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Abstract
In this paper we present LQG-MP (linear-quadratic Gaussian motion planning), a new approach to robot motion planning
that takes into account the sensors and the controller that will be used during the execution of the robot’s path. LQG-MP is
based on the linear-quadratic controller with Gaussian models of uncertainty, and explicitly characterizes in advance (i.e.
before execution) the a priori probability distributions of the state of the robot along its path. These distributions can be
used to assess the quality of the path, for instance by computing the probability of avoiding collisions. Many methods can
be used to generate the required ensemble of candidate paths from which the best path is selected; in this paper we report
results using rapidly exploring random trees (RRT). We study the performance of LQG-MP with simulation experiments
in three scenarios: (A) a kinodynamic car-like robot, (B) multi-robot planning with differential-drive robots, and (C) a
6-DOF serial manipulator. We also present a method that applies Kalman smoothing to make paths Ck-continuous and
apply LQG-MP to precomputed roadmaps using a variant of Dijkstra’s algorithm to efficiently find high-quality paths.

Keywords
Planning, control, uncertainty

1. Introduction

Motion uncertainty, e.g. due to unmodeled external influ-
ences on the motion of the robot, and imperfect state infor-
mation due to partial or noisy measurements of the robot’s
state, arise in many real-world robotic tasks ranging from
guiding mobile robots over uneven terrain to performing
robotic surgery with high-degree-of-freedom (high-DOF)
manipulators. The amount of motion and sensing uncer-
tainty may depend on the particular motion that is exe-
cuted and the state the robot is in, so different paths for the
robot will have different uncertainties associated with them.
Because the safety and accuracy are of critical importance
for many robotic tasks, these uncertainties will have a sig-
nificant influence on which path is best for the task at hand.
The challenge we discuss in this paper is to precisely quan-
tify these uncertainties in advance, such that the best path
can be selected for the robot.

Many traditional path planners assume deterministic
motion and full knowledge of the state (LaValle and Kuffner
2001; Kavraki et al. 1996), and leave issues of uncer-
tainty to the control phase in which the path may be exe-
cuted using a feedback controller (Kuwata et al. 2008).

Planning and control are related but distinct fields. While
recent work on path planning has addressed motion and/or
sensing uncertainty (see Section 2), most planning meth-
ods do not take control into account during execution
and most control methods take the path as given. LQG-
MP (linear-quadratic Gaussian motion planning) builds a
bridge between these disciplines and draws from results in
both.

The key insight of LQG-MP is that the a priori knowl-
edge of the sensors and controller that will be used during
the execution of the path can be used to optimize the path
in the planning phase. We base our approach on the linear-
quadratic Gaussian (LQG) controller with Gaussian models
of the motion and sensing uncertainty, as it provides optimal
control for guiding a robot along a planned path (Bertsekas
2001). We show that for a given stochastic model of the
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Fig. 1. (a) The maximum factor ct by which the ellipse containing
the positions within one standard deviation can be scaled before it
intersects obstacles gives an indication of the probability that col-
lisions will be avoided (top). Here ct is computed as the Euclidean
distance to the nearest obstacle in the environment transformed
such that the ellipse becomes a unit disc (bottom). (b) The ellipses
show the a priori distributions as computed by LQG-MP along the
best among the 1,000 candidate paths for scenario A. The samples
result from performing 100 simulations.

motion dynamics, and a stochastic model of the sensor mea-
surements obtained during execution, it is possible to derive
in advance (i.e. before execution) the a priori probability
distributions of the states and the control inputs of the robot
along a given path (see Figure 1). These distributions can be
used to compute, for example, the probability that collisions
will be avoided, the likelihood that the robot will arrive at
the goal, or any other measure defining the quality of the
path. We can then use any motion planning method to gen-
erate a large set of candidate paths, and select the path that
is best with respect to the chosen planning objective.

Our approach is generally applicable to both holonomic
and non-holonomic robots with state spaces of arbitrary
dimension and kinematics and dynamics constraints. We
assume that the stochastic dynamics model of the robot and
the stochastic observation model are given explicitly, and
that their stochasticity can be modeled by Gaussian noise.
Our approach is designed for linear models, but can also
be applied to non-linear models if they are locally well
approximated by their linearizations.

We implemented our approach using the rapidly explor-
ing random trees (RRT) motion planning algorithm
(LaValle and Kuffner 2001) for representative path plan-
ning problems, and validated our approach using simulation
experiments. We show that the quality of candidate paths
can differ starkly based on the uncertainty, even if tradi-
tional planning criteria such as path length or clearance
from obstacles are similar, and that the type of sensors used
during execution of the path has a significant influence on
which path is best. A path planner that is unaware of the sen-
sors, the controller and their uncertainties would not be able
to make this distinction, and may produce suboptimal paths.

Paths obtained with RRT motion planning can be non-
smooth. Standard smoothing techniques tend to short-cut
paths or can even result in paths that are not dynamically
feasible (e.g. through the use of splines for smoothing). We
describe a Kalman smoothing approach, which can produce
paths that are Ck continuous and illustrate its performance
in conjunction with LQG-MP.

While the LQG-MP approach does not directly lend
itself to efficient roadmap-based planning, we describe
an approximation similar to the approximations made in
past work on planning in information spaces (Prentice
and Roy 2009) for the LQG-MP setting. This approx-
imation enables efficient planning over pre-computed
roadmaps.

This paper is organized as follows. We start by discussing
related work in Section 2. We formally define the problem
addressed in this paper in Section 3. In Section 4 we show
how LQG-MP computes the a priori probability distribu-
tions for a given path. In Section 5 we discuss application
examples and simulation results of LQG-MP for several
motion and sensing models and planning objectives. In Sec-
tion 6 we discuss a Kalman smoothing approach to make
paths Ck-continuous while avoiding obstacles. In Section 7
we describe an approximation to the LQG-MP evaluation
which enables using a variant of Dijkstra’s algorithm on a
pre-computed roadmap to efficiently find good paths. We
conclude in Section 8.

2. Related work

A substantial body of work has addressed uncertainty in
motion planning. The uncertainty typically originates from
three sources: (i) motion uncertainty, (ii) sensing uncer-
tainty and partial observations of the robot’s own state,
and (iii) uncertainty about the environment. Our approach
focuses on the first two, but is also applicable to the latter if
distributions of the position of obstacles in the environment
are available a priori, as we show in one of our experiments.
Our approach does not explicitly account for sensing of the
environment.

Planners that specifically take into account motion uncer-
tainty include those of Kewlani et al. (2009), Melchior and
Simmons (2007), and Tedrake (2009). These planners plan
paths that avoid rough terrain, but do not consider partial
observability and sensing uncertainty. In Huang and Gupta
(2009), the probability of collisions is minimized for the
specific case of a manipulator with base pose uncertainty.
The sensing uncertainty is taken into account in the planner
of Roy et al. (1999), which aims to optimize the informa-
tion content along a path. Planners in Bouilly et al. (1995),
Fraichard and Mermond (1998), and Lazanas and Latombe
(1995) assume that landmark regions exist in the environ-
ment where the accumulated motion uncertainty can be
‘reset’.
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Other approaches blend planning and control by defin-
ing a global control policy over the entire environment.
Markov decision processes (MDPs), for instance, can be
used with motion uncertainty to optimize probability of
success (Thrun et al. 2005; Alterovitz et al. 2007). How-
ever, they require discretization of the state and control
input spaces. The MDP concept can be extended to partially
observable Markov decision processes (POMDPs) to also
include sensing uncertainty (Kaelbling et al. 1998; Porta
et al. 2006; Kurniawati et al. 2008). While POMDPs suf-
fer from issues of scalability (Papadimitriou and Tsisiklis
1987), recent advances have shown considerable success in
applying approximate sample-based solutions to POMDPs
in reasonable computation times. The method of LaValle
and Hutchinson (1998) also provides a global control policy
in case of motion and sensing uncertainty.

Another class of planners considers the uncertainty about
the environment and obstacles, rather than motion and sens-
ing uncertainty (Missiuro and Roy 2006; Burns and Brock
2007; Guibas et al. 2008; Nakhaei and Lamiraux 2008).
They typically aim to plan paths for which the probability
of collisions is minimal.

Existing planners that are most directly related to LQG-
MP take into account the available sensing capability to
maximize the probability of arriving at the goal or to mini-
mize expected cost (Pepy and Lambert 2006; Gonzalez and
Stentz 2009; Huynh and Roy 2009; Prentice and Roy 2009;
Platt et al. 2010). However, these algorithms (implicitly)
assume to receive maximum-likelihood measurements from
the sensors, which does not result in the true probability dis-
tributions of the state of the robot, but rather a measure of
how well one will be able to infer the state. In addition to the
sensors, LQG-MP also takes into account the controller that
will be used for executing the path, and computes the true
a priori probability distributions of the state of the robot
along its future path. Also, in addition to maximizing the
likelihood of arrival at the goal, LQG-MP can also be used
to minimize the probability of collisions with obstacles in
order to maximize the probability of successful execution
of the path.

3. Problem definition

Let X = R
n be the state space of the robot, and let U =

R
m be the control input space of the robot. We assume that

time is discretized into stages of equal duration, and that
applying a control input ut ∈ U at stage t brings the robot
from state xt ∈ X at stage t to state xt+1 ∈ X at stage t + 1
according to a given stochastic dynamics model:

xt = f (xt−1, ut−1, mt) , mt ∼ N (0, Mt) , (1)

where mt is the process noise at stage t drawn from
a zero-mean Gaussian distribution with variance Mt that

models the motion uncertainty. We assume that the func-
tion f is either linear or locally well approximated by its
linearization.

Let us be given a start state xstart ∈ X where the robot
begins and a goal region X goal ⊂ X where the robot needs
to go. A path � for the robot is defined as a series of states
and control inputs (x�

0, u�
0, . . . , x�

�, u�
�), such that x�

0 = xstart,
x�

� ∈ X goal, and x�
t = f (x�

t−1, u�
t−1, 0) for 0 < t ≤ �, where �

is the number of stages of the path. That is, a path connects
the start state and the goal region, and is consistent with the
dynamics model if there were no process noise.

During execution of the path, the robot will deviate from
the path due to motion uncertainty. To compensate for unex-
pected motions, the path will be executed using a feed-
back controller that aims to keep the robot close to the
path. We assume that noisy sensors provide us with partial
information about the state according to a given stochastic
observation model:

zt = h(xt, nt) , nt ∼ N (0, Nt) , (2)

where zt is the measurement obtained at stage t that relates
to state xt through function h, and nt is the measurement
noise drawn from a zero-mean Gaussian with variance Nt.
We assume that the function h is either linear or locally well
approximated by its linearization.

We define our problem in two parts: (i) given the stochas-
tic dynamics model and the stochastic observation model,
compute the a priori distributions of the state and control
input along a given path; and (ii) given a planning objective
based on the probability distributions, select the best path
among a large set of candidates.

4. A priori probability distributions

In this section we describe how to compute the a pri-
ori probability distributions of the state and control input
of the robot along a given path �. For this, we use the
fact that we know in advance what controller will be used
to execute the path: for linear dynamics and observation
models with Gaussian noise and a quadratic cost func-
tion, the optimal approach for executing the path is to
use an LQR feedback controller in parallel with a Kalman
filter for state estimation, which is called LQG control
(Bertsekas 2001). A Kalman filter provides the optimal
estimate of the state given previous state estimates, mea-
surements and control inputs, and an LQR controller pro-
vides the optimal control input given the estimate of the
state.

We first discuss how to linearize the dynamics and obser-
vation model, and then review the Kalman filter and LQR
controller. From these, we compute the a priori probability
distributions of the states and the control inputs of the robot
along the path.
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4.1. Linear(ized) dynamics and observation
model

In principle, our approach applies to linear dynamics and
observation models f and h. However, since the robot will
be controlled to stay close to the path during execution,
we can approximate non-linear models with local lineariza-
tions (i.e. first-order Taylor expansions) around the path �.
This gives the following linear(ized) stochastic dynamics
and observation model:

xt = f (x�
t−1, u�

t−1, 0)+At(xt−1 − x�
t−1)

+ Bt(ut−1 − u�
t−1)+Vtmt, (3)

zt = h(x�
t , 0)+Ht(xt − x�

t )+Wtnt, (4)

where

At = ∂f

∂x
(x�

t−1, u�
t−1, 0) ,

Bt = ∂f

∂u
(x�

t−1, u�
t−1, 0) ,

Vt = ∂f

∂m
(x�

t−1, u�
t−1, 0) ,

Ht = ∂h

∂x
(x�

t , 0) ,

Wt = ∂h

∂n
(x�

t , 0) ,

(5)

are the Jacobian matrices of f and h along path �.

It is convenient to express the control problem in terms
of the deviation from the path. By defining

x̄t = xt − x�
t ,

ūt = ut − u�
t ,

z̄t = zt − h(x�
t , 0) ,

(6)

as the state deviation, control input deviation, and measure-
ment deviation, respectively, we can formulate the dynam-
ics and observation model of Equations (3) and (4) as

x̄t = Atx̄t−1 + Btūt−1 + Vtmt, mt ∼ N (0, Mt) , (7)

z̄t = Htx̄t +Wtnt, nt ∼ N (0, Nt) . (8)

This is a standard formulation of a model for LQG-control
problems.

4.2. Kalman filter for optimal state estimation

The Kalman filter keeps track of the estimate x̃t and vari-
ance Pt of the true state x̄t during the execution of the
path. It continually performs two steps: a process update to
propagate the applied control input ūt, and a measurement
update to incorporate the obtained measurement z̄t.

Process update:

x̃−t = Atx̃t−1 + Btūt−1, (9)

P−t = AtPt−1AT
t + VtMtV

T
t , (10)

Measurement update:

Kt = P−t HT
t (HtP

−
t HT

t +WtNtW
T
t )−1 , (11)

x̃t = x̃−t + Kt(z̄t − Htx̃
−
t ) , (12)

Pt = (I − KtHt) P−t . (13)

These are the standard Kalman filter equations for optimal
estimation given the dynamics and observation model of
Equations (7) and (8) (Welch and Bishop 2006). Note that
the Kalman-gain matrices Kt can be computed in advance
(i.e. before execution) given the initial variance P0, without
knowledge of the actual control inputs ūt and measurements
z̄t.

4.3. LQR for optimal control

The control inputs ūt that are optimal to apply during exe-
cution of the path are determined by the control policy that
minimizes a quadratic cost function defined over the exe-
cution. As the linearizations of the motion and observation
models are good approximations only when the actual states
and control inputs are close to those along the path, we
define the cost function as

E

( �∑
t=0

(x̄T
t Cx̄t + ūT

t Dūt)

)
, (14)

such that deviations from the path are quadratically penal-
ized, given positive-definite weight matrices C and D.

For the dynamics model of Equation (7), the cost func-
tion is minimal when ūt = Lt+1x̄t, where Lt is the feedback
matrix, which is computed in advance for all t ∈ 1, . . . , �
using backward recursion:

S� = C, (15)

Lt = −(BT
t StBt + D)−1 BT

t StAt, (16)

St−1 = C + AT
t StAt + AT

t StBtLt. (17)

These are the standard equations for a finite-horizon
discrete-time LQR controller (Bertsekas 2001).

As the true state x̄t is unknown, the estimate x̃t of the state
which is obtained from the Kalman filter is used to deter-
mine the control input ūt at each stage t during execution of
the path. Hence, the control policy is

ūt = Lt+1x̃t. (18)

It follows from the separation theorem, which states that
the estimator (Kalman filter) and the controller can be
optimized independently (for linear systems with quadratic
cost) (Bertsekas 2001), that this control policy is optimal.
After application of the control input, the Kalman filter pro-
duces the estimate of the next state from which in turn a
new control input is determined. This cycle repeats until
the execution of the path is complete.
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4.4. A priori distributions of state and control
input

Given the LQR control policy and the Kalman filter, we
can analyze in advance how the true state x̄t and the esti-
mated state x̃t will evolve during execution of the path as
functions of each other. The evolution of the true state x̄t is
dependent on the estimated state through the LQR control
policy (Equation (18)) and the evolution of the estimated
state x̃t is dependent on the true state through the measure-
ment obtained in the Kalman filter (Equation (12)). This
gives the following equations:

x̄t = Atx̄t−1 + BtLtx̃t−1 + Vtmt, (19)

x̃t = Atx̃t−1 + BtLtx̃t−1 + Kt
(̄
zt − Ht(Atx̃t−1 + BtLtx̃t−1)

)
(20)

= Atx̃t−1 + BtLtx̃t−1 + Kt
(
Htx̄t +Wtnt

− Ht(Atx̃t−1 + BtLtx̃t−1)
)

= Atx̃t−1 + BtLtx̃t−1 + Kt
(
Ht(Atx̄t−1 + BtLtx̃t−1 + Vtmt)

+Wtnt − Ht(Atx̃t−1 + BtLtx̃t−1)
)

= Atx̃t−1 + BtLtx̃t−1 + KtHtAtx̄t−1 + KtHtVtmt + KtWtnt

− KtHtAtx̃t−1,

Equation (19) follows from substituting Equation (18) into
Equation (7). The first equality of (20) follows from sub-
stituting Equation (18) into Equation (9) and Equation (9)
into Equation (12); the second and third equalities follow
after substituting Equations (8) and (19), respectively, and
the fourth equality follows after expanding the terms.

Combining Equations (19) and (20) gives the matrix
form: [

x̄t

x̃t

]
=

[
At BtLt

KtHtAt At + BtLt − KtHtAt

] [
x̄t−1

x̃t−1

]

+
[

Vt 0
KtHtVt KtWt

] [
mt

nt

]
,

where [
mt

nt

]
∼ N (0,

[
Mt 0
0 Nt

]
) .

We write these equations in shorthand (for the appropriate
definitions of yt, qt, Ft, Gt and Qt) as

yt = Ftyt−1 + Gtqt, qt ∼ N (0, Qt) . (21)

From this, we can compute the mean ŷt and the variance Rt

of yt =
[ x̄t

x̃t

]
for any stage t of the execution of the path

using forward recursion:

ŷt = Ftŷt−1, ŷ0 = 0, (22)

Rt = FtRt−1FT
t + GtQtG

T
t , R0 =

[
P0 0
0 0

]
. (23)

The upper-left block of Rt provides the unconditional a
priori variance of the state (deviation) x̄t. In contrast, the
matrix Pt computed in the Kalman filter is the conditional
variance of the state deviation x̄t given its estimate x̃t. Since
the estimate x̃0 of the initial state deviation is fully known
a priori, R0 is initialized with zero variance for the estimate
and variance P0 for the true state.

The mean ŷt is zero for all stages t. Hence,
[ x̄t

x̃t

] ∼
N (0, Rt). As it follows from Equations (18) and (6) that[

xt

ut

]
=

[
I 0
0 Lt+1

] [
x̄t

x̃t

]
+

[
x�

t
u�

t

]
, (24)

the a priori distribution of the state xt and the control input
ut at stage t of the execution of the path is[

xt

ut

]
∼ N

([
x�

t
u�

t

]
, �tRt�

T
t

)
, �t =

[
I 0
0 Lt+1

]
. (25)

The covariance between the states and control inputs
[ xi

ui

]
and

[ xj
uj

]
at stages i and j along the path is given by

cov(

[
xi

ui

]
,

[
xj

uj

]
)= �iRiF

T
i+1FT

i+2 · · ·FT
j �T

j , i < j. (26)

These a priori distributions (Equation (25)) and their
covariances (Equation (26)) are correct regardless of the
controllability and observability of the dynamics and obser-
vation model of Equations (7) and (8). Even for formally
uncontrollable and/or unobservable systems, the LQR-
controller and Kalman filter provide the optimal control
policy and state estimate, respectively. The controller or
observer may not converge in this case, but this will be
reflected in the computed a priori probability distributions:
the a priori uncertainty in the state will be larger the further
along the path.

Using the a priori distributions, the quality of path �

can be computed with respect to the chosen planning objec-
tive. We can then use any motion planner to generate a large
set of candidate paths, from which the best one is selected.
In the experiments we present next, we use the a priori
distributions of the state to approximate the probability of
collisions with obstacles. We have not used the a priori dis-
tributions of the control input, nor the covariances between
the states at different stages along the path, but we envi-
sion that the former can be used to compute the probability
that the applied control inputs remain within their bounds,
and the latter to compute the conditional distributions of
the remainder of the path after each application of a control
input during the execution.

5. Example applications and results

In this section, we report simulation results for three scenar-
ios in which LQG-MP is used to select a path. In each of the
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three scenarios, we use a different dynamics model, obser-
vation model and planning objective, and provide compara-
tive analysis with a brute-force approach. We report results
for an Intel P7350 2 GHz with 4 GB RAM.

For each scenario, we use the RRT algorithm (LaValle
and Kuffner 2001) to generate a large set of candidate paths.
The RRT algorithm is well suited for our context as it can
handle any dynamics model (without process noise) of the
form of Equation (1) well. Even though it only plans a sin-
gle path between the start state and the goal region, the path
is generated randomly and will thus be different each time
the algorithm is run. Hence, to generate multiple different
paths, we run the RRT algorithm multiple times.

5.1. Car-like robot

In the first scenario, we apply LQG-MP to a non-holonomic
car-like robot with second-order dynamics in a two-
dimensional environment with obstacles. The robot needs
to move from a start state xstart to a goal region X goal with-
out colliding with the obstacles in the environment (see
Figure 2(a)).

5.1.1. Dynamics model The state x = (x, y, θ , v) of the
robot is a four-dimensional vector consisting of its position
(x, y), its orientation θ , and its speed v (see Figure 2(b)). Its
control input u = (a, φ) is a two-dimensional vector con-
sisting of an acceleration a and the steering wheel angle

φ, corrupted by process noise m = (ã, φ̃)∼ N (0,
[ σ 2

a 0

0 σ 2
φ

]
).

This gives the following non-linear dynamics model:

f (x, u, m)=

⎡
⎢⎢⎣

x+ τv cos θ

y+ τv sin θ

θ + τv tan(φ + φ̃) /d
v+ τ (a+ ã)

⎤
⎥⎥⎦ , (27)

where τ is the duration of a stage (time step), and d the
distance between the front and rear axle of the car (LaValle
2006).

5.1.2. Observation model To show the effect of par-
tial sensing, the robot only receives feedback on the y-
coordinate of its position. Hence, the measurement vector
z is univariate and consists of a measurement of the y-
coordinate of the robot corrupted by measurement noise
n = ỹ ∼ N (0, σ 2

y ). This gives the following linear
observation model:

h(x, n)= y+ ỹ. (28)

Even though the sensor feedback is very partial and renders
the system formally unobservable, some information about
the other variables is still obtained through the interplay
with the dynamics model.

5.1.3. Planning objective We aim to find the path for the
robot with a minimal probability of colliding with obsta-
cles. Instead of computing this probability exactly, we use
an approximation that can be computed efficiently given the
probability distributions along the path. To this end, we look
at the number of standard deviations that one can deviate
from the path before the robot may collide with an obstacle.
Let this number be denoted by ct for stage t along the path.
For a multivariate Gaussian distribution of dimension n, the
probability that a sample is within ct standard deviations is
given by �(n/2, c2

t /2), where � is the regularized Gamma
function (see http://en.wikipedia.org/wiki/Chi_square). It
provides a lower bound of the probability of avoiding colli-
sions at stage t. We now define the quality of a path � by
multiplying these probabilities at all stages:

�∏
t=0

�(n/2, c2
t /2) . (29)

Even though this (erroneously) assumes the probabilities to
be independent between stages along the path, the quality
measure is indicative of the probability that collisions will
be avoided during execution. It is the planning objective to
find a path for which this measure is maximal.

The value of ct for stage t is computed as follows. For
simplicity, we approximate the geometry of the car by a
bounding disc, such that its orientation has no influence
on whether or not the car is colliding. Also its speed does
not influence its collision status. Hence, ct is determined
by the distribution N (pt, �t) of the position of the car (i.e.
n = 2), which is the marginal distribution of the first two

variables of N (
[ x�

t
u�

t

]
, �tRt�

T
t ) as computed in Equation

(25). Let Ut be a matrix such that UtUT
t = �t. The set

of positions within one standard deviation is then an ellipse
centered at the mean pt obtained by transforming a unit disc
by Ut, and ct is the maximum factor by which the ellipse
can be scaled such that it does not intersect with obstacles
(see Figure 1(a)).

Computing ct can efficiently be implemented using a
collision-checker that is capable of performing distance cal-
culations and linear transformations on the geometry, for
instance SOLID (van den Bergen 2004). Transforming the
environment (including the robot) by U−1

t (such that the
uncertainty ellipse becomes a unit disc, see Figure 1(a)),
and calculating the Euclidean distance between the robot
and the nearest obstacle in the transformed environment
gives the value of ct for stage t.

5.1.4. Results We randomly generated 1,000 paths using
the RRT algorithm, which took 56.8 seconds. For each of
the paths, we computed the a priori probability distributions
and the measure of Equation (29), which took in total 2.67
seconds. The best path among the 1,000 is shown in Figure
2(a). It can be seen that the ‘lower-right’ passage is chosen
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Fig. 2. (a) The environment of scenario A, in which a car-like robot has to move between a start state and a goal region without colliding
with obstacles. Sensors can only measure the y-coordinate of the position of the robot. The best path according to LQG-MP among the
1,000 generated by RRT is shown. (b) The state x of a car-like robot.

to get to the goal. This can be explained as the uncertainty
will mainly be in the x-coordinate given that the sensors
only provide feedback on the y-coordinate. The geometry
of the lower-right passage allows for more deviation in the
x-direction than the upper-left passage. Indeed, changing
the observation model such that only the x-coordinate is
measured results in a path that takes the upper-left passage.

To validate our results, we used a brute-force approach
to estimate for each path the ‘ground-truth’ probability
that it will be executed without collisions. We performed
10,000 simulations of executions of the path using the LQR-
controller and an extended Kalman Filter with artificially
generated process and measurement noise, and counted
the number of collision-free executions. This took in total
10,440 seconds, which is almost 4,000 times as long as
the time needed by LQG-MP to evaluate the paths. The
results are summarized in Table 1. It turns out that the path
selected by LQG-MP has a 99% probability of success.
The average probability of success over the 1,000 paths is
61%, and the worst path has a probability of success of
13%. This is an indication of the typical and worst-case
success rate of paths planned by a planner unaware of the
uncertainties. Among the paths taking the upper-left pas-
sage, the best one has a success rate of 88% (versus 99%
for the best path overall). This shows that the type of sen-
sors used during execution has a significant influence on
which path is optimal, even as the environment is symmet-
ric and traditional metrics such as path length and clearance
cannot discriminate between the upper-left and lower-right
passage.

Table 1. Results for scenario A (1,000 paths, 10,000 simulations
per path).

Path Success rate

Best overall 99%
Average overall 61%
Worst overall 13%
LQG-MP 99%
Best upper-left 88%

In Figure 1(b) the samples of 100 simulations are shown
for the best among the 1,000 paths, along with the uncer-
tainty ellipses of the a priori probability distributions as
computed by LQG-MP. As can be seen, the samples indeed
follow the a priori distributions computed by LQG-MP.

5.1.5. Analyzing linearization and Gaussian effects To
analyze the effect of the linearization on the distributions
as computed by LQG-MP versus the true distributions
resulting from performing simulations, we performed
experiments for varying levels of initial, process, and sens-
ing noise. When these noise levels are high and samples
are expected to deviate far from the path, then they may fall
outside the ‘tube’ around the path where the linearization is
valid, which will result in different distributions than those
computed by LQG-MP. To measure the ‘distance’ between
distributions, we use the symmetric Kullback–Leibler (KL)
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Table 2. Linearization and Gaussian effects (10,000 simulations).

Noise factor x KL divergence α KL divergence

1 0.001 0.1 0.007
2 0.002 0.2 0.007
3 0.007 0.3 0.008
4 0.047 0.4 0.008
5 21 0.5 0.03
6 971 0.6 0.007
7 3× 105 0.7 0.006
8 3× 104 0.8 0.006
9 3× 107 0.9 0.007
10 4× 104 1.0 0.006

divergence (see http://en.wikipedia.org/wiki/Kullback-
Leibler_divergence) between the Gaussian distribution
computed by LQG-MP and the distribution computed
from performing 10,000 simulations. To compute the KL
divergence, we fit a Gaussian to the distribution of the
10,000 samples by computing their mean and variance.
The symmetric KL divergence between two Gaussians
N (m0, �0) and N (m1, �1) of dimension n in nats is then
given by

KL = 1

4

(
tr(�−1

1 �0)+(m1 −m0)T �−1
1 (m1 −m0)

− log
det �0

det �1
− n

)

+1

4

(
tr(�−1

0 �1)+(m0 −m1)T �−1
0 (m0 −m1)

− log
det �1

det �0
− n

)
, (30)

which is the average of the asymmetric KL divergences in
either direction.

The results are given in the left two columns of Table 2
for the best path found by LQG-MP shown in Figure 1(b).
The noise levels are varied by multiplying the matrices P0,
M , and N with a factor x2, and the average KL divergence
is shown of the distributions of each of the stages along the
path.

As can be seen, the linearization is valid for all 10,000
simulations for noise levels up to a factor of four. The distri-
butions computed by LQG-MP closely match the distribu-
tions computed from the simulations. For a noise factor of
five some of the simulation samples escape the tube around
the path where the linearization is valid, and then show ran-
dom behavior. It is to be noted that the vast majority of the
10,000 simulations follow a distribution according to that
computed by LQG-MP, but the few that do not significantly
change its variance resulting in a relatively high divergence.
For noise factors of six and above the controller cannot be
trusted for a significant number of samples, resulting in very

high divergences. In these cases, a LQR-controller com-
puted around the path is not an adequate control approach
to handle the amount of uncertainty. As a result, LQG-MP
does not precompute accurate probability distributions in
these cases.

To study the effect of the Gaussian assumption on the dis-
tributions of the uncertainty in LQG-MP, we perform simu-
lations where the actual noise is increasingly non-Gaussian.
To this end, we blend a uniform distribution with a Gaus-
sian distribution for the initial uncertainty, the motion noise,
and the sensor noise. For each of these, the uniform distri-
bution U has an identical mean and variance as the Gaus-
sian distribution N (with a noise factor of three), and a
parameter 0 ≤ α ≤ 1 gives the weighting factor between
the uniform and the Gaussian distributions. The resulting
combined distribution is then given by

√
1

α2(1− α)2
(αU+(1− α)N ) , (31)

where the normalizing factor ensures that the variance
remains constant. The right two columns of Table 2 show
the average KL divergence between the distributions com-
puted by LQG-MP (which assumes Gaussian distributed
noise) and the distributions resulting from the 10,000 sim-
ulations for increasingly non-Gaussian noise along the path
selected by LQG-MP. The results suggest that the fact that
the noise is actually non-Gaussian has very little effect on
the resulting distributions. The distributions predicted by
LQG-MP based on the assumption that the noise is Gaus-
sian are almost the same, which is reflected by a low value
for the divergence between the distributions for any value
of α (the relatively high divergence for α = 0.5 is due to
the randomness among the 10,000 simulations). It should
be noted that LQG-MP was aware of the correct mean and
variance of the noise distributions, and it seems that this
is more important than the specific nature of the distribu-
tion. Obviously, if LQG-MP assumes a different mean and
variance than the actual noise distributions, it is not able to
predict the correct probability distributions of the state of
the robot along the path.

5.2. Multi-robot planning with differential-drive
robots

In the second experiment, we apply LQG-MP to multi-
robot motion planning with disc-shaped differential-drive
robots (e.g. Roomba vacuum cleaners). Eight robots need
to move simultaneously to their antipodal position in the
environment without mutual collisions (see Figure 3(a)).
We use a prioritized approach to the multi-robot planning
problem: the robots are planned for one by one in order
of a priority assigned to them, and aim to avoid collisions
with robots of higher priority, which are treated as moving
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Fig. 3. (a) The environment of scenario B, in which eight robots have to move to their antipodal position in the environment without
mutual collisions. The numbers indicate the priority rank assigned to each robot. Five beacons b1, . . . , b5 send out a signal whose
strength decays quadratically with distance. (b) The state x of the differential-drive robot.

obstacles (van den Berg and Overmars 2005). This means
that for each robot we apply LQG-MP to a dynamic envi-
ronment in which not only the robot itself is subject to
uncertainty, but also the obstacles (i.e. the robots of higher
priority).

5.2.1. Dynamics model The state x = (x, y, θ ) of each
robot is a three-dimensional vector consisting of its position
(x, y) and its orientation θ (see Figure 3(b)). Its control input
u = (vl, vr) is a two-dimensional vector consisting of the
speeds of the left and right wheel, respectively, corrupted
by process noise m = (ṽl, ṽr)∼ N (0, σ 2

v I). This gives the
following non-linear dynamics model:

f (x, u, m)=
⎡
⎣x+ 1

2τ (vl + ṽl + vr + ṽr) cos θ

y+ 1
2τ (vl + ṽl + vr + ṽr) sin θ

θ + τ (vr + ṽr − vl − ṽl) /d

⎤
⎦ , (32)

where τ is the time step and d the distance between the left
and right wheel of the robot (LaValle 2006).

5.2.2. Observation model The robots receive feedback on
their state from five beacons b1, . . . , b5 scattered around
the environment that each send out an identifiable signal of
unit strength that decays quadratically with the distance to
the beacon. Each beacon bi has a known location (x̌i, y̌i, 1).
Hence, the measurement vector z consists of five read-
ings of signal strengths, one from each beacon, corrupted
by measurement noise n = (b̃1, . . . , b̃5)∼ N (0, σ 2

b I). This

gives the following non-linear observation model:

h(x, n)=

⎡
⎢⎣

1/((x− x̌1)2+(y− y̌1)2+1)+b̃1
...

1/((x− x̌5)2+(y− y̌5)2+1)+b̃5

⎤
⎥⎦ . (33)

5.2.3. Planning objective For each robot, we aim to min-
imize the probability that it will collide with a robot of
higher priority along its path. In this experiment, we approx-
imate this probability more directly than we did for the first
scenario. Let us assume that we are planning for robot j, and
that a path has already been planned for robots 1, . . . , j− 1.
As the robots are disc-shaped, only their position influences
whether or not they collide. Let N (pi

t, �
i
t ) be the marginal

probability distribution of the position of robot i at stage t
along i’s path as computed by LQG-MP. Then, the distri-
bution of the relative position of robot j and robot i (for
i ∈ 1, . . . , j− 1) at stage t is N (pi

t−pj
t, �

i
t +�

j
t ). The prob-

ability Pt(i⊗ j) that robot j collides with robot i at stage t is
then given by

∫
‖p‖<2r

exp(− 1
2 (p− pij

t )T (�i
t +�

j
t )
−1 (p− pij

t ))

2π det(�i
t +�

j
t )1/2

dp, (34)

where pij
t = pi

t − pj
t. This is the integral over the set of

relative positions p for which the robots collide (that is
when ‖p‖ < 2r, where r is the radius of the robots) of the
probability density function of the distribution of relative
positions, and can be evaluated numerically. It follows that
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Fig. 4. The paths resulting from consecutively applying LQG-MP to each of the robots in scenario B (snapshots at t =
0, 3, 6, 9, 12, 16, 20, 28). The numbers in the top-left image indicate the priority rank of the robots. The arrows show the movement
with respect to the previous image. The robots enlarged by the uncertainty ellipses of their a priori probability distributions are shown
in green.

the probability that robot j does not collide with any robot
at any stage along its path is:1

�∏
t=0

j−1∏
i=1

(1− Pt(i⊗ j) ) . (35)

It is the planning objective for robot j to maximize this
probability.

As a secondary objective, we aim to minimize the uncer-
tainty around the robot’s path to leave maximal ‘space’ for
the other robots. That is, in case of equal probabilities of
success, we aim to minimize the function

∑�
t=0 tr(�j

t ). This
is equivalent to maximizing the likelihood that the robot
will exactly follow the path � during execution. The robot
with the highest priority does not need to avoid other robots,
so it will select its path purely based on the secondary
objective.

5.2.4. Results For each of the robots in turn, we planned
1,000 paths using the RRT algorithm and selected the path
that is best according to the planning objective. Note that
the paths were planned such that, if there were no uncer-
tainty, they are collision-free with respect to the robots of
higher priority for which a path has already been selected.
The result is shown in Figure 4, along with the uncertainty
ellipses of the a priori probability distributions along the
paths. It can be seen that the robots need to get close to

Table 3. Results for scenario B (1,000 paths per robot).

Computation time Success rate

Robot RRT LQG-MP Best path Average path

1 22.3 s 0.23 s 100% 100%
2 28.2 s 0.99 s 100% 70.3%
3 29.5 s 1.75 s 100% 69.2%
4 30.5 s 2.79 s 100% 60.9%
5 57.0 s 2.92 s 99.2% 10.6%
6 49.8 s 3.90 s 99.8% 21.0%
7 39.2 s 5.26 s 99.9% 24.8%
8 77.8 s 6.85 s 99.7% 13.0%

Total 334 s 24.7 s 98.6% 2.13%

the beacons to be able to estimate their position accurately.
Almost all of the robots move through the region around
the central beacons b3 and b4. At the same time, the robots
aim to stay far away from each other, in order to minimize
the probability of collisions. Robot 2, for instance, makes a
wide detour around robot 1. Robot 3 first avoids robot 1 and
then robot 2, causing its path to have a wide S-shape.

The quantitative results are given in Table 3. The second
column shows the time needed to plan 1,000 paths for each
robot, and the third column shows the time needed by LQG-
MP to compute the probabilities of success for all paths. It
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shows that these probabilities can be computed efficiently.
Per path, it takes an order of magnitude less time than plan-
ning the path itself. The third column shows the probability
of success of the best path among the 1,000 paths. This
is the path that LQG-MP selects for the particular robot.
The fourth column shows the average probability of success
of the 1,000 paths. This provides an indication of what an
uncertainty-unaware planner would typically achieve. The
probability that all eight robots successfully reach their goal
is the product of the robot’s individual probabilities of suc-
cess, and is shown in the bottom row. This is 98.6% for
LQG-MP, whereas an uncertainty-unaware planner would
on average only have a 2.13% probability of success.

5.3. 6-DOF manipulator

In the third experiment, we apply LQG-MP to a holonomic
6-DOF articulated robot in a three-dimensional environ-
ment. The robot needs to move from its initial state xstart

to a configuration in which the end-effector is inside a goal
region on the other side of the environment.

5.3.1. Dynamics model The state x = (θ1, . . . , θ6) of the
robot is a six-dimensional vector consisting of the angles of
rotation at each of the joints (see Figure 5(a)). The control
input u = (ω1, . . . , ω6) is a six-dimensional vector consist-
ing of the angular speeds at each of the joints, corrupted
by process noise m = (ω̃1, . . . , ω̃6)∼ N (0, σ 2

ωI). Ignoring
higher-order dynamics, this results in the following linear
dynamics model:

f (x, u, m)=

⎡
⎢⎣

θ1 + τ (ω1 + ω̃1)
...

θ6 + τ (ω6 + ω̃6)

⎤
⎥⎦ . (36)

5.3.2. Observation model The robot receives feedback
from a stereo camera that tracks the position of the end-
effector of the robot. Let p = g(x) be the function relat-
ing the set of joint angles of the state x to the position
p ∈ R

3 of the end-effector. This point is projected onto
the imaging plane of each camera i, which has a unit focal
distance and a known location (x̌i, y̌i, ži) (see Figure 5(b)).
Hence, the measurement z is a four-dimensional vector con-
sisting of the pixel coordinates of the end-effector on the
imaging planes of both cameras, corrupted by measurement
noise n ∼ N (0, σ 2

n I). Ignoring occlusions, this gives the
following non-linear observation model:

h(x, n)=

⎡
⎢⎢⎣

(gx(x)−x̌1) /(gz(x)−ž1)
(gy(x)−y̌1) /(gz(x)−ž1)
(gx(x)−x̌2) /(gz(x)−ž2)
(gy(x)−y̌2) /(gz(x)−ž2)

⎤
⎥⎥⎦+ n. (37)

5.3.3. Planning objective We aim to maximize the likeli-
hood that the end-effector arrives at its goal position. Let
N (p�, ��) be the distribution of the position of the end-
effector at the last stage of the path, then this likelihood is
maximal when tr(��) is minimal. �� can be approximated
from the variance X� of the state x� computed by LQG-MP
as �� = T�X�TT

� , where T� = ∂g
∂x (x�

�), i.e. the Jacobian
matrix of function g at the goal position.

5.3.4. Results We planned 1,000 paths for the robot using
the RRT algorithm, and computed for each the likelihood
of arriving at the goal. Constructing the paths took 192
seconds, and evaluating them using LQG-MP took 1.16 sec-
onds. The path found best is shown in Figure 6(a). The robot
chooses to move in a plane parallel to the viewing direction
of the camera while being fully stretched out. This brings
the end-effector closer to the camera, where it can be posi-
tioned precisely. Interestingly, the worst paths are those in
the plane perpendicular to the camera. Indeed, an experi-
ment in which the camera is placed above the robot results
in best (and worst) paths with similar characteristics (see
Figure 6(b)).

6. Path smoothing

Owing to the randomized nature of the RRT algorithm, the
paths it produces can be non-smooth. This is particularly
apparent in scenario C (see Figure 6) as the dynamics are of
first-order, i.e. the velocity is controlled directly. This can
be addressed by smoothing. However, most smoothing tech-
niques in randomized motion planning repeatedly attempt
to reduce path length between two randomly chosen states
along the path (Geraerts and Overmars 2007). These tech-
niques tend to bring the path closer to obstacles, which can
be suboptimal with respect to the planning objective, for
instance when minimizing the probability of collisions, and
tend to map multiple paths to the same smoothed result,
hence they are not ideal for LQG-MP.

In this section we introduce a technique based on Kalman
smoothing that can produce a path that is Ck-continuous, for
any value of k, while staying close to the original path. The
measure of smoothness is the magnitude of the kth-order
difference of the control input u between consecutive stages
of the path. The Kalman smoother places a stochastic con-
straint on the magnitude of the kth-order differences, which
is set by the user in the form of a variance matrix.

6.1. Kalman smoothing

In general, the Kalman smoother is able to infer the opti-
mal estimate of the state at any stage of a dynamics system
given all past and all ‘future’ measurements of the state.
Whereas the Kalman filter produces a real-time estimate of
the current state given all measurements so far, the Kalman
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Fig. 5. (a) The state x of the articulated robot of scenario C. (b) A stereo camera pair provides noisy observations of the position p of
the end-effector of the robot. These observations are non-uniform; positions nearer the cameras can be observed more precisely and
motion parallel to the camera planes can be observed more precisely than motion orthogonal to the camera planes. We consider how
two placements of the cameras affect the resulting plans.
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Fig. 6. Resulting paths for two placements of the cameras. In the left column (a), the cameras are placed beside the robot and the path
is shown from the top and side views. In the right column (b), the cameras are placed above the robot and the path is shown from the
side and top views.

smoother is typically used offline to infer the most likely
trajectory of the robotic system in hindsight given all mea-
surements along the trajectory. Here, we use the Kalman
smoother to smooth a path produced by the RRT algo-
rithm by defining a pseudo-dynamics model that enforces

smoothness on the path by stochastically constraining the
magnitude of the kth-order difference of the control input,
and a pseudo-observation model that lets the states and
control inputs along the unsmooth RRT path be ‘noisy
observations’ of the smooth path.
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Let the dynamics model f (x, u) be linear and determinis-
tic and given by

xt = f (xt−1, ut−1)= Atxt−1 + Btut−1. (38)

In scenario C for example, A = I and B = τ I (see
Section 5.3.1). Let � = (x�

0, u�
0, . . . , x�

�, u�
�) be the orig-

inal unsmoothed path generated by the RRT algorithm.
We now smooth the path by generating a new path �′

using a Kalman smoother that complies with a higher-order
pseudo-dynamics model f ′, and uses the states and control
inputs along the original path � as noisy observations of
the new smoothed path �′. The pseudo-dynamics model is
given by

x′t = f ′(x′t, m′t)= A′tx
′
t−1 + V ′t m

′
t, m′t ∼ N (0, M ′) , (39)

where a pseudo-state x′ is defined as the concatena-
tion of the state x, the control input u, and differences
�u, �2u, . . . , �k−1u of the control input up to order k − 1.
The process matrix A′t integrates all of the control input dif-
ferences, and assumes the (k− 1)th-order difference �k−1u
stays the same:

x′t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xt

ut

�ut
...

�k−2ut

�k−1ut

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

A′t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

At Bt
1
2!Bt · · · 1

(k−1)!Bt
1
k!Bt

0 I 1
1! I · · · 1

(k−2)! I 1
(k−1)! I

0 0 I
. . . 1

(k−2)! I
...

...
. . .

. . .
. . .

...

0
...

. . . I 1
1! I

0 0 · · · · · · 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

The only change allowed in the (k − 1)th-order differ-
ence �k−1u comes from the zero-mean random variable
m′t = �kut with variance matrix M ′t , which is the kth-order
difference of the control input, which is also integrated into
the other state variables:

V ′t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
(k+1)!Bt

1
k I
1

(k−1)! I
...

1
2! I
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, m′t = �kut, �kut ∼ N (0, M ′) .

(41)

The pseudo-observation model h′(x′, n′) is given by

z′t = h′(x′t, n′t)= H ′t x
′
t + n′t, n′t ∼ N (0, N ′t ) , (42)

where the pseudo-observation z′t at stage t consists of the
state and control input of the original path produced by the
RRT algorithm:

z′t =
[

x�
t

u�
t

]
, H ′t =

[
I 0 0 · · · 0
0 I 0 · · · 0

]
. (43)

The variance matrix N ′t is constant and equal to N ′ for all t
except for t = 0 and t = �, when its upper-left portion is
0 to ensure that the smoothed path �′ precisely begins and
ends in the start and goal state.

The Kalman smoother produces the most ‘likely’ path
given the stochastic constraint defined by the pseudo-
dynamics model f ′ and the stochastic constraint defined
by the ‘noisy observations’. The pseudo-dynamics model
enforces the path to be kth-order smooth, while the obser-
vation model ensures that the path follows the original
unsmoothed path �. The smoothed path �′ can be gener-
ated by applying the Rauch–Tung–Striebel two-pass filter
to the pseudo-dynamics and observation model. The for-
ward pass is similar to the Kalman filter. The backward pass
incorporates the ‘future’ measurements into the estimate of
the pseudo-state:

Forward pass: 0 < t ≤ �

x̂′t|t−1 = A′tx̂
′
t−1|t−1 (44)

P′t|t−1 = A′tP
′
t−1|t−1A′Tt + V ′t M

′
t V
′T
t , (45)

K ′t = P′t|t−1H ′Tt (H ′t P
′
t|t−1H ′Tt + N ′t )

−1 (46)

x̂t|t = x̂t|t−1 + K ′t (z
′
t − H ′t x̂t|t−1) (47)

P′t|t = (I − K ′t H
′
t ) Pt|t−1. (48)

Backward pass: � > t ≥ 0

L′t = P′t|tA
′T
t P′−1

t+1|t (49)

x̂′t|� = x̂′t|t + L′t(x̂
′
t+1|� − x̂′t+1|t) (50)

P′t|� = P′t|t + L′t(P
′
t+1|� − P′t+1|t) L′Tt , (51)

where x̂′s|t and P′s|t are the mean and variance of the pseudo-
state at stage s given ‘measurements’ up to time t. The
pseudo-states x̂′t|� are the final pseudo-states along the
smoothed path �′.

The order k, the process noise M ′, and the observation noise
N ′ are parameters of this smoothing technique. It ensures
that the state x along path �′ is k − 1 times differentiable.
Varying the relative magnitude of M ′ and N ′ provides a
trade-off between smoothness in the kth order and closeness
to the original path.

6.2. Results

We implemented a first-order smoother (i.e. k = 1) and
experimented with it on scenario C. Prior to evaluating each
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Table 4. Kalman smoothing of paths in Figure 6. Quality of paths
with varying noise in the pseudo-observation matrix (σ ′); the trace
of the variance of the end-effector position (tr(T�X�TT

�
)) at the

goal state is shown (lower is better).

Cameras next to robot Cameras above robot

σ ′ Path 1 Path 2 Path 3

0 4.00 2.37 2.73
1 4.10 2.43 2.63
10 4.21 2.55 2.35
100 4.28 2.56 2.38

of the 1,000 paths that were randomly generated by the
RRT algorithm, we first smoothed them using various rela-
tive magnitudes of M ′ = I and N ′ = σ ′2I . The results are
given in Table 4.2 The first row (σ ′ = 0) shows results for
the unsmoothed path. The subsequent rows show results for
increasingly smoother paths.

For the setup where the cameras are placed next to the
robot (second column), the same path turned out to be
best for increasing degrees of smoothing (labeled path 1
in the table). Interestingly, though, the quality of the path
as defined by the likelihood of arriving at the goal posi-
tion decreases slightly as the path gets smoother (the trace
gets larger). Apparently, the smoother pulls the path away
from the (local) optimum. In Figure 7, the smoothed path is
shown for σ ′ = 1 and σ ′ = 10 (note that the non-smoothed
path is shown in Figure 6(a)).

For the setup where the cameras are placed above the
robot (third and fourth column), different paths are best
for different degrees of smoothing. These paths showed the
same global characteristics, though. Also in this case the
quality of the path that is best when no smoothing takes
place (labeled path 2 in the table) decreases for increasing
degrees of smoothness. On the other hand, the quality of
path that is best when the paths are maximally smoothed
(labeled path 3 in the table) increases with the degree of
smoothing. For this particular path the smoother pulls the
path towards a local optimum. For σ ′ = 10, it has a higher
quality than the non-smoothed best path.

7. LQG-MP on roadmaps

In the LQG-MP technique as presented so far, we have
created a large set of candidate paths and evaluated
each of them to find a good path. A limitation of this
approach is that it takes a significant amount of compu-
tation time to construct all of the candidate paths. This
limitation can be partly overcome by considering paths
contained in a roadmap that is pre-constructed for the
environment.

Since the Kalman gain matrices Kt along a path are
computed using forward recursion (from the start state,

see Section 4.2), and the LQR feedback matrices Lt using
backward recursion (from the goal state, see Section 4.3),
the entire path needs to be given in order to compute the
a priori probability distributions along the path using
LQG-MP. As a general roadmap contains an exponential
number of paths between any pair of start and goal vertices,
iterating over all of them is typically infeasible. By defining
a separate controller for each edge in the roadmap, we can
use a variant of Dijkstra’s algorithm to find a path within
the roadmap nearly instantaneously.

7.1. Finding a path within a roadmap

Let the roadmap be defined by a set of vertices V , of which
each vertex v is associated with a state xv ∈ X , and a set
of edges E ⊂ V × V , of which each edge e = (u, v) is
associated with a path �e = (xe

0, ue
0, . . . , xe

�, ue
�) such that

xe
0 = xu, xe

� = xv, and xe
t = f (xe

t−1, ue
t−1, 0) for all t ∈

1, . . . , �. That is, the path starts in vertex u, ends in vertex
v, and complies with the dynamics model f .

Given a start vertex s and the variance matrix P0 of
the initial uncertainty about the state of the robot, we can
use the LQG-MP method without adaptation to evaluate
the quality of the paths associated with each of the out-
going edges e = (s, v) of s. The LQG-MP method com-
putes the variance matrices Re

t of the uncertainty of the
true state and estimated state along each of these paths
(see Equation (23)). The variance R(s,v)

� at the last state of
a path between the start vertex s and a neighboring vertex
v is used as the initial variance R(v,w)

0 of any path outgo-
ing from v that is evaluated. To compute the Kalman gain
matrices K(v,w)

t along this outgoing path, the initial uncer-
tainty P(v,w)

0 of the state in the Kalman filter needs to be
given. Note that this uncertainty is not contained directly
in the R(v,w)

0 matrix; the R matrix contains the a priori vari-
ance of the true state and the a priori variance of the esti-
mated state. The P-matrices in the Kalman filter signify the
variance of the true state conditioned on the fact that the
estimated state is known. Therefore, P(v,w)

0 is computed as
follows:

P(v,w)
0 = Rx̄ − Rx̃x̄R−1

x̃ Rx̄x̃, R(v,w)
0 =

[
Rx̄ Rx̃x̄

Rx̄x̃ Rx̃

]
, (52)

which is the standard equation for conditional variance of
Gaussians. With these adaptations, the quality of an edge
e can be evaluated using LQG-MP for any initial variance
matrix Re

0.
A variant of Dijkstra’s algorithm to find a path within

the roadmap to a goal vertex g can be implemented as
shown in Algorithm 1. It takes as input the start vertex
s, the initial state uncertainty P0 and the roadmap defined
by V and E . The algorithm calls a function LQGMP(e, Re

0)
that computes all covariance matrices Re

t along edge e given
the initial variance Re

0 using LQG-MP (see Equation (23)).
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Fig. 7. The best path among the candidates for scenario C when the cameras (blue squares) are placed next to the robot after smoothing
with (a) σ ′ = 1 and (b) σ ′ = 10. Each path is shown from two angles. Greater noise in the pseudo-observation model allows a looser fit
to the nominal path.

The function pe = COMPUTEPROBABILITY(Re
0, . . . , Re

�−1)
computes the probability that the execution of edge e will
be collision-free based on the variance matrices along
the edge. Hence, the probability that the execution of an
entire path is collision-free is the product of the proba-
bilities along each of the constituent edges, which should
be maximized. To fit this within the additive non-negative
cost-minimizing framework of Dijkstra’s algorithm, the
additive cost of each edge is − log pe. Note that this
cost is non-negative, and that a path with minimal accu-
mulated cost has a maximal probability of collision-free
execution:

argmax
�= (e0,...,en)

{
n∏

i=0

p(ei) } = argmin
�= (e0,...,en)

{
n∑

i=0

− log p(ei) }. (53)

The path can then be extracted by following backpointers
from the goal back to the start vertex.

7.2. Discussion

The above algorithm is an approximation to finding an opti-
mal path in two ways. Firstly, the a-priori probability dis-
tributions are based on an LQR-controller that is split up
into multiple controllers; one for each edge. This means
that the distributions are based on a controller that does

Algorithm 1 Dijkstra(s, P0,V , E).
1: for all vertices v ∈ V do
2: v.cost←∞
3: s.R← [ P0 0

0 0

]
.

4: s.cost← 0
5: Q← {s}
6: while not priority queue Q is empty do
7: Pop vertex u from Q with minimal u.cost.
8: for all edges (u, v) in E do

9: R
(u,v)
0 , . . . , R

(u,v)
�
← LQGMP((u, v) , u.R)

10: c←− log COMPUTEPROBABILITY(R
(u,v)
0 , . . . , R

(u,v)
�−1)

11: if u.cost+ c < v.cost then
12: v.cost← u.cost+ c
13: v.R← R

(u,v)
�

14: v.backpointer← u
15: if v �∈ Q then
16: Q← Q ∪ {v}

not take into account future expected cost beyond the end
of each edge. Normally, the LQR-controller is defined over
an entire path, which would result in (slightly) different a
priori probability distributions.

Second, for Dijkstra’s algorithm to return an optimal
path, the cost of any subpath should be independent of
what succeeds or precedes it. This is not the case in our
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setup: the cost incurred when traversing an edge along a
path depends on the initial covariance matrix when start-
ing to traverse this edge. This initial covariance matrix in
turn depends on the entire history leading up to that point.
This breaks the basic dynamic programming assumption of
‘optimal substructure’ of paths.

In most practical cases, this suboptimality is likely
to be negligible, and Dijkstra’s algorithm will provide
a good approximation. We note this assumption is also
made (implicitly) in Prentice and Roy’s work on belief
roadmaps (Prentice and Roy 2009). There, the likelihood
of arriving at the goal is maximized, and their variant of
Dijkstra’s algorithm evaluates paths based on the trace of
the covariance matrix at intermediate nodes. Similar to the
cost function in our algorithm, the trace of the covari-
ance does not observe the optimal substructure property. A
potential advantage of our approach compared with that of
Prentice and Roy (2009) is that we do not assume maximum
likelihood observations along the path, and can therefore
infer the true a priori probability distributions along the
path.

7.3. Experiment

We experimented with the roadmap approach of LQG-MP
on a ‘hovercraft’-type robot with second-order dynamics in
a two-dimensional environment with obstacles. The robot
needs to move from a start state xstart to a goal state xgoal

without colliding with the obstacles in the environment (see
Figure 8(a)).

7.3.1. Dynamics model The state x = (x, y, vx, vy) of the
robot is a four-dimensional vector consisting of its position
(x, y) and its velocity (vx, vy). Its control input u = (ax, ay) is
a two-dimensional acceleration vector corrupted by process
noise m = (ãx, ãy)∼ N (0, σ 2

a I). This gives the following
linear dynamics model:

f (x, u, m)=

⎡
⎢⎢⎣

x+ τvx + τ 2(ax + ãx) /2
y+ τvy + τ 2(ay + ãy) /2

vx + τ (ax + ãx)
vy + τ (ay + ãy)

⎤
⎥⎥⎦ , (54)

where τ is the duration of a stage (time step).

7.3.2. Observation model The robot receives feedback
on its position from 10 sensors in the environment.
Each sensor has a known location (x̌i, y̌i, 1). Hence, the
measurement vector z is 20-dimensional and consists
of 10 measurements of the robot’s position. The noise
n = (x̃1, ỹ1, . . . , x̃10, ỹ10) in the measurement increases
quadratically with the distance from the sensor. This gives

the following observation model:

h(x, n)=

⎡
⎢⎢⎢⎢⎢⎣

x+((x− x̌1)2+(y− y̌1)2+1) x̃1

y+((x− x̌1)2+(y− y̌1)2+1) ỹ1
...

x+((x− x̌10)2+(y− y̌10)2+1) x̃10

y+((x− x̌10)2+(y− y̌10)2+1) ỹ10

⎤
⎥⎥⎥⎥⎥⎦ . (55)

7.3.3. Planning objective We aim to find the path for the
robot with a minimal probability of colliding with obsta-
cles. This probability is approximated in the same way as
for scenario A (see Section 5.1.3).

7.3.4. Results We constructed a roadmap (by hand) for
the environment consisting of 80 vertices and edges cor-
responding to unit-speed paths between neighboring ver-
tices (see Figure 8(a)). We ran our algorithm for various
placements of the sensors. The results are shown in Figures
8(b)–(d). Not surprisingly, the robot chooses a path close
to the sensors to minimize the uncertainty about its posi-
tion, which in turn enables it to avoid collisions with the
obstacles with high probability. For the sensor placement
of Figure 8(c), the robot chose to not precisely follow the
sensors, as this allows for a shorter path with less narrow
passages. In Figure 8(d), the sensors were randomly placed.
On average, it took 0.48 seconds to compute the path within
the roadmap.

8. Conclusion and future work

We have presented LQG-MP, a new approach to evalu-
ate paths in motion planning for robots subject to motion
and sensing uncertainty. LQG-MP precisely characterizes
the a priori probability distributions of the state of the
robot along a given path, based on which the path can be
optimized for the particular task. We have shown that this
considerably increases the probability of a successful exe-
cution when compared with uncertainty-unaware planners.
The key of LQG-MP is that it takes into account the a
priori knowledge of both the sensors and controller in the
planning phase.

In the experiments we performed, we have not used the a
priori distributions of the control input that LQG-MP also
computes, nor the covariances between the states at differ-
ent stages along the path. We envision that these could be
used to compute the conditional distributions of the remain-
der of the path after each application of a control input
during the execution. If the new distributions indicate that
the quality has dropped below a threshold, we might opt to
replan. Current planning times, though, do not permit real-
time application of LQG-MP. Even though using roadmaps
partly addresses this issue, it is a major objective of future
work to bring planning times down, for instance by devising
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(a) (b)

(c) (d)

Fig. 8. (a) The environment with obstacles (light red), and the roadmap created for the environment. (b), (c), and (d) Paths between two
vertices of the roadmap. Sensors (green spheres) measure the position of the robot with noise increasing quadratically with the distance
to the sensor. The best path in the roadmap according to LQG-MP is shown.

a focused planner such that planning a large set of candi-
date paths is not required. Ideally, a smoother that directly
optimizes the chosen planning objective is integrated into
this planner. Other limitations, such as the fact that the can-
didate paths may not constitute a representative sample in
high-dimensional state spaces might then also be resolved.

In the experiments we have performed, we have not
included sensor models that are conditional in the sense that
they only provide measurements in case there is no occlu-
sion or the robot is within a field of view. Our approach
naturally handles spatially varying sensor models, but the
linearized observation model is based on the mean state of
the robot on the path: it would assume that a measurement is
obtained if the mean is within the field of view, and no mea-
surement if the mean is outside the field of view, even if part
of the distribution brings the robot outside (or inside) the
field of view. This may be an appropriate approximation in

many cases, but our approach does not handle such discon-
tinuities in general since the assumption that the observa-
tion model is ‘well linearizable’ is locally violated. We also
assumed that the motion and observation models have noise
with Gaussian distributions. While our experiments suggest
that our approach works as well for the more general case
of distributions of which the mean and variance are suffi-
cient statistics, exploring noise models such as multi-modal
mixtures of distributions remains as future work.

We applied Kalman smoothing to make paths Ck-
continuous while avoiding obstacles and in future work
will explore and apply this technique to other contexts.
We also applied LQG-MP to precomputed roadmaps
using a variant of Dijkstra’s algorithm to efficiently find
good paths and will continue to refine this approach. We
also apply LQG-MP to optimizing accuracy and safety
in challenging robotic applications, such as autonomous
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helicopter flight, needle steering for prostate brachytherapy,
and robotic-assisted surgery.

Notes

1. Note that we assume here that the probabilities of avoiding
collisions at different stages along the path are independent.
This is not the case, but it will for practical purposes be a
reasonable assumption.

2. Not too much should be read into the higher quality for the
setup with the camera above the robot; the end-effector is able
to come closer to the cameras in this case.
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