graph can perform the
MAP inference exactly with polynomial complexity. Such factor
graphs without loop (e.g., Fig. 1(b) and (c)) are referred to as factor
trees.
3. MRF-based vision models

According to the order of interactions between variables, MRF
models can be classified into pairwise models and higher-order mod-
els. Another important class is Conditional Random Fields (CRFs). Be-
low, we present these three typical models that are commonly
used in vision community.
7 Other homogeneously distributed units such as 3D voxels and control points [33]
3.1. Pairwise MRF models

The most common type of MRFs that is widely used in com-
puter vision is the pairwise MRF, in which the associated energy
is factorized into a sum of potential functions defined on cliques
of order strictly less than three. More specifically, a pairwise MRF
consists of a graph G with a set ðhið�ÞÞi2V of unary potentials (also
called singleton potentials) defined on single variables and a set
ðhijð�; �ÞÞfi;jg2E of pairwise potentials defined on pairs of variables.
The MRF energy has the following form:

EðxÞ ¼
X
i2V

hiðxiÞ þ
X
fi;jg2E

hijðxijÞ: ð11Þ

Pairwise MRFs have attracted the attention of a lot of research-
ers and numerous works have been done in past few decades,
mainly due to the facts that pairwise MRFs inherit simplicity and
computational efficiency, and that the interaction between pairs
of variables is the most common and fundamental type of interac-
tions required to model many vision problems. In computer vision,
such works include both the modeling of vision problems using
pairwise MRFs (e.g., [41–43,36,44]) and the efficient inference in
pairwise MRFs (e.g., [23,26,28,27,45]). Two most typical graph
structures used in computer vision are grid-like structures (e.g.,
Fig. 2) and part-based structures (e.g., Fig. 3). Grid-like structures
6 The max-product algorithm is to maximize the probability p(x) which is a product
of local functions (Eq. (9)), while the min-sum algorithm is to minimize the
corresponding energy which is a sum of local energy functions (Eq. (10)). They are
essentially the same algorithm.
provide a natural and reasonable representation for images, while
part-based structures are often associated with deformable and/or
articulated objects.

3.1.1. Grid-like models
Pairwise MRFs of grid-like structures (Fig. 2) have been widely

used in computer vision to deal with numerous important prob-
lems, such as image denoising/restoration (e.g., [41,46,47]),
super-resolution (e.g., [48–50]), stereo vision/multi-view recon-
struction (e.g., [51,32,52]), optical flow and motion analysis (e.g.,
[53–56]), image registration and matching (e.g., [33,57–59]), seg-
mentation (e.g., [60,42,36,61]) and over-segmentation (e.g., [62–
64]).

In this context, the nodes of an MRF correspond to the lattice of
pixels.7 The edges corresponding to pairs of neighbor nodes are con-
sidered to encode contextual constraints between nodes. The ran-
dom variable xi associated with each node i represents a physical
quantity specific to problems8 (e.g., an index denoting the segment
to which the corresponding pixel belongs for image segmentation
problem, an integral value between 0 and 255 denoting the intensity
of the corresponding pixel for gray image denoising problem, etc.).
The data likelihood is encoded by the sum of the unary potentials
hi(�), whose definition is specific to the considered application (e.g.,
for image denoising, such unary terms are often defined as a penalty
function based on the deviation of the observed value from the
underlying value). The contextual constraints compose a prior model
on the configuration of the MRF, which is often encoded by the sum
of all the pairwise potentials hij(�, �). The most typical and commonly
used contextual constraint is the smoothness, which imposes that
physical quantities corresponding to the states of nodes vary
‘‘smoothly’’ in the spatial domain as defined by the connectivity of
the graph. To this end, the pairwise potential hij(�, �) between a pair
{i, j} of neighbor nodes is defined as a cost term that penalizes the
variation of the states between the two nodes:

hijðxijÞ ¼ qðxi � xjÞ; ð12Þ

where q(�) is usually an even and non-decreasing function. In com-
puter vision, common choices for q(�) are (generalized) Potts model9

[66,67], truncated absolute distance and truncated quadratic, which
are typical discontinuity preserving penalties:

qðxi � xjÞ ¼
wij � ð1� dðxi � xjÞÞ ðPottsmodelsÞ
minðKij; jxi � xjjÞ ðtruncatedabsolutedistanceÞ
minðKij; ðxi � xjÞ2Þ ðtruncatedquadraticÞ

8><
>:

;

ð13Þ

where wij P 0 is a weight coefficient10 for the penalties, Kronecker
delta d(x) is equal to 1 when x = 0, and 0 otherwise, and Kij is a coef-
can also be considered in such MRFs.
8 An MRF is called binary MRF if each node has only two possible values, 0 or 1.
9 Note that Ising model [65,41] is a particular case of Potts model where each node

has two possible states.
10 wij is a constant for all pairs {i, j} of nodes in the original Potts model in [66].



Fig. 3. Example of MRFs with pictorial structures (the original image used in (a) is
from HumanEva-I database [79]: http://vision.cs.brown.edu/humaneva/.)

11 They are also referred to as high-order MRFs in part of the literature.
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ficient representing the maximum penalty allowed in the truncated
models. More discontinuity preserving regularization functions can
be found in for example [68,69]. Last, it should be mentioned that
pairwise potentials in such grid-like MRFs can also be used to encode
other contextual constraints, such as star shape priors [70], compact
shape priors [71], layer constraints [62], Hausdorff distance priors
[72] and ordering constraints [73,74].

The grid-like MRF presented above can be naturally extended
from pixels to other units. For example, there exist works that
use superpixel primitives instead of pixel primitives when dealing
with images (e.g., [75,76]), mainly aiming to gain computational
efficiency and/or use superpixels as regions of support to compute
features for mid-level and high-level vision applications. Another
important case is the segmentation, registration and tracking of
3D surface meshes (e.g., [77,78]), where we aim to infer the config-
uration of each vertex or facet on the surface. In these cases, the
node of MRFs can be used to model the superpixel, vertex or facet,
nevertheless, the topology could be a less regular grid.

3.1.2. Part-based models
MRFs of pictorial structures (Fig. 3) provide a natural part-based

modeling tool for representing deformable objects and in particu-
lar articulated objects. Their nodes correspond to components of
such objects. The corresponding latent variables represent the spa-
tial pose of the components. An edge between a pair of nodes en-
code various interactions such as kinematic constraints between
the corresponding pair of components. In [43], Pictorial model
[80] was employed to deal with pose recognition of human body
and face efficiently with dynamic programming. In this work, a
tree-like MRF (see Fig. 3) was employed to model spring-like priors
between pairs of components through pairwise potentials, while
the data likelihood is encoded in the unary potentials each of
which is computed from the appearance model of the correspond-
ing component. The pose parameters of all the components are
estimated through the MAP inference, which can be done very effi-
ciently in such a tree-structured MRF using dynamic programming
[81,16] (i.e., min-sum belief propagation [39,40,11]).

Later, part-based models have been adopted and/or extended
to deal with the pose estimation, detection and tracking of
deformable object such as human body [20,82–85], hand [86,87]
and other objects [88,89]. In [88], the part-based model was ex-
tended, with respect to that of [43], regarding the topology of
the MRF as well as the image likelihood in order to deal with
the pose estimation of animals such as cows and horses. The
topology of part-based models was also extend to other typical
graphs such as k-fans graphs [90,91] and out-planer graphs [92].
Pictorial structures conditioned on poselets [93] were proposed
in [85] to incorporate higher-order dependency between the parts
of the model while keeping the inference efficient (since the mod-
el becomes tree-structured at the graph-inference stage). Contin-
uous MRFs of pictorial structures were proposed in [20,86] to deal
with body and/or hand tracking, where non-parametric belief
propagation algorithms [19,21] were employed to perform infer-
ence. In the subsequent papers [82,87], occlusion reasoning was
introduced into their graphical models in order to deal with
occlusions between different components. Indeed, the wide exis-
tence of such occlusions in cases of articulated objects is an
important limitation of the part-based modeling. Recently, a rig-
orous visibility modeling in graphical models was achieved in
[94] via the proposed joint 2.5D layered model where top-down
scene-level and bottom-up pixel-level representations are seam-
lessly combined through local constraints that involve only pairs
of variables (as opposed to previous 2.5D layered models where
the depth ordering was commonly modeled as a total and strict
order between all the objects), based on which image segmenta-
tion (pixel-level task), multi-object tracking and depth ordering
(scene-level tasks) are simultaneously performed via a single pair-
wise MRF model.

The notion of ‘‘part’’ can also refer to a feature point or land-
mark distributed on the surface of an object. In such a case, MRFs
provide a powerful tool for modeling prior knowledge (e.g., gener-
ality and intra-class variations) on a class of shapes, which is re-
ferred to as statistical shape modeling [95]. The characterization of
shape priors using local interactions (e.g., statistics on the Euclid-
ean distance) between points can lead to useful properties such
as translation and rotation invariances with respect to the global
pose of the object in the observed image. Together with efficient
inference methods, such MRF-based prior models have been em-
ployed to efficiently solve problems related to the inference of
the shape model such as knowledge-based object segmentation
(e.g., [96,97]). However, the factorization of probability or energy
terms into an MRF can be very challenging, where good approxi-
mate solutions may be resorted to (e.g., [97,98]). In this line of re-
search, recently [99] proposed to employ divergence theorem to
exactly factorize regional data likelihood in their pairwise MRF
model for object segmentation.

Remark.
The computer vision community has primarily focused on pair-

wise MRF models where interactions between parameters were of-
ten at the level of pairs of variables. This was a convenient
approach driven mostly from the optimization viewpoint since
pairwise MRFs inherit the lowest rank of interactions between
variables and numerous efficient algorithms exist for performing
inference in such models. Such interactions to a certain extent
can cope with numerous vision problems (segmentation, pose esti-
mation, motion analysis and object tracking, disparity estimation
from calibrated views, etc.). However, their limitations manifest
when a better performance is desired for those problems or when
graph-based solutions are resorted to for solving more complex vi-
sion problems, where higher-order interactions between variables
are needed to be modeled. On the other hand, the rapid develop-
ment of computer hardwares in terms of memory capacity and
CPU speed provides the practical base and motivates the consider-
ation of higher-order interactions in vision models. In such a con-
text, higher-order MRF models have attracted more and more
attentions, and many related vision models and inference methods
have been proposed.
3.2. Higher-order MRF models

Higher-order MRFs11 involve potential functions that are defined
on cliques containing more than two nodes and cannot be further
decomposed. Such higher-order potentials, compared to pairwise
ones, allow a better characterization of statistics between random
variables and increase largely the ability of graph-based modeling.
We summarize below three main explorations of such advantages
in solving vision problems.

http://vision.cs.brown.edu/humaneva/


12 Like [126], we use the term generative MRFs to distinguish the usual MRFs from
CRFs.
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First, for many vision problems that were already addressed by
pairwise models, higher-order MRFs are often adopted to model
more complex and/or natural statistics as well as richer interac-
tions between random variables, in order to improve the perfor-
mance of the method. One can cite for example the higher-order
MRF model proposed in [100,101] to better characterize image pri-
ors, by using the Product-of-Experts framework to define the high-
er-order potentials. Such a higher-order model was successfully
applied in image denoising and inpainting problems [100,101].
Pn Potts model was proposed in [102,103], which considers a sim-
ilar interaction as the generalized Potts model [67] (see Eq. (13)),
but between n nodes instead of between two nodes, and leads to
better performance in image segmentation. This model is a strict
generalization of the generalized Potts model and has been further
enriched towards robust Pn model in [104,105]. [106] used higher-
order smoothness priors for addressing stereo reconstruction prob-
lems, leading better performance than pairwise smoothness priors.
Other types of higher-order pattern potentials were also consid-
ered in [107] to deal with image/signal denoising and image seg-
mentation problems. All these works demonstrated that the
inclusion of higher-order interactions is able to significantly im-
prove the performance compared to pairwise models in the consid-
ered vision problems.

Higher-order models become even more important in cases
where we need to model measures that intrinsically involve more
than two variables. A simple example is the modeling of second
derivative (or even higher-order derivatives), which is often used
to measure bending force in shape prior modeling such as active
contour models (i.e., ‘‘Snake’’) [108]. In [109], dynamic program-
ming was adopted to solve ‘‘Snake’’ model in a discrete setting,
which is essentially a higher-order MRF model. A third-order spa-
tial prior based on second derivatives was also introduced to deal
with image registration in [110]. In the optical flow formulation
proposed in [111], higher-order potentials were used to encode an-
gle deviation prior, non-affine motion prior as well as the data like-
lihood. [112] proposed a compact higher-order model that encodes
a curvature prior for pixel labeling problem and demonstrated its
performance in image segmentation and shape inpainting prob-
lems. Box priors were introduced in [113] for performing image
segmentation given a user-provided object bounding box, where
topological constraints defined based on the bounding box are
incorporated into the whole optimization formulation and have
been demonstrated to be able to prevent the segmentation result
from over-shrinking and ensure the tightness of the object bound-
ary delimited by the user-provided box. [114] proposed a higher-
order illumination model to couple the illumination, the scene
and the image together so as to jointly recover the illumination
environment, scene parameters, and an estimate of the cast shad-
ows given a single image and coarse initial 3D geometry. Another
important motivation for employing higher-order models is to
characterize statistics that are invariant with respect to global
transformation when dealing with deformable shape inference
[115,116]. Such approaches avoid explicit estimation of the global
transformation such as 3D pose (translation, rotation and scaling)
and/or camera viewpoint, which is substantially beneficial to both
the learning and the inference of the shape model.

Meanwhile, global models, which include potentials involving all
the nodes, have been developed, together with the inference algo-
rithms for them. For example, global connectivity priors (e.g., the
foreground segment must be connected) were used in [117,118]
to enforce the connectedness of the resulting pixel labeling in bin-
ary image segmentation, which were shown to be able to achieve
better performance compared to merely using Potts-model with
smoothness terms (see Section 3.1.1). In order to deal with unsu-
pervised image segmentation where the number of segments are
unknown in advance, [119,120] introduced ‘label costs’’ [121] into
graph-based segmentation formulation, which imposes a penalty
to a label l (or a subset Ls of labels) from the predefined possible
label set L if at least one node is labeled as l (or an element in
Ls) in the final labeling result. By doing so, the algorithm automat-
ically determines a subset of labels from L that are finally used,
which corresponds to a model selection process. Another work in
a similar line of research is presented in [122,123], where ‘‘object
co-occurrence statistics’’ – a measure of which labels are likely to
appear together in the labeling result – are incorporated within
traditional pairwise MRF/CRF models for addressing object class
image segmentation and have been shown to improve significantly
the segmentation performance.

3.3. Conditional random fields

A Conditional Random Field (CRF) [124,125] encodes, with the
same concept as the MRF earlier described, a conditional distribu-
tion p(XjD) where X denotes a tuple of latent variables and D a tu-
ple of observed variables (data). Accordingly, the Markov
properties for the CRF are defined on the conditional distribution
p(XjD). The local Markov properties in such a context become:

8 i 2 V;Xi ? XV�figjfXN i
;Dg; ð14Þ

while the global Markov property can also be defined accordingly.
The conditional distribution p(XjD) over the latent variables X is
also a Gibbs distribution and can be written as the following form:

pðxjDÞ ¼ 1
ZðDÞ expf�Eðx; DÞg; ð15Þ

where the energy E(x; D) of the CRF is defined as:

Eðx; DÞ ¼
X
c2C

hcðxc; DÞ: ð16Þ

We can observe that there is no modeling on the probabilistic dis-
tribution over the variables in D, which relaxes the concern on
the dependencies between these observed variables, whereas such
dependencies can be rather complex. Hence, CRFs significantly re-
duce difficulty in modeling the joint distribution of the latent and
observed variables, and consequently, observed variables can be
incorporated into the CRF framework in a more flexible way. Such
a flexibility is one of the most important advantages of CRFs com-
pared with generative MRFs12 when used to model a system. For
example, the fact that clique potentials can be data dependent in
CRFs could lead to more informative interactions than data indepen-
dent clique potentials. Such an concept was adopted for example in
binary image segmentation [127], where the intensity contrast and
the spatial distance between neighbor pixels are employed to mod-
ulate the values of pairwise potentials of a grid-like CRF, as opposed
to Potts models (see Section 3.1.1). Despite the difference in the
probabilistic explanation, the MAP inferences in generative MRFs
and CRFs boil down to the same problem.

CRFs have been applied to various fields such as computer vi-
sion, bioinformatics and text processing among others. In com-
puter vision, besides [127], grid-like CRFs were also employed in
[128] to model spatial dependencies in the image, leading to a
data-dependent smoothness terms between neighbor pixels. With
the learned parameters from training data, a better performance
has been achieved in the image restoration experiments compared
to the classic Ising MRF model [41]. Hierarchical CRFs have also
been developed to incorporate features from different levels so as
to better perform object class image segmentation. One can cite for
example the multi-scale CRF model introduced in [129] and ‘‘asso-
ciative hierarchical CRFs’’ proposed in [130]. Moreover, CRFs have
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also been applied for object recognition/detection. For example, a
discriminative part-based approach was proposed in [131] to rec-
ognize objects based on a tree-structured CRF. In [132], object
detectors were combined within a CRF model, leading to an effi-
cient algorithm to jointly estimate the class category, location,
and segmentation of objects/regions from 2D images. Last, it is
worth mentioning that recently, based on a mean field approxima-
tion to the CRF distribution, [133] proposed a very efficient approx-
imate inference algorithm for fully connected grid-like CRFs where
pairwise potentials correspond to a linear combination of Gaussian
kernels, and demonstrated that such a dense connectivity at the
pixel level significantly improves the accuracy in class segmenta-
tion compared to 4-neighborhood system (Fig. 2) [134] and robust
Pn model [105]. Their techniques were further adopted and ex-
tended to address optical flow computing [135,136], and to ad-
dress cases where pairwise potentials are non-linear dissimilarity
measures that do not required to be distance metrics [137].
13 Note that generations such as multi-way cut problem [157] which involves more
4. MAP inference methods

An essential problem regarding the application of MRF models
is how to infer the optimal configuration for each of the nodes.
Here, we focus on the MAP inference (i.e., Eq. (4)) in discrete MRFs,
which boils down to an energy minimization problem as shown in
Eq. (8). Such a combinatorial problem is known to be NP-hard in
general [23,25], except for some particular cases such as MRFs of
bounded tree-width [138,139,12] (e.g., tree-structured MRFs
[39]) and pairwise MRFs with submodular energy [25,140].

The most well-known early (before the 1990s) algorithms for
optimizing the MRF energy are iterated conditional modes (ICM)
[141], simulated annealing methods (e.g., [41,142,143]) and highest
confidence first (HCF) [144,145]. While being computational effi-
cient, ICM and HCF suffer from their limited ability to recover a
good optimum. On the other hand, for simulated annealing meth-
ods, even if in theory they provide certain guarantees on the qual-
ity of the obtained solution, in practice from computational
viewpoint such methods are impractical. In the 1990s, more ad-
vanced methods, such as loopy belief propagation (LBP) (e.g.,
[48,146,147]) and graph cuts techniques (e.g., [46,51,67,148,23]),
provided powerful alternatives to the aforementioned methods
from both computational and theoretical viewpoints and have
been used to solve numerous visual perception problems (e.g.,
[48,58,46,148,32,60,42]). Since then, the MRF optimization has
been experiencing a renaissance, and more and more researchers
have been working on it. For recent MRF optimization techniques,
one can cite for example QPBO techniques (e.g., [149–152]), LP pri-
mal–dual algorithms (e.g., [153,154,29]) as well as dual methods
(e.g., [26,28,154,155]).

There exist three main classes of MAP inference methods for pair-
wise MRFs and they also have been extended to deal with higher-or-
der MRFs. In order to provide an overview of them, in this section we
will first review graph cuts and their extensions for minimizing the
energy of pairwise MRFs in Section 4.1. Then in Section 4.2 and
Appendix B, we will describe the min-sum belief propagation algo-
rithm in factor trees and also show its extensions to dealing with
an arbitrary pairwise MRF. Following that, we review in Section 4.3
dual methods for pairwise MRFs, such as tree-reweighted message
passing methods (e.g., [26,28]) and dual-decomposition approaches
(e.g., [154,156]). Last but not least, a survey on inference methods
for higher-order MRFs will be provided in Section 4.4.
than two terminal nodes are NP-hard.
14 The following rule can be used to associate an s-t cut to an MRF labeling: for a

node i 2 Vst � fs; tg; ðiÞ if i 2 S, the label xi of the corresponding node in the MRF is
equal to 0; (ii) if i 2 T, the label xi of the corresponding node in the MRF is equal to 1.

15 Note that, in general, such an s-t graph is not unique for a graph-representable
MRF.
4.1. Graph cuts and extensions

Graph cuts consist of a family of discrete algorithms that use
min-cut/max-flow techniques to efficiently minimize the energy
of discrete MRFs and have been used to solve many vision prob-
lems (e.g., [46,148,42,32,36,34]).

The basic idea of graph cuts is to construct a directed graph
Gst ¼ ðVst; EstÞ (called s-t graph13) with two special terminal nodes
(i.e., the source s and the sink t) and non-negative capacity setting
c(i, j) on each directed edge ði; jÞ 2 Est , such that the cost C(S, T)
(Eq. (17)) of the s-t cut that partitions the nodes into two disjoint
sets (S and T such that s 2 S and t 2 T) is equal to the energy of the
MRF with the corresponding configuration14 x (up to a constant
difference):
CðS; TÞ ¼
X

i2S;j2T;ði;jÞ2Est

cði; jÞ: ð17Þ

An MRF that has such an s-t graph is called graph-represent-
able15 and can be solved in polynomial time using graph cuts [25].
The minimization of the energy of such an MRF is equivalent to
the minimization of the cost of the s-t-cut problem (i.e., min-cut
problem). The Ford and Fulkerson theorem [158] states that the
solution of the min-cut problem corresponds to the maximum flow
from the source s to the sink t (i.e., max-flow problem). Such a prob-
lem can be efficiently solved in polynomial time using many existing
algorithms such as Ford-Fulkerson style augmenting paths algo-
rithms [158] and Goldberg-Tarjan style push-relabel algorithms
[159]. Note that the min-cut problem and the max-flow problem
are actually dual LP problems of each other [160].

Unfortunately, not all the MRFs are graph-representable. Previ-
ous works have been done to explore the class of graph-represent-
able MRFs (e.g., [161,24,25,140]). They demonstrated that a
pairwise discrete MRF is graph-representable so that the global
minimum of the energy can be achieved in polynomial time via
graph cuts, if the energy function of the MRF is submodular (see
Appendix A for the definition of submodularity). However, in
numerous vision problems, more challenging energy functions that
do not satisfy the submodular condition are often required. The
minimization of such non-submodular energy functions is NP-hard
in general [23,25] and an approximation algorithm would be re-
quired to approach the global optimum.

More than two decades ago, [46] first proposed to use min-cut/
max-flow techniques to exactly optimize the energy of a binary
MRF (i.e., Ising model) for image restoration in polynomial time.
However, the use of such min-cut/max-flow techniques did not
draw much attention in computer vision community in the follow-
ing decade since then, probably due to the fact that the work was
published in a journal of statistics community and/or that the
model considered in [46] is quite simple. Such a situation has chan-
ged in late 1990s when a number of techniques based on graph
cuts were proposed to solve more complicated MRFs. One can cite
for example the works described in [67,51,148], which proposed to
use min-cut/max-flow techniques to minimize the energy of multi-
label MRFs. In particular, the work introduced in [67] achieved,
based on the proposed optimization algorithms, much more accu-
rate results than the state-of-the-art in computing stereo depth,
and thus motivated the use of their optimization algorithms for
many other problems (e.g., [162–164]), also leading to excellent
performance. This significantly popularized graph cuts techniques
in computer vision community. Since then, numerous works have
been done for exploring larger subsets of MRFs that can be exactly
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or approximately optimized by graph cuts and for developing more
efficient graph-cuts-based algorithms.

4.1.1. Towards multi-label MRFs
There are two main methodologies for solving multi-label MRFs

based on graph cuts: label-reduction and move-making.
The first methodology (i.e., label-reduction) is based on the

observation that some solvable types of multi-label MRFs can be
exactly solved in polynomial time using graph cuts by first intro-
ducing auxiliary binary variables each corresponding to a possible
label of a node and then deriving a min-cut problem that is equiv-
alent to the energy minimization of the original MRF. We can cite
for example an efficient graph construction method proposed in
[24] to deal with arbitrary convex pairwise MRFs, which was fur-
ther extended to submodular pairwise MRFs in [140]. Such a meth-
odology can perform MAP inference in some types of MRFs.
However, the solvable types are quite limited, since it is required
that the obtained binary MRF (via introducing auxiliary binary
variables) should be graph-representable. Whereas, the other opti-
mization methodology (i.e., move-making) provides a very impor-
tant tool for addressing larger sub-classes of MRFs.

The main idea of move-making is to optimize the MRF energy by
defining a set of proposals (i.e., possible ‘‘moves’’) based on the ini-
tial MRF configuration and choosing the best move as the initial
configuration for the next iteration, which is done iteratively until
the convergence when no move leads to a lower energy. The per-
formance of an algorithm developed based on such a methodology
mainly depends on the size of the set (denoted byM) of proposals
at each iteration. For example, ICM [141] iteratively optimizes the
MRF energy with respect to a node by fixing the configuration of all
the other nodes. It can be regarded as the simplest move-making
approach, where jMj is equal to the number of labels of the node
that is considered to make move at an iteration. ICM has been
shown to perform poorly when dealing with MRF models for visual
perception, due to the small set M of proposals [35].

Graph-cuts-based methods have been proposed to exponen-
tially increase the size of the set M of proposals, for example, by
considering the combination of two possible values for all the
nodes ðjMj ¼ 2jVjÞ. In the representative works of [165,23], a-
expansion and ab-swap were introduced to generalize binary
graph cuts to handle pairwise MRFs with metric and/or semi-metric
energy. An a-expansion refers to a move from x to x0 such that: xi -
– x0i ) x0i = a. An ab-swap means a move from x to x0 such that: xi -
– x0i ) xi, x0i 2 {a, b}. [165,23] proposed efficient algorithms for
determining the optimal expansion or swap moves by converting
the problems into binary labeling problems which can be solved
efficiently using graph cuts techniques. In such methods, a drasti-
cally larger M compared to that of ICM makes the optimization
less prone to be trapped at local minima and thus leads to much
better performance [35]. Moreover, unlike ICM which has no opti-
mum quality guarantee, the solution obtained by a-expansion has
been proven to possess a bounded ratio between the obtained en-
ergy and the global optimal energy [165,23].

In addition, range moves methods [166–168] have been devel-
oped based on min-cut/max-flow techniques to improve the opti-
mum quality in addressing MRFs with truncated convex priors.
Such methods explore a large search space by considering a range
of labels (i.e., an interval of consecutive labels), instead of dealing
with one/two labels at each iteration as what is done in a-expan-
sion or ab-swap. In particular, range expansion has been demon-
strated in [167] to provide the same multiplicative bounds as the
standard linear programming (LP) relaxation (see Section 4.3) in
polynomial time, and to provide a faster algorithm for dealing with
the class of MRFs with truncated convex priors compared to LP-
relaxation-based algorithms such as tree-reweighted Message
Passing (TRW) techniques (see Section 4.3). Very recently, [169]
proposed a dynamic-programming-based algorithm for approxi-
mately performing a-expansion, which significantly speeds up
the original a-expansion algorithm [165,23].

Last, we should note that expansion is a very important concept
in optimizing the energy of a multi-label MRF using graph cuts.
Many other works in this direction are based on or partially related
to it, which will be reflected in the following discussion.

4.1.2. Towards non-submodular functions
Graph cuts techniques have also been extended to deal with

non-submodular binary energy functions. Roof duality was pro-
posed in [170], which provides an LP relaxation approach to
achieving a partial optimal labeling for quadratic pseudo-boolean
functions (the solution will be a complete labeling that corre-
sponds to global optimum if the energy is submodular). The persis-
tency property of roof duality indicates that the configurations of
all the labeled nodes are exactly those corresponding to the global
optimum. Hence, QPBO at least provides us with a partial labeling
of the MRF and the number of unlabeled nodes depends on the
number of non-submodular terms included in the MRF. Such a
method was efficiently implemented in [149], which is referred
to as Quadratic Pseudo-Boolean Optimization (QPBO) algorithm and
can be regarded as a graph-cuts-based algorithm with a special
graph construction where two nodes in s-t graph are used to rep-
resent two complementary states of a node in the original MRF
[150]. By solving min-cut/max-flow in such an s-t graph, QPBO
outputs a solution assigning 0,1 or 1

2 to each node in the original
MRF, where the label 1

2 means the corresponding node is unlabeled.
Furthermore, two different techniques were introduced in order

to extend QPBO towards achieving a complete solution. One is
probing (called QPBO-P) [151,152], which aims to gradually reduce
the number of unlabeled nodes (either by finding the optimal label
for certain unlabeled nodes or by regrouping a set of unlabeled
nodes) until convergence by iteratively fixing the label of a unla-
beled node and performing QPBO. The other one is improving
(called QPBO-I) [152], which starts from a complete labeling y
and gradually improves such a labeling by iteratively fixing the la-
bels of a subset of nodes as those specified y and using QPBO to get
a partial labeling to update y.

Besides, QPBO techniques have been further combined with the
label-reduction and move-making techniques presented previously
to deal with multi-label MRFs. For the former case, in [171], a mul-
ti-label MRF is converted into an equivalent binary MRF [24] and
then QPBO techniques are employed to solve the linear relaxation
of the obtained binary MRF. It provides a partial optimal labeling
for multi-label MRFs. Nevertheless, a disadvantage of such an ap-
proach is the expensive computational complexity. For the latter
case, an interesting combination of QPBO and move-making tech-
niques was proposed in [172], which is referred to as fusion moves.
Given two arbitrary proposals (x(1), x(2)) of the full labeling of the
MRF, fusion moves combine the proposals together via a binary
labeling problem, which is solved using QPBO so as to achieve a
new labeling x0 such that: 8i; x0i 2 fx

ð1Þ
i ; xð2Þi g. Using the proposed la-

bel selection rule, x0 is guaranteed to have an energy lower than or
equal to the energies of both proposals (x(1), x(2)). Hence, fusion
moves provides an effective tool for addressing the optimization
of multi-label discrete/continuous MRFs. In addition, it turns out
that fusion moves generalize some previous graph-cuts-based
methods such as a-expansion and ab-swap, in the sense that the
latter methods can be formulated as fusion moves with particular
choices of proposals. This suggests that fusion moves can serve as
building block within various existing optimization schemes so as
to develop new techniques, such as the approaches proposed in
[172] for the parallelization of MRF optimization into several
threads and the optimization of continuous-labeled MRFs with
2D labels.



17 Note that all the BP-based algorithms presented in Section 4.2 include both min-
sum and sum-product versions. We focus here on the min-sum version. Nevertheless,
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4.1.3. Towards improving efficiency
We should also note that different methods have been devel-

oped to increase the efficiency of graph-cuts-based algorithms, in
particular in the context of dynamic MRFs (i.e., the potential func-
tions vary over time, whereas the change between two successive
instants is usually quite small). Below are several representative
works in this line of research.

A dynamic max-flow algorithm (referred to as dynamic graph
cuts) was proposed in [173,27] to accelerate graph cuts when deal-
ing with dynamics MRFs, where the key idea is to reuse the flow
obtained by solving the previous MRF to initialize the min-cut/
max-flow problems of the current MRF so as to significantly reduce
the computational time of min-cut. Another dynamic algorithm
was also proposed in [174] to improve the convergence of optimi-
zation for dynamic MRFs, by using the min-cut solution of the pre-
vious MRF to generate an initialization for solving the current MRF.

In [154,29], a primal–dual scheme based on linear program-
ming relaxation (referred to as FastPD) was proposed for optimiz-
ing the MRF energy, by recovering pair of solutions for the
primal and the dual such that the gap between them is mini-
mized.16 This method exploits information coming from both the
original MRF optimization problem and its dual problem, and
achieves a substantial speedup with respect to previous methods
such as [23,153]. In addition, it can also speed up the optimization
in the case of dynamic MRFs, where one can expect that the new pair
of primal–dual solutions is closed to the previous one.

Besides, [175,176] proposed two similar but simpler techniques
with respect to that of [154,29] to achieve a similar computational
efficiency. The main idea of the first one (referred to as dynamic a-
expansion) is to ‘‘recycle’’ results from previous problem instances.
Similar to [173,27,174], the flow from the corresponding move in
the previous iteration is reused for solving an expansion move in
a particular iteration. And when dealing with dynamic MRFs, the
primal and dual solutions obtained from the previous MRF are used
to initialize the min-cut/max-flow problems for the current MRF.
The second method aims to simplify the energy function by solving
partial optimal MRF labeling problems [171,177] and reducing the
number of unlabeled variables, while the dual (flow) solutions of
such problems are used to generate a ‘‘good’’ initialization for the
dynamic a-expansion algorithm.

Last but not least, based on the primal–dual interpretation of
the expansion algorithm introduced by [154,29], an approach
was proposed in [178] to optimize the choice of the move space
for each iteration by exploiting the primal–dual gap. As opposed
to traditional move-making methods that search for better solu-
tions in some pre-defined move spaces around the current solu-
tion, such an approach aims to greedily determine the move
space (e.g., the optimal value of a in the context of a-expansion)
that will lead to largest decrease in the primal–dual gap at each
iteration. It was demonstrated experimentally to increase signifi-
cantly the optimization efficiency.

4.2. Belief propagation algorithms

Belief propagation algorithms use local message passing to per-
form inference on graphical models. They provide an exact infer-
ence algorithm for tree-structured discrete MRFs, while an
approximate solution can be achieved for a loopy graph. In partic-
ular, for those loopy graphs with low tree-widths such as cycles,
extended belief propagation methods such as junction tree algo-
rithm [138,139,12] provide an efficient algorithm to perform exact
inference. These belief propagation algorithms have been adopted
to perform MAP inference in MRF models for a variety of vision
problems (e.g., [43,48,58,179,92]).
16 FastPD can also be viewed as a generalization of a-expansion.
4.2.1. Belief propagation in tree
Belief propagation (BP) [39,40,11] was proposed originally for

exactly solving MAP inference (min-sum algorithm) and/or maxi-
mum-marginal inference (sum-product algorithm) in a tree-struc-
tured graphical model in polynomial time. This type of methods
can be viewed as a special case of dynamic programming in graph-
ical models [81,16,180]. A representative vision model that can be
efficiently solved by BP is the pictorial model [80,43] (see
Section 3.1.2).

In the min-sum algorithm17 for a tree-structured MRF, a partic-
ular node is usually designated as the ‘‘root’’ of the tree. Then
messages are propagated inwards from the leaves of the tree to-
wards the root, where each node sends its message to its parent
once it has received all incoming messages from its children.
During the message passing, a local lookup table is generated
for each node, recording the optimal labels of all children for each
of its possible labels. Once all messages arrive at the root node, a
minimization is performed over the sum of the messages and the
unary potentials of the root node, giving the minimum value for
the MRF energy as well as the optimal label for the root node.
In order to determine the labels for the other nodes, the optimal
label is then propagated outwards from the root to the leaves of
the tree, simply via checking the lookup tables obtained previ-
ously, which is usually referred to as back-tracking. A detailed
algorithm is provided in Algorithm 1 (Section B) based on the
factor graph representation [38,11], since as we mentioned in
Section 2.3, the factor graph makes the BP algorithm applicable
to more cases compared to the classic min-sum algorithm applied
on a usual pairwise MRF [48].

Note that reparameterization (also known as equivalent transfor-
mation) of the MRF energy (e.g., [181,28]) is an important concept
in MRF optimization. Two different settings of potentials (e.g., hi, hij

in Eq. (11)) leading to the same MRF energy (up to a constant dif-
ference) for any MRF configuration differ by a reparameterization.
Reparameterization provides an alternative interpretation of belief
propagation, which for example leads to a memory-efficient imple-
mentation of belief propagation [28]. Meanwhile, max-flow based
algorithms also have been shown to relate to the principle of repa-
rameterization [27]. Such a relationship (via reparameterization)
sheds light on some connection between max-flow and message
passing based algorithms.
4.2.2. Loopy belief propagation
The tree-structured constraint limits the use of the standard be-

lief propagation algorithm presented above, whereas loopy MRFs
are often required to model vision problems. Hence, researchers
have investigated to extend the message passing concept for min-
imizing the energy of arbitrary graphs.

Loopy belief propagation (LBP), a natural step towards this direc-
tion, performs message passing iteratively in the graph (e.g.,
[182,48,146,147]) despite of the existence of loops. We refer the
reader to [48,146] for the details and discussion on the LBP algo-
rithm. Regarding the message passing scheme in loopy graphs,
there are two possible choices: parallel or sequential. In the parallel
scheme, messages are computed for all the edges at the same time
and then the messages are propagated for the next round of mes-
sage passing. Whereas in the sequential scheme, a node propagates
the message to one of its neighbor node at each round and such a
message will be used to compute the messages sent by that neigh-
bor node. [183] showed empirically that the sequential scheme
the sum-product version can be easily obtained by replacing the message computation
with the sum of the product of function terms. We refer the reader to [38,11,12] for
more details.
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was significantly faster than the parallel one, while the perfor-
mance of both methods was almost the same.

A number of works have been done to improve the efficiency of
message passing by exploiting particular types of graphs and/or po-
tential functions (e.g., [147,184,185]). For example, based on the dis-
tance transform algorithm [186], a strategy was introduced in [147]
for speeding up belief propagation for a subclass of pairwise poten-
tials that only depend on the difference of the variables such as those
defined in Eq. (13), which reduces the complexity of a message pass-
ing operation between two nodes from quadratic to linear in the
number of possible labels per node. Techniques have also been pro-
posed for accelerating the message passing in bipartite graphs and/
or grid-like MRFs [147,185], and in robust truncated models where a
pairwise potential is equal to a constant for most of the possible state
combinations of the two nodes [184]. Recently, [187] proposed a
parallel message computation scheme, inspired from [147] but
applicable to a wider subclass of MRFs than [147]. Together with a
GPU implementation, such a scheme substantially reduces the run-
ning time in various MRF models for low-level vision problems.

Despite the fact that LBP performs well for a number of vision
applications such as [48,58], they cannot guarantee to converge
to a fixed point, while their theoretical properties are not well
understood. Last but not least, their solution is generally worse
than more sophisticated generalizations of message passing algo-
rithms (e.g., [26,28,45]) that will be presented in Section 4.3 [35].
19 [�] is equal to one if the argument is true and zero otherwise.
20 Note that, very recently, [190] experimentally demonstrated that for a subclass of

small-size MRFs, advanced integer programming algorithms based on cutting-plane
and branch-and-bound techniques can have global optimality property while being
computational efficient.

21
4.2.3. Junction tree algorithm
Junction tree algorithm (JTA) is an exact inference method in

arbitrary graphical models [138,139,12]. The key idea is to make
systematic use of the Markov properties implied in graphical mod-
els to decompose a computation of the joint probability or energy
into a set of local computations. Such an approach bears strong
similarities with message passing in the standard belief propaga-
tion or dynamic programming. In this sense, we regard JTA as an
extension of the standard belief propagation.

An undirected graph has a junction tree if and only if it is trian-
gulated (i.e., there is no chordless18 cycle in the graph). For any MRF,
we can obtain a junction tree by first triangulating the original graph
(i.e., making the graph triangulated by adding additional edges) and
then finding a maximal spanning tree for the maximal cliques con-
tained in the triangulated graph (e.g., Fig. 4). Based on the obtained
junction tree, we can perform local message passing to do the exact
inference, which is similar to standard belief propagation in factor
trees. We refer the reader to [139,12] for details.

The complexity of the inference in a junction tree for a discrete
MRF is exponential with respect to its width W, which is defined as
the maximum cardinal over all the maximal cliques minus 1.
Hence, the complexity is dominated by the largest maximal cliques
in the triangulated graph. However, the triangulation process may
produce large maximal cliques, while finding of an optimal junc-
tion tree with the smallest width for an arbitrary undirected graph
is an NP-hard problem. Furthermore, MRFs with dense initial con-
nections could lead to maximal cliques of very high cardinal even if
an optimal junction tree could be found [12]. Due to the computa-
tional complexity, the junction tree algorithm becomes impractical
when the tree width is high, although it provides an exact infer-
ence approach. Thus it has been only used in some specific scenar-
ios or some special kinds of graphs that have low tree widths (e.g.,
cycles and outer-planar graphs whose widths are equal to 2). For
example, JTA was employed in [179] to deal with simultaneous
localization and mapping (SLAM) problem, and was also adopted
in [92] to perform exactly inference in outer-planar graphs within
18 A cycle is said to be chordless if there is no edge between any pair of nodes that are
not successors in the cycle.
the whole dual-decomposition framework. In order to reduce the
complexity, nested junction tree technique was proposed in [188]
to further factorize large cliques. Nevertheless, the gain of such a
process depends directly on the initial graph structure and is still
insufficient to make JTA widely applicable in practice.

4.3. Dual methods

The MAP inference in pairwise MRFs (Eqs. (8) and (11)), can be
reformulated as an integer linear programming (ILP) [189] problem
as follows:

min
s

Eðh; sÞ ¼ hh; si ¼
X
i2V

X
a2X i

hi;asi;a þ
X
fi;jg2E

X
ða;bÞ2X i�X j

hij;absij;ab

s:t: s 2 sG ¼ s

X
a2X i

si;a ¼ 1 8 i 2 V
X
a2X i

sij;ab ¼ sj;b 8fi; jg 2 E; b 2 X j

si;a 2 f0;1g 8 i 2 V; a 2 X i

sij;ab 2 f0;1g 8fi; jg 2 E; ða; bÞ 2 X i � X j

�������������

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

:

ð18Þ

where hi;a = hi(a), hij;ab = hij(a, b), binary variables19 si;a = [xi = a] and
sij;ab = [xi = a, xj = b], s denotes the concatenation of all these binary
variables which can be defined as ððsi;aÞi2V;a2X i

; ðsij;abÞfi;jg2E;ða;bÞ2X i�X j
Þ,

and sG denotes the domain of s. We will use MRF-MAP to refer to this
original MAP inference problem. Unfortunately, the above ILP prob-
lem is NP-hard in general.20 Many approximation algorithms of MRF
optimization have been developed based on solving some relaxation
to such a problem.

Linear Programming (LP) relaxation has been widely adopted to
address the MRF-MAP problem in Eq. (18), aiming to minimize E(h,
s) in a relaxed domain ŝG (called local marginal polytope) which is
obtained by simply replacing the integer constraints in Eq. (18)
by non-negative constraints (i.e., si;a P 0 and sij;ab P 0). Such a re-
laxed problem will be referred to as MRF-LP. It is generally infeasi-
ble to directly apply generic LP algorithms such as interior point
methods [191] to solve MRF-LP for MRF models in computer vision
[192], due to the fact that the number of variables involved in s is
usually huge. Instead, many methods have been designed based on
solving some dual to MRF-LP, i.e., maximizing the lower bound of
E(h, s) provided by the dual. An important class of such methods
are referred to as tree-reweighted message passing (TRW) techniques
(e.g., [26,28]), which approach the solution to MRF-LP via a dual
problem defined by a convex combination of trees. The optimal va-
lue of such a dual problem and that of MRF-LP coincide [26]. In
[26], TRW was introduced to solve MRF-MAP by using edge-based
and tree-based message passing schemes (called TRW-E and TRW-T
respectively), which can be viewed as combinations of reparame-
terization and averaging operations on the MRF energy. However,
the two schemes do not guarantee the convergence of the algo-
rithms and the value of the lower bound may fall into a loop. Later,
a sequential message passing scheme (known as TRW-S) was pro-
posed in [28]. It updates messages in a sequential order instead of a
parallel order used in TRW-E and TRW-T, which makes the lower
bound will not decrease in TRW-S. Regarding the convergence,
TRW-S will attain a point that satisfies a condition referred to as
weak tree agreement (WTA) [193] and the lower bound will not
change any more since then.21 Regarding the optimality, TRW-S
[28] observed in the experiments that TRW-S would finally converge to a fixed
point but such a convergence required a lot of time after attaining WTA. Nevertheless,
such a convergence may not be necessary in practice, since the lower bound will not
change any more after attaining WTA.



(a) (b) (c) (d)
Fig. 4. Example of Junction Tree. (a) Original undirected graphical model; (b) triangulation of the graph in (a); (c) a junction tree for the graphs in (a) and (b); (d) a clique tree
which is not junction tree. In (c-d), we use a square box to represent a separator being associated to an edge and denoting the intersection of the two cliques connected by the
edge. A maximal spanning tree is a tree that connects all the nodes and has the maximal sum of the cardinals of the separators among all possible trees.
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cannot guarantee the global maximum of the lower bound in gen-
eral. Nevertheless, for the case of binary pairwise MRFs, a WTA fixed
point corresponds to the global maximum of the lower bound, and
thus the global minimum of MRF-LP [193]. Furthermore, if a binary
pairwise MRF is submodular, a WTA fixed point always achieves the
global optimum of the MRF-MAP problem. In [35], a set of experi-
mental comparisons between ICM, LBP, a-expansion, ab-swap and
TRW-S were done based on MRFs with smoothness priors, showing
that TRW-S and a-expansion perform much better than the others.
For other representative methods solving a dual to MRF-LP, one
can cite for example the message passing algorithm based on block
coordinate descent proposed in [194], the min-sum diffusion algorithm
[195] and the augmenting DAG algorithm22 [196], etc. Note that,
since the LP-relaxation can be too loose to approach the solution
of the MRF-MAP problem, the tightening of the LP-relaxation has
also been investigated for achieving a better optimum of the MRF-
MAP problem (e.g., [197–199,30,200,201]).

Another important relaxation (i.e., Lagrangian relaxation) to
MRF-MAP is related to dual-decomposition [202], which is a very
important optimization methodology. Dual-decomposition was em-
ployed in [45,156] for addressing the MRF-MAP problem (referred
to as MRF-DD). The key idea is: instead of minimizing directly the
energy of the original MRF-MAP problem which is too complex to
solve directly, we decompose the original problem into a set of
subproblems which are easy to solve. Based on a Lagrangian dual
of the MRF-MAP problem, the sum of the minima of the subprob-
lems provides a lower bound on the energy of the original MRF. This
sum is maximized using projected subgradient method so that a
solution to the original problem can be extracted from the Lagrang-
ian solutions [156]. This leads to an MRF optimization framework
with a high flexibility, generality and convergence property. First,
the Lagrangian dual problem can be globally optimized due to
the convexity of the dual function, which is a more desired prop-
erty than WTA condition guaranteed by TRW-S. Second, different
decompositions can be considered to deal with MRF-MAP, leading
to different relaxations. In particular, when the master problem is
decomposed into a set of trees, the obtained Lagrangian relaxation
is equivalent to the LP relaxation of MRF-MAP. However, more
sophisticated decompositions23 can be considered to tighten the
relaxation (e.g., decompositions based on outer-planar graphs [92]
and k-fan graphs [91]). Third, there is no constraint on how the infer-
ence in slave problems is done and one can apply specific optimiza-
tion algorithms to solve slave problems. A number of interesting
applications have been proposed within such a framework, which in-
22 Both the min-sum diffusion algorithm and the augmenting DAG algorithm were
reviewed in [155].

23 A theoretical conclusion regarding the comparison of the tightness between two
different decompositions has been drawn in [156].
clude the graph matching method proposed in [203], the higher-or-
der MRF inference method developed in [107], and the algorithm
introduced in [204] for jointly inferring image segmentation and
appearance histogram models. In addition, various techniques have
been proposed to speed up the convergence of MRF-DD algorithms.
For example, two approaches were introduced in [31]. One is to use a
multi-resolution hierarchy of dual relaxations, and the other consists
of a decimation strategy that gradually fixes the labels for a growing
subset of nodes as well as their dual variables during the process.
[205] proposed to construct a smooth approximation of the energy
function of the master problem by smoothing the energies of the
slave problems so as to achieve a significant acceleration of the
MRF-DD algorithm. A distributed implementation of graph cuts
was introduced in [206] to solve the slave problems in parallel.

Last, it is worth mentioning that an advantage of all dual meth-
ods is that we can tell how far the solution of MRF-MAP is from the
global optimum, simply by measuring the gap between the lower
bound obtained from solving the dual problem and the energy of
the obtained MRF-MAP solution.

4.4. Inference in higher-order MRFs

Recent development of higher-order MRF models for vision
problems has been shown in Section 3.2. In such a context, numer-
ous works have been devoted in the past decade to search for effi-
cient inference algorithms in higher-order models, towards
expanding their use in vision problems that usually involve a large
number of variables. One can cite for example [100,101], where a
simple inference scheme based on a conjugate gradient method
was developed to solve their higher-order model for image restora-
tion. Since then, besides a number of methods for solving specific
types of higher-order models (e.g., [102,207,118,119,122]), various
techniques have also been proposed to deal with more general
MRF models (e.g., [208,209,107,210,211]). These inference meth-
ods are highly inspired from the ones for pairwise MRFs. Thus, sim-
ilar to pairwise MRFs, there are also three main types of
approaches for solving higher-order MRFs, i.e., algorithms based
on order reduction and graph cuts, higher-order extensions of belief
propagation, and dual methods.

4.4.1. Order reduction and graph cuts
Most of existing methods tackle inference in higher-order MRFs

using a two-stage approach: first to reduce a higher-order model to
a pairwise one with the same minimum, and then to apply standard
methods such as graph cuts to solve the obtained pairwise model.

The idea of order reduction exists for long time. More than
thirty years ago, a method (referred to as variable substitution)
was proposed in [212] to perform order reduction for models of
any order, by introducing auxiliary variables to substitute products
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of variables.24 However, this approach leads to a large number of
non-submodular components in the resulting pairwise model. This
is due to the hard constraints involved in the substitution, which
causes large difficulty in solving the obtained pairwise model. This
may explain why its impact is rather limited in the literature
[161,213], since our final interest is solving higher-order models.
In [213], QPBO was employed to solve the resulting pairwise model,
nevertheless, only third-order potentials were tested in the
experiments.

A better reduction method that generally produces fewer non-
submodular components was proposed in [25], in order to con-
struct s-t graph for a third-order binary MRF. This reduction meth-
od was studied from an algebraic viewpoint in [214] and led to
some interesting conclusions towards extending this method to
models of an arbitrary order. Based on these works, [210,215] pro-
posed a generalized technique that can reduce any higher-order
binary MRF into a pairwise one, which can then be solved by QBPO.
Furthermore, [210,215] also extended such a technique to deal
with multi-label MRFs by using fusion moves [172]. Very recently,
aiming to obtain a pairwise model that is as easy as possible to
solve (i.e., has as few as possible non-submodular terms), [216]
proposed to approach order reduction as an optimization problem,
where different factors are allowed to choose different reduction
methods in order to optimize an objective function defined using
a special graph (referred to as order reduction inference graph). In
the same line of research, [211] proposed to perform order reduc-
tion on a group of higher-order terms at the same time instead of
on each term independently [210,215], which has been demon-
strated both theoretically and experimentally to lead to better per-
formance compared to [210,215].

Graph-cuts techniques have also been considered to cope either
with specific vision problems or certain classes of higher-order
models. For example, [102,103] characterized a class of higher-or-
der potentials (i.e., Pn Potts model). It was also showed that the
optimal expansion and swap moves for these higher-order
potentials can be computed efficiently in polynomial time, which
leads to an efficient graph-cuts-based algorithm for solving such
models. Such a technique was further extended in [104,105] to a
wider class of higher-order models (i.e., robust Pn model). In
addition, graph-cuts-based approaches were also proposed in
[122,123,119,120,217] to perform inference in their higher-order
MRFs with global potentials that encode co-occurrence statistics
and/or label costs. Despite the fact that such methods were designed
for a limited range of problems that often cannot be solved by a gen-
eral inference method, they better capture the characteristics of the
problems and are able to solve the problems relatively efficiently.
4.4.2. Belief-propagation-based methods
As mentioned in Section 4.2, the factor graph representation of

MRFs enables the extension of classic min-sum belief propagation
algorithm to higher-order cases. Hence, loopy belief propagation in
factor graphs provides a straightforward way to deal with infer-
ence in higher-order MRFs. Such an approach was adopted in
[208] to solve their higher-order Fields-of-Experts model.

A practical problem for propagating messages in higher-order
MRFs is that the complexity increases exponentially with respect
to the highest order among all cliques. Various techniques have been
proposed to accelerate the belief propagation in special families of
higher-order potentials. For example, [218,209,219] proposed effi-
cient message passing algorithms for some families of potentials
such as linear constraint potentials and cardinality-based potentials.
Recently, the max-product message passing was accelerated in
24 Here, we consider binary higher-order MRFs and their energy functions can be
represented in form of pseudo-Boolean functions [161].
[220] by exploiting the fact that a clique potential often consists of
a sum of potentials each involving only a sub-clique of variables,
whose expected computational time was further reduced in [221].

4.4.3. Dual methods
The LP relaxation of the MRF-MAP problem for pairwise MRFs

(see Section 4.3) can be generalized to the cases of higher-order
MRFs. Such a generalization was studied in [222,200], where
min-sum diffusion [195] was adopted to achieve a method for opti-
mizing the energy of higher-order MRFs, which is referred to as n-
ary min-sum diffusion.25 Recently, such techniques were adopted in
[223] to efficiently solve in a parallel/distributed fashion higher-or-
der MRF models of triangulated planar structure.

The dual-decomposition framework [202,154], which has been
presented in Section 4.3, can also be adopted to deal with high-
er-order MRFs. This was first demonstrated in [107], where infer-
ence algorithms were introduced for solving a wide class of
higher-order potential referred to as pattern-based potentials.26 Also
based on the dual-decomposition framework, [115] proposed to
solve their higher-order MRF model by decomposing the original
problem into a series of subproblems each corresponding to a factor
tree. In [224], such a framework was combined with order-reduction
[210,215] and QPBO techniques [150] to solve higher-order graph-
matching problems.

4.4.4. Exploitation of the sparsity of potentials
Last, it is worth mentioning that the sparsity of potentials has

been exploited, either explicitly or implicitly, in many of the above
higher-order inference methods. For example, [225] proposed a
compact representation for ‘‘sparse’’ higher-order potentials (ex-
cept a very small subset, the labelings are almost impossible and
have the same high energy), via which a higher-order model can
be converted into a pairwise one by introducing only a small num-
ber of auxiliary variables and then pairwise MRF inference meth-
ods such as graph cuts can be employed to solve the problem. In
the same line of research, [226] studied and characterized some
classes of higher-order potentials (e.g., Pn Potts model [103]) that
can be represented compactly as upper or lower envelope of linear
functions. Furthermore, it was demonstrated in [226] that these
higher-order models can be converted into pairwise models with
the addition of a small number of auxiliary variables. [227] pro-
posed to optimize the energy of ‘‘sparse’’ higher-order models by
transforming the original problem into a relatively small instance
of submodular vertex-cover, which can then be optimized by stan-
dard algorithms such as belief propagation and QPBO. This ap-
proach has been shown to achieve much better efficiency than
applying those standard algorithms to address the original prob-
lem directly. Very recently, [228] took a further step along this line
of research by exploring the intrinsic dimensions of higher-order
cliques, and proposed a powerful MRF-based modeling/inference
framework (called NC-MRF) which significantly broadens the appli-
cability of higher-order MRFs in visual perception.

5. MRF learning methods

On top of inference, another task of great importance is MRF
learning/training, which aims to select the optimal model from its
feasible set based on the training data. In this case, the input is a

set of K training samples fdk
;xkg

K

k¼1, where dk and xk represent the
observed data and the ground truth MRF configuration of the k-th
sample, respectively. Moreover, it is assumed that the unary poten-
25 The method was originally called n-ary max-sum diffusion in [222,200] due to the
fact that a maximization of objective function was considered.

26 For example, Pn Potts model [103] is a sub-class of pattern-based potentials.
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tials hk
i and the pairwise potentials hk

ij of the k-th MRF training in-
stance can be expressed linearly in terms of feature vectors ex-
tracted from the observed data dk, that is, it holds

hk
i ðxiÞ ¼ wT giðxi;d

kÞ, hk
ijðxi; xjÞ ¼ wT gijðxi; xj;d

kÞ, where gi and gij rep-
resent some known vector-valued feature functions (which are cho-
sen based on the computer vision application at hand) and w is an
unknown vector of parameters. The goal of MRF learning boils down
to estimating this vector w using as input the above training data.

Both generative (e.g., maximum-likelihood) and discriminative
(e.g., max-margin) MRF learning approaches have been applied
for this purpose. In the former case, one seeks to maximize (possi-
bly along with an L2-norm regularization term) the product of pos-
terior probabilities of the ground truth MRF labelings

Q
kPðxk; wÞ,

where P(x; w) / exp (E(x; w)) denotes the probability distribution
induced by an MRF model with energy E(x; w). This leads to a con-
vex differentiable objective function that can be optimized using
gradient ascent. However, computing the gradient of this function
involves taking expectations of the feature functions, gi and gij with
respect to the MRF distribution P(x; w). One therefore needs to
perform probabilistic MRF inference, which is nevertheless intrac-
table in general. As a result, approximate inference techniques
(e.g., loopy belief propagation) are often used for approximating
the MRF marginals required for the estimation of the gradient. This
is the case, for instance, in [5], where the authors demonstrate how
to train a CRF model for stereo matching, as well as in [3], or in [2],
where a comparison with other CRF training methods such as
pseudo-likelihood and MCMC-based contrastive divergence is also
included.

In the case of max-margin learning [229,230], on the other
hand, one seeks to adjust the vector w such that the energy E(xk;
w) of the desired ground truth solution xk is smaller by D(x, xk)
than the energy E(x; w) of any other solution x, that is,

Eðxk; wÞ 6 Eðx; wÞ � Dðx;xkÞ þ nk: ð19Þ

In the above set of linear inequality constraints with respect to w,
Dðx;x0Þ represents a user-specified distance function that measures
the dissimilarity between any two solutions x and x0 (obviously it
should hold Dðx;xÞ ¼ 0), while nk is a non-negative slack variable
that has been introduced for ensuring that a feasible solution w
does exist. The distance function Dðx;x0Þ modulates the margin
according to how ‘‘far’’ an MRF labeling differs from the ground
truth labeling. In practice, its choice is largely constrained by the
tractability of the whole learning algorithm. The Hamming distance
is often used in the literature [231,232], due to the fact that it can be
decomposed into a sum of unary terms and integrated easily in the
MRF energy without increasing the order of the MRF model.
However, visual perception often prefers more sophisticated task-
specific distances that can better characterize the physical meaning
of the labeling. For example, [233,234] have investigated the
incorporation of various higher-order distance functions in MRF
learning for the image segmentation task. Ideally, w should be set
such that each nk � 0 can take a value as small as possible (so that
the amount of violation of the above constraints is minimal). As a
result, during the MRF learning, the following constrained optimiza-
tion problem is solved:

min
w;fnkg

l � RðwÞ þ
XK

k¼1

nk; s:t: constraints ð19Þ: ð20Þ

In the above problem, l is a user-specified hyperparameter and
R(w) represents a regularization term whose role is to prevent over-
fitting during the learning process (e.g., it can be set equal to kwk2

or to a sparsity inducing norm such as kwk1). The slack variable nk

can also be expressed as the following hinge-loss term:

Lossðxk; wÞ ¼ Eðxk; wÞ �min
x

Eðx; wÞ � Dðx;xkÞ
� �

: ð21Þ
This leads to the following equivalent unconstrained formulation:

min
w

l � RðwÞ þ
XK

k¼1

Lossðxk; wÞ: ð22Þ

One class of methods [235,236] aim to solve the constrained
optimization problem (Eq. (20)) by the use of a cutting-plane ap-
proach when R(w) = kwk2. In this case, the above problem is equiv-
alent to a convex quadratic program (QP) but with an exponential
number of linear inequality constraints. Given that only a small
fraction of them will be active at an optimal solution, cutting plane
methods proceed by solving a small QP with a growing number of
constraints at each iteration (where this number is polynomially
upper-bounded). One drawback of such an approach relates to
the fact that computing a violated constraint requires solving at
each iteration a MAP inference problem that is NP-hard in general.
For the special case of submodular MRFs, [237] shows how to ex-
press the above constraints (Eq. (20)) in a compact form, which al-
lows for a more efficient MRF learning to take place in this case.

Another class of methods tackle instead the unconstrained for-
mulation (Eq. (22)). This is, e.g., the case for the recently proposed
framework by [238], which addresses the above mentioned draw-
backs of the cutting plane method by relying on the dual decompo-
sition approach for MRF-MAP inference discussed previously in
Section 4.3. By using such an approach, this framework reduces
the task of training an arbitrarily complex MRF to that of training
in parallel a series of simpler slave MRFs that are much easier to
handle within a max-margin framework. The concurrent training
of the slave MRFs takes place through a very efficient stochastic
subgradient learning scheme. Moreover, such a framework can
efficiently handle not only pairwise but also high-order MRFs, as
well as any convex regularizer R(w).

There have also been developed learning methods [239–241]
that aim to deal with the training of MRFs that contain latent vari-
ables, i.e., variables that remain unknown during both training and
testing. Such MRF models are often encountered in vision applica-
tions due to the fact that in many cases full annotation is difficult
or at least very time consuming to be provided (especially for large
scale datasets). As a result, one often has to deal with datasets that
are only partially annotated (weakly supervised learning).

Last but not least, there have also been proposed learning algo-
rithms that are appropriate for handling the discriminative train-
ing of continuous MRF models [242].

6. Conclusion

In order to conclude this survey, let us first recall that develop-
ing MRF-based methods for vision problems and efficient inference
algorithms has been a dominant research direction in computer vi-
sion during the past decade. The main stream referred to pairwise
formulations, whereas more and more focus has been recently
transferred to higher-order MRFs in order to achieve superior solu-
tions for a wider set of vision problems. Moreover, machine learn-
ing techniques have been combined more and more with MRFs
towards image/scene understanding as well as parameter learning
and structure learning of MRF models. All these suggest that MRFs
will keep being a major research topic and offer more promise than
ever before.
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Appendix A. Submodularity of MRFs

There are various definitions of submodular energy functions of
pairwise discrete MRFs in the literature that are equivalent. We
consider here the one presented in [140]. Let us assume the config-
uration space X i for a node i 2 V to be a completely ordered set, the
energy function of a pairwise discrete MRF is submodular if each
pairwise potential term hijð8fi; jg 2 EÞ satisfies: 8x1

i ; x
2
i 2

X i s:t: x1
i 6 x2

i , and 8x1
j ; x

2
j 2 X j s:t: x1

j 6 x2
j ,

hijðx1
i ; x

1
j Þ þ hijðx2

i ; x
2
j Þ 6 hijðx1

i ; x
2
j Þ þ hijðx2

i ; x
1
j Þ: ðA:1Þ

For binary cases where X i ¼ f0;1gð8i 2 VÞ, the condition is reduced
to that each pairwise potential hijð8fi; jg 2 EÞ satisfies:

hijð0;0Þ þ hijð1;1Þ 6 hijð0;1Þ þ hijð1;0Þ: ðA:2Þ

One can refer to [25] for generalizing the submodularity to higher-
order MRFs.

Appendix B. Min-sum belief propagation in factor tree
Algorithm 1. Min-sum Belief Propagation in Factor Tree

Require: Factor tree T ¼ ðV [ F ; EÞ with usual node set V,
factor node set F and edge set E

Require: Factor potentials ðhf ð�ÞÞf2F
Ensure: The optimal configuration xopt ¼ argminx

P
f2Fhf ðxf Þ

Choose a node r̂ 2 V as the root of the tree
Construct P s.t. P(i) denotes the parent of node i 2 V [ F
Construct C s.t. CðiÞ denotes the set of children of node
i 2 V [ F
Psend  NodeOrderingðT ; r̂Þ see Algorithm 2
for k ¼ 1! lengthðPsendÞ � 1 do

i PsendðkÞ
parent node p P(i)
child node set C  CðiÞ
if i 2 V then

if jCj > 0 then
mi!pðxiÞ  

P
j2Cmj!iðxiÞ

else
mi?p(xi) 0

end if
else

if jCj > 0 then
mi!pðxpÞ  minxC ðhiðxiÞ þ

P
j2Cmj!iðxjÞÞ

siðxpÞ  argminxC ðhiðxiÞ þ
P

j2Cmj!iðxjÞÞ
else

mi!pðxpÞ  hiðxpÞ {p is the unique variable contained
in factor i in this case.}

end if
end if

end for
xopt

r̂  argminxr̂

P
j2Cðr̂Þmj!r̂ðxr̂Þ

for k ¼ lengthðPsendÞ � 1! 1 do
i PsendðkÞ
if i 2 F then

parent node p P(i)
child node set C  CðiÞ
xopt
C  siðxpÞ

end if
end for

return xopt
Algorithm 2. Ordering of the Nodes for Sending Messages In a
Tree

Require: Tree T ¼ ðV; EÞ with node set V and edge set E
Require: Root node r̂ 2 V
Ensure: Psend ¼ NodeOrderingðT ; r̂Þ, where Psend is a list

denoting the ordering of the nodes in tree T for sending
messages
Psend  ðr̂Þ
if jVj > 1 then

Get the set C of child nodes: C  fiji 2 V; fi; r̂g 2 Eg
for all c 2 C do

Get child tree T c with root c
Psend  ðNodeOrderingðT ; r̂Þ;PsendÞ {Psend is ordered

from left to right}
end for

end if
return Psend
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