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As we observe and act in the world, perceptual information arrives in 
a more-or-less continuous manner over time, yet we do not experi-
ence the world as an unpunctuated stream. Instead, we apprehend 
coherent and bounded sub-sequences that have beginnings, middles 
and ends. In the cognitive literature, these segments have been termed 
events, and a core problem has been to understand how and why the 
continuous flow of experience is partitioned in this way. Operationally, 
segmentation is often measured by having participants observe some 
temporally extended episode and explicitly judge where the boundaries 
between sub-sequences lie. Such judgments are quite reliable1,2—but 
how do we come to know where events are bounded?

Prediction error or surprise have a central role in most accounts of 
event parsing3–6, and sequence parsing7 more generally. In this class 
of explanations, event boundaries are identified on the basis of non-
uniform transition probabilities. Within an event, a given observation 
is highly predictable from preceding observations, whereas the obser-
vation beginning a new event is less predictable. Thus, uncertainty 
about an upcoming observation, or surprise at the occurrence of an 
unpredicted observation, can provide a cue for segmentation.

We present an alternative account of event comprehension and seg-
mentation that does not rely on predictive uncertainty and does not 
require the presence of non-uniform transition probabilities. Instead, 
we consider how representations of stimuli within an event are shaped 
by their temporal context. We propose that stimuli associated with 
similar temporal contexts are grouped together in representational 
space, forming clusters that provide the basis for event discrimination. 
This idea has a counterpart in theories of object semantics, which have 
aimed to explain why everyday objects seem to fall into natural catego-
ries. According to these theories, semantic category structure reflects 
a clustering of object representations in an internal representational 
space: Items belong to the same category when they are represented 

as similar to one another and as dissimilar to other familiar items8–10. 
The degree to which items are represented as similar depends on the 
extent to which they are observed to share attributes.

We hypothesize that events are like semantic categories in this sense. 
Individual items ‘go together’ to form events because they are situated 
near each other in an internal representational space, and they lie near 
to one another because they share attributes. In object semantics, the 
attributes are the intrinsic properties of objects (for example, their parts, 
shapes, behaviors, functions and so on). In event representation, the rel-
evant attributes are temporal associations. In particular, we hypothesize 
that items will fall close together in representational space when they 
are preceded and followed by similar distributions of items in familiar 
sequences. The resulting representational clustering grounds event 
perception and segmentation, just as the representational clustering 
involved in object semantics grounds category identification.

To make this idea concrete, consider the graph in Figure 1a. 
Imagine a scenario in which each node in the graph is associated with 
a particular visual stimulus and each edge indicates a possible transi-
tion between stimuli. Given that each node has exactly four neighbors,  
a random walk through the graph (used to generate a stream of  
stimuli) would produce uniform transition probabilities over all 
neighbors. Because the set of possible successor items on each step 
depends only on the current item, this uniformity in transition prob-
abilities holds whether one takes into account only the most recent 
item or the n most recent items (Supplementary Fig. 1). As every 
transition that occurs is equally likely, the graph never gives rise to 
moments of relative uncertainty or surprise.

Despite this uniformity, the graph remains highly structured, in that 
it contains three clusters of densely interconnected nodes. Although 
any individual node connects to four other nodes, nodes within a clus-
ter tend to connect to one another and not to nodes in other clusters.  
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Neural representations of events arise from temporal 
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Our experience of the world seems to divide naturally into discrete, temporally extended events, yet the mechanisms underlying 
the learning and identification of events are poorly understood. Research on event perception has focused on transient  
elevations in predictive uncertainty or surprise as the primary signal driving event segmentation. We present human behavioral 
and functional magnetic resonance imaging (fMRI) evidence in favor of a different account, in which event representations 
coalesce around clusters or ‘communities’ of mutually predicting stimuli. Through parsing behavior, fMRI adaptation and 
multivoxel pattern analysis, we demonstrate the emergence of event representations in a domain containing such community 
structure, but in which transition probabilities (the basis of uncertainty and surprise) are uniform. We present a computational 
account of how the relevant representations might arise, proposing a direct connection between event learning and the learning 
of semantic categories.

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nn.3331
http://www.nature.com/natureneuroscience/


nature neurOSCIenCe	 VOLUME 16 | NUMBER 4 | APRIL 2013 487

a r t I C l e S

In research on complex networks, this kind of clustering is referred to as 
community structure11,12. Community structure is ubiquitous across a 
wide range of natural systems13,14, and the construct has proven useful 
in analyzing networks describing sequential transition probabilities15, 
as in the case considered here. Note that in this sequential setting, nodes 
in the same cluster or community overlap in their temporal associa-
tions—they are likely to be preceded and followed by overlapping sets of 
nodes—whereas those lying in different clusters do not overlap as much 
in their temporal associations. Even in the presence of uniform transi-
tion probabilities, this pattern of temporal overlap provides a potential 
basis for dividing sequences of stimuli into events.

Using the graph in Figure 1a, we conducted three experiments testing 
two specific predictions of our theory. First, after exposure to sequences 
generated from the graph, human observers should parse sequences at 
points corresponding to transitions between communities. Whereas prior 
work on parsing has investigated transition probabilities as the main 
 factor of interest, the graph in Figure 1a controls for this factor, leaving 
only community structure as a basis for parsing. Experiments 1 and 2 
demonstrated reliable parsing at community boundaries, supporting the 
hypothesis that community structure can drive the formation of event 
representations. Second, stimuli belonging to the same community in the 
graph should come to have more similar neural representations follow-
ing the sequence exposure. This prediction is supported by functional 
magnetic resonance imaging (fMRI) adaptation and multivoxel pattern 
analysis results in experiment 3.

RESULTS
Experiment 1
Participants viewed a 35-min sequence of individual characters 
(Fig. 1b), each presented for 1.5 s, in an order generated by a random 
walk on the graph in Figure 1a. During this phase, participants per-
formed a cover task requiring them to decide whether each stimulus 
was rotated away from a canonical orientation (Online Methods). 
Task instructions avoided any allusion to the structure or relevance of 
the order of stimuli. In the next phase of the experiment, participants 
were shown another 15-min sequence and were asked to segment the 
stream by pressing the spacebar at times that felt like natural breaking 
points. This sequence alternated between blocks of 15 images gener-
ated from a random walk on the graph and blocks of 15 images gener-
ated from a randomly selected Hamiltonian path through the graph  
(a path visiting every node exactly once). The purpose of interspersing 
Hamiltonian paths was to ensure that parsing behavior could not be 
explained by local statistics of the sequence (for example, after seeing 
items within a cluster repeat several times, participants might use the 
relative novelty of an item from a new cluster as a parsing cue).

Accuracy on the rotation detection task indicated task compliance, 
with participants detecting rotated images with high A′ sensitivity 
(mean = 0.901, s.d. = 0.091; versus chance, t29 = 24.19, P < 0.001; see 
Supplementary Table 1 for reaction times). In the parsing phase of the 
experiment, participants pressed the spacebar on passage into a new 
cluster significantly more often than at other times in the sequence 
(t29 = 2.27, P < 0.05; Fig. 2a). Restricting the analysis to Hamiltonian 
paths did not change the result; new-cluster parses were significantly 
more likely even in these sequences (t29 = 2.25, P < 0.05).

Experiment 2
The purpose of this experiment was to replicate the results of experi-
ment 1 while overcoming a subtle limitation of that experiment. The 
introduction of random Hamiltonian paths into the testing sequences 
of experiment 1 resulted in non-uniform transition probabilities within 
and between clusters. Specifically, within the set of Hamiltonian paths, 
the probability of transitioning from one cluster boundary node (one 
of the pale nodes in Fig. 1a) to the adjacent one, if not yet visited, is 
always exactly 1, whereas the probability of transitioning from the lat-
ter boundary node to each of the adjacent non-boundary nodes is one-
third. To eliminate this difference, we employed one fixed Hamiltonian 
path for each subject, rendering uniform transition probabilities in 
both random walk and Hamiltonian paths. The Hamiltonian cycle 
was entered at different points, depending on where the preceding 
random walk terminated, and backward and forward traversals were 
included, chosen randomly for each Hamiltonian block. In addition 
to refining the procedure from experiment 1, we used a stimulus set 
with less obvious visual similarity relations and that did not invite 
verbal labeling (Fig. 1c).

Accuracy on the rotation detection task indicated task compliance, 
with participants detecting rotated images with high A′ sensitivity 
(mean = 0.818, s.d. = 0.130; versus chance, t9 = 7.72, P < 0.001). As in 
experiment 1, participants pressed the spacebar on passing into a new 
cluster significantly more often than at other times in the sequence 
(t9 = 2.30, P < 0.05; Fig. 2b). Restricting the analysis to Hamiltonian 
paths once again preserved this result (t9 = 2.35, P < 0.05). Control 
analyses evaluated the possible contribution of associations formed 
between temporally nonadjacent items (Supplementary Fig. 1).

Experiment 3
In this fMRI experiment, we aimed to test our second prediction, 
namely that items lying in the same graph community should have 
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Figure 1 Design and stimuli. (a) Graph with community structure, used to 
generate stimulus sequences. (b) Stimuli in experiment 1. (c) Stimuli in 
experiments 2 and 3.
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Figure 2 Behavioral results. (a,b) For experiment 1 (a) and experiment 2 (b),  
the proportions of times participants parsed at a cluster transition and 
elsewhere in the sequence out of all opportunities to do so. Data were analyzed 
for all trials and restricted to Hamiltonian paths. *P < 0.05. Error bars denote 
±1 s.e.m. (30 participants for a, 10 for b).
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more similar neural representations than items occupying different 
communities following exposure to the sequence. The experiment 
began with a pre-scan exposure phase, which was identical to the 
exposure phase of experiment 2. Participants then underwent fMRI 
as they continued to perform the orientation-detection cover task  
(note: not the parsing task) on sequences structured as in the pars-
ing phase of experiment 2. To avoid potential issues raised by local 
item repetitions, we performed all analyses only on the data from 
Hamiltonian paths. Accuracy on the rotation detection task indicated 
task compliance, with participants detecting the rotated images with 
high A′ sensitivity in pre-scan (mean = 0.865, s.d. = 0.047; versus 
chance, t19 = 34.73, P < 0.001) and scanning phases (mean = 0.893, 
s.d. = 0.081; versus chance, t19 = 21.70, P < 0.001).

As an initial analysis, and to match the approach taken in previous 
fMRI studies of spontaneous event segmentation16, we ran a general 
linear model (GLM) with a regressor that indicated the transitions  
from one cluster to another. No areas were positively correlated with 
this event boundary regressor. A large cluster in medial prefrontal 
cortex (mPFC) was negatively correlated with the regressor (Fig. 3a), 
however, suggesting that this area is engaged during an event and tran-
siently disengaged at event boundaries (P < 0.05 corrected; Table 1). 
To confirm that the effect was temporally specific and not an artifact 
arising from the design of the GLM, we ran two additional analyses: 
one with the event boundary shifted two steps back in the sequence 
and another with the event boundary shifted two steps forward.  
In both of these cases, there were no regions that reliably exhibited  
the same behavior.

To test our prediction that items in the same community would 
come to be represented similarly, we ran a GLM with a regressor that 
modeled an fMRI adaptation response. Previous research has shown 
that the blood oxygen level–dependent (BOLD) response to an item 
can be affected by previous presentation of an item that engages an 

overlapping neural population, causing either a decreased response 
(repetition suppression) or, less commonly, an increased response 
(repetition enhancement)17,18. Insofar as items within a commu-
nity are represented by similar neural populations, we expected that 
responses to these items would become progressively suppressed or 
enhanced as more time is spent in the community. Consistent with 
this prediction, a repetition enhancement effect was observed in 
bilateral inferior frontal gyrus (IFG) and anterior insula (P < 0.05 
corrected; Fig. 3b and Table 1), with progressively stronger responses 
as each of the five nodes in a community was traversed. We also found 
this profile in the cuneus (P < 0.05 corrected; Table 1).

While these enhancement effects indicate overlapping representa-
tions within individual voxels18, the similarity structure predicted 
by our theory may also manifest in distributed patterns of responses 
across voxels. Thus, another way to test our prediction that items in 
the same community are represented more similarly is to examine 
whether the multivoxel response patterns evoked by each item come 
to be clustered by community. We examined these patterns over local 
searchlights throughout the entire brain, using Pearson correlation to 
determine whether activation patterns were more similar for pairs of 
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Figure 3 Results of GLM analyses. (a) mPFC was engaged throughout  
the duration of an event. This response reflects stronger activity within  
a community (dark red arrows) compared with at a community boundary 
(light red arrows). The arrows outline a possible Hamiltonian trajectory 
through the displayed portion of the graph. (b) Bilateral IFG and  
insula showed a repetition enhancement effect, reflecting progressively 
greater activity as more items from the same community were viewed, 
illustrated here with darker shades of green later in a community  
traversal (20 participants for a,b). R, right.

Table 1 Reliable clusters in experiment 3

Region
Brodmann 

areas x y z
Extent 
(voxels)

Boundary regressor
 mPFC 9/10/24 −1.4 43.6 16.5 205
Adaptation regressor
 Left IFG and insula 13/44 −43.7 0.0 13.1 100
 Right IFG and insula 13/44/45 49.6 8.5 7.7 109
 Cuneus 18/19 11.7 –80.7 22.5 84
Pattern analysis
 Left IFG, insula and ATL 13/38/47 −40.2 10.9 –5.9 150
 Left STG 21/22 −52.7 –23.0 –0.8 107

Clusters reliable at P < 0.05 corrected. Coordinates are in Talairach space and  
correspond to the center of mass of the cluster.

x = –43

Left IFG and insula

Left STGLeft ATL

Figure 4 Pattern similarity results. Clusters in left IFG and insula, left ATL, 
and left STG showed reliable community structure in the BOLD response in 
a whole-brain searchlight analysis. The similarity structure in each area was 
visualized by performing multi-dimensional scaling on the distances between 
the multivoxel pattern evoked by each item with each other item (averaged 
across searchlights within the area). Items are color-coded in accordance with 
the graph nodes in Figure 1a (20 participants).
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items from the same community than for pairs from different com-
munities. Two clusters of searchlights covering left IFG, anterior tem-
poral lobe (ATL), insula and superior temporal gyrus (STG) showed 
this effect across participants (P < 0.05 corrected; Fig. 4 and Table 1). 
The adaptation and pattern analyses were performed independently 
over the whole brain and were sensitive to different components of the 
fMRI signal, yet they identified neighboring regions in left IFG and 
insula (Fig. 5). No areas showed higher similarity for between- than 
for within-community item pairs.

For each community, the three internal items (darker nodes in 
Fig. 1a) had more overlapping temporal associations than the two 
boundary items did with each other. Thus, if the evoked neural 
response in these regions expresses overlap in temporal associations, 
then the internal items should be more correlated with one another 
than with the boundary items. This highly specific prediction was 
supported by a marginally significant difference in the left STG cluster 
(t19 = 1.71, P = 0.052 one tailed; other regions, P > 0.16).

Computational model
The fMRI adaptation and pattern analysis results from experiment 3 
confirmed that temporal community structure shapes representational  
similarity, giving rise to clustered item representations, with tran-
sitions between clusters signaling event boundaries, as measured 
by parsing behavior in experiments 1 and 2. To articulate a specific 
hypothesis about the mechanisms underlying these results, we con-
structed a three-layer neural network model (Fig. 6a). The network 

took input representing the current stimulus and was trained to 
predict which stimulus would occur next. To simulate the stimulus 
sequences involved in our experiments, we included 15 localist units 
in both the input (current item) and output (next item) layers. Note 
that there was therefore no direct overlap between items in either the 
inputs or target outputs presented to the model.

We exposed 20 randomly initialized networks to the same 
sequences viewed by participants. On each step of the sequence, the 
current item was shown as input and the model guessed which items 
might occur next. The model modified connection weights from  
the current-item layer to the internal (representation) layer and from 
the internal layer to the next-item layer to learn to activate only the 
four possible successor items for a given current item. Given that 
items in the same community generated similar predictions about 
which items would come next, the model naturally came to represent 
such items similarly in the internal layer.

The internal representations learned by the networks can be visu-
alized by performing a multi-dimensional scaling of the activation 
patterns evoked by each of the 15 images, just as was done for visu-
alization of evoked fMRI responses. The resulting plot (Fig. 6b) mir-
rors the community structure of the graph, as well as the similarity 
relations found in left IFG and insula, left ATL, and left STG (Fig. 4).  
Nodes within a community lie closer to one another (that is, are rep-
resented as more similar) than nodes from different communities  
(t19 = 140.84, P < 0.0001). The nodes at the boundaries of communi-
ties do not share as many predictions as the other community mem-
bers do with each other, and are therefore farther away from nodes 
that are more internal to the community (t19 = 22.82, P < 0.0001). As 
a result of this structure, as the network traverses a Hamiltonian path, 
the similarity between the current and previous item representation 
is strongest for items most internal to a community, slightly weaker 
passing to a boundary item and weakest passing to a new commu-
nity (Fig. 6c). The resulting temporal variation provides a sufficient 
basis for event parsing (even in the absence of explicit instructions to 
parse the sequence). Note that it also mirrors the pattern of activity 
that we observed in mPFC (Fig. 3). The latter observation prompts 
the speculation that mPFC may track changes in activity patterns in 
regions with community-based representational similarity, providing 
a signal that could underlie parsing decisions.

The neural network model demonstrates one simple way that 
 neural representations might come to reflect environmental com-
munity structure. It is closely analogous to models of object semantics 
that describe how object representations cluster on the basis of their 
overlapping features10. The only difference is that the relevant overlap 
occurs in the distribution of items over time in the sequence, rather 
than in the intrinsic properties associated with each item. Specifically, 
the relevant features for the model are the items that a current obser-
vation predicts will occur in the future.
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we calculated the average multivoxel pattern analysis effect across 
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denote ± 1 s.e.m. (20 participants for a,b).
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DISCUSSION
Our behavioral and fMRI data support an account of event repre-
sentation in which stimuli are grouped together into events because 
they share common temporal associations. In graphic representations 
of transition dynamics (for example, Fig. 1a), groups of items with 
shared contextual associations become clusters, or communities. In 
this sense, event representations arise from temporal community 
structure. When asked to mark event boundaries, participants seg-
mented sequences at points corresponding to transitions between 
graph communities. Notably, this took place in the context of a gen-
erative process with uniform transition probabilities, excluding rela-
tive uncertainty or surprise as the only basis of parsing.

Our second theoretical proposal is that items with overlapping tem-
poral associations coalesce into perceived events because such items 
give rise to similar internal representations. Our fMRI results pro-
vide direct evidence for this hypothesis. A pattern analysis revealed 
that areas of the left IFG, left insula, left ATL, and left STG repre-
sented items within a community as more similar than items from  
different communities. Notably, this effect emerged after only about 
an hour of exposure to the structured sequences, making this one of  
the first cases, to the best of our knowledge, in which multivoxel  
pattern analysis has been used to measure such acute learning-induced 
representational change19.

Also consistent with this proposal was a repetition enhancement 
effect in bilateral IFG and insula, where activity increased with dwell 
time in a single graph community. Although repetition suppression 
effects are more common18, repetition enhancement effects have been 
documented in numerous studies17 (including in IFG20), especially 
when stimuli are degraded, novel or perceptually similar21,22. One 
explanation for repetition enhancement in our study might be that 
evidence for the current community accumulated with each new item. 
Given the limited time for learning, each item may have carried partial 
or indefinite information about its own community membership, with 
confidence about the current community firming up over a succession 
of member items. Such a gradual accumulation of evidence would 
explain repetition enhancement in IFG and insula, in much the same 
terms that repeated presentation of a degraded visual stimulus leads 
to enhancement in visual cortex.

Both our adaptation and pattern analyses suggest that the left IFG 
is involved in representing events. This region has been associated 
with modality-independent semantic processing in diverse tasks, 
including verb generation, semantic classification and selection 
among competing semantic alternatives23–26. The pattern analysis 
found that community structure was also captured by the left ATL 
and STG, regions that are strongly implicated in semantic process-
ing27. These findings are therefore consistent with our proposal that 
exposure to structured sequences generates representations similar to 
those that support object categorization. The IFG is also sensitive to 
sequential structure in a range of domains, including artificial gram-
mar learning28, language29 and music30,31 processing, and action per-
ception and production20,32. While such effects are clearly relevant 
to our work, they involve comparison of overall IFG activity between 
different experimental conditions. We compared the fine-grained 
pattern of activity within IFG across different individual stimuli, in 
a single task context. Understanding how the results obtained from 
this approach relate to those proceeding from earlier univariate stud-
ies of IFG will be an interesting target for investigation.

Whereas we found that representations in IFG captured the cluster-
ing of items within events, mPFC seems to support a different func-
tion. This region was engaged throughout the duration of an event, 
disengaging transiently at event boundaries. An extensive body of 

evidence links mPFC to event processing. For example, mPFC is more 
responsive to objects that are highly associated with a particular con-
text33; by definition, an item within a community is strongly associ-
ated with other members of the community, and thus with a particular 
context. Other work has implicated mPFC in integrating informa-
tion when reading about events34, processing structured compared to  
random sequences35, thinking about highly familiar events36, thinking 
about complex events37, and elaborating on past and future events38. 
Such findings are broadly consistent with our finding that mPFC was 
engaged during sub-sequences with tightly integrated temporal struc-
ture. Our modeling findings motivate the more specific hypothesis 
that mPFC may track changes in activity patterns in areas such as left 
IFG. One way of probing this possibility in the future (not afforded 
by the current design) would be to examine functional connectivity 
between mPFC and these other regions.

Both our theory and our fMRI findings suggest that stimuli with 
shared temporal associations come to be represented similarly. Our 
computational model illustrates how this similarity might emerge 
through learning. The idea that an item’s representation is shaped 
by the temporal structure of the episodes in which it participates has 
a long history in theories of language and conceptual knowledge.  
One influential model proposed that semantic and grammatical rela-
tionships among words are latent in the similarity structure of their 
linguistic contexts39, an idea that has also been applied in the artificial 
grammar learning (AGL) literature40. In research on natural language 
processing, the conceptual structure of words, phrases and even whole 
texts is often estimated by modeling the latent similarity structure of 
the contexts in which the text samples appear41–43. Our proposal there-
fore builds on numerous precedents, establishing a new link between 
context-based representations in language and semantics and the  
phenomenon of event segmentation.

Our work also shares important links with statistical learning and 
AGL research7,19,44,45, both of which are concerned with incidental 
learning of temporal regularities. In common with our study, statisti-
cal learning studies have often focused on segmentation of continuous 
stimulus streams and AGL studies have often considered how partici-
pants learn the sequential structure generated by a random walk on a 
graph. Our study, however, represents an important advance from these 
 foundations. Both literatures have mainly emphasized variation in pre-
dictive uncertainty as the primary engine of segmentation and sequential 
knowledge generalization. In the case of segmentation, the central claim 
is that boundaries are detected when predictive uncertainty is high, a 
view that presupposes the existence of unequal transition probabilities. 
Even when previous studies have matched some transition probabilities, 
the underlying goal has been to isolate and test the behavioral effect of 
other, unequal transition probabilities46. In AGL research, where judg-
ments of grammaticality have been the main focus, the central claim has 
been that test sequences will be treated as grammatical if they have high 
conditional probability given the underlying graph, and as ungrammati-
cal otherwise, again presupposing important differences in predictive 
strength across stimuli. To the best of our knowledge, our findings are 
the first to demonstrate identification of sequential structure in a context 
in which predictive strength is globally uniform and learning is instead 
driven by community structure.

Although we have focused on the implications for event representa-
tion, our results therefore have repercussions for theories of sequence 
representation more generally. For instance, a prominent idea in the  
AGL literature proposes that sequential structure, including segmental 
structure47, is discovered by encoding commonly occurring sub-sequences 
(typically bigrams or trigrams) that are often referred to as fragments 
or chunks45. An influential chunking model (PARSER48), however, 
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failed to identify the three communities in our graph when exposed to 
sequences structured as in our experiments (Supplementary Figs. 2  
and 3). The reason is that all n-grams both within and between commu-
nities occur with equal probability in these sequences. As a result, any 
version of chunking that relies on differences in n-gram frequency will 
fail to explain the parsing behavior that we observed. One reason that 
this point is particularly noteworthy concerns the relationship between 
chunking and neural network models in AGL research. There has been 
considerable interest in understanding the relative strengths of these 
two formalisms, and this interest has naturally placed a premium on 
behavioral findings capable of adjudicating between them. Our results 
add to this set of findings by showing that the performance of chunking 
and neural network models can diverge when community structure is 
paired with uniform n-gram frequency.

One influential neural network AGL model proposed that items 
reflecting the same underlying state in a finite-state grammar come to 
be represented similarly because they occur in the same temporal con-
text40,49. Unlike the grammars examined in that work, and throughout 
the AGL literature, our graph never associates more than one stimulus 
with a single underlying state (node). Nevertheless, this proposal is 
clearly related to our assertion that items raising overlapping predic-
tions will come to be represented similarly. Our work applies this 
general principle to the problem of event segmentation and provides 
neuroscientific evidence for its validity.

Our use of sequences with uniform transition probabilities 
served a critical methodological purpose, but invites the question of  
how our theory might apply to sequential domains (including  
naturalistic ones) that involve non-uniform and asymmetric transi-
tion probabilities. A useful context for addressing this is provided 
by the task most heavily used in statistical learning research. In the 
classical statistical learning experiment, items (for example, syllables 
or images) are grouped so that items within a group always appear 
in a fixed order, but the order of the groups is unpredictable. This 
sequential regime can be represented as a directed graph with com-
munities that correspond to the item groupings (Supplementary 
Fig. 4). Thus, our account predicts that the representational changes 
observed in the current experiment should generalize to the statis-
tical learning setting. This seems to be the case. After exposure to 
images that always occur in a fixed order in pairs, but in which the 
order of pairs is unpredictable, the neural representations of images 
in the same pair become more similar relative to images from distinct 
pairs19. This reorganization occurs throughout the hippocampus 
and medial temporal lobe cortex, as well as in the anterior temporal 
lobe, as we observed. Future work will be needed to understand how 
these areas interact and how different types of structure affect neural  
representations in different areas.

It is interesting to consider the extent to which our proposals con-
cerning community structure, contextual overlap and representa-
tional clustering might provide alternative explanations for findings 
previously interpreted in terms of prediction error. The brain regions 
that we identified overlap partially with those observed in a statistical 
learning study19, but not with those reported in previous studies that 
emphasized the role of prediction error in event segmentation5,16. The 
discrepancy may indicate that these other regions respond specifi-
cally to prediction error and do not provide a direct signal for event 
parsing, but could also reflect numerous differences in stimuli, meth-
ods, etc. Certainly our findings do not demonstrate that prediction 
error is never relevant to event segmentation, nor do they show that 
community structure is always involved. Working out the potential 
role for these two mechanisms, alongside others, such as goal-based 
 processing50, is a critical challenge for near-term research.

METhODS
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METhODS
Participants. Members of the Princeton University community participated in 
exchange for monetary compensation ($12 per h for experiments 1 and 2, and  
$20 per h for experiment 3) or partial credit for a course requirement. Experiment 
1 had 30 participants (17 females, mean age = 20.2 years, range = 18–30 years),  
experiment 2 had ten participants (four females, mean age = 22.0 years,  
range = 18–30 years) and experiment 3 had 20 participants (nine females, mean 
age = 20.9 years, range = 18–33 years). Data from one additional subject in  
experiment 3 was unusable because of procedural difficulties. Informed written  
consent was obtained from all participants, and the study protocol was approved  
by the Institutional Review Board for Human Subjects at Princeton University.

Stimuli and design. In experiment 1, the stimuli consisted of 15 glyphs from the 
Sabaean alphabet (Fig. 1b), an ancient Semitic language, which were generated 
from fonts downloaded at http://www.omniglot.com/. For each participant, the 
15 glyphs were randomly assigned to the 15 nodes of the graph from Figure 1a. In 
experiments 2 and 3, the stimuli consisted of 15 abstract images (Fig. 1c) created 
in ArtMatic Pro (http://www.artmatic.com/). Again, these stimuli were assigned 
randomly to graph nodes for each participant.

In experiment 1, the sequence exposure phase consisted of viewing 1,400 
stimuli generated from a random walk on the graph in Figure 1a. Stimuli were 
presented one at a time on a computer screen for 1.5 s each, with no interstimulus 
interval. In the parsing phase, participants viewed 600 stimuli, again presented 
one at a time for 1.5 s each. There were never any cues as to the structure of 
the graph; item presentation was continuous within and across clusters. In the  
parsing phase, sequence generation alternated between blocks of 15 items that 
were generated from a random walk on the graph and blocks of 15 items that 
were generated from a randomly drawn Hamiltonian path through the graph in 
which each node of the graph was visited exactly once. The purpose of interspers-
ing Hamiltonian paths in the parsing phase was to ensure that parsing behavior 
could not be explained by local statistics of the sequence. If participants parse 
sequences at cluster boundaries in the Hamiltonian paths, then they must be 
relying on previously learned statistics. We did not use exclusively Hamiltonian 
paths in the parsing phase because we wanted to minimize unlearning of the 
temporal statistics.

Experiment 2 was identical to experiment 1 except that abstract, nonverbalize-
able stimuli were used and the Hamiltonian paths were not randomly drawn in 
each block for each subject. Instead, one path was drawn for each subject, and 
the forward and backward versions of this path were chosen randomly for each 
block. This was done to remove the possibility that participants could be parsing 
on the basis of statistics learned during the parsing phase about the structure of 
randomly drawn Hamiltonian paths.

Experiment 3 was identical to experiment 2, except that there was a scanning 
session after the exposure phase. The scanning session had the same structure 
as the parsing phase, with alternating random walks and Hamiltonian paths, as 
concerns about the local statistics of the random walk also applied to our inter-
pretation of the neural data. A rapid event-related design was used in the scanning 
session, with items presented for 1 s each with a jittered interstimulus interval  
(1, 3 or 5 s) such that the response to individual items could be modeled separately. 
There were five scanning runs lasting 616 s, with 160 items per run.

Procedure. In the exposure phase of all three experiments and the scanning ses-
sion in experiment 3, participants were first shown the entire set of stimuli on 
the screen and told that they would be asked to detect when the stimuli appeared 
rotated from this initial orientation. Participants pressed one key on the keyboard 
when they thought the stimulus was rotated from its initial orientation and a 
second key otherwise, thus responding on every trial. Key assignment was coun-
terbalanced across participants. Except in the scanner, a beep at one frequency 
was played when the response was incorrect and at another frequency when the 
response was not within the time frame that the stimulus was displayed. In the 
scanning session in experiment 3, participants responded with a button box, using 
the same fingers they had used on the keyboard in the exposure phase. Stimuli were 
rotated 90° from their initial orientation about 20% of the time in experiments  
1 and 2, and 12.5% of the time in experiment 3. This rotation-detection task was 
used to keep participants engaged and attentive to the stimuli. Participants were 
given the opportunity to take a self-paced break about every 7 min in experiments 
1 and 2, and between runs in experiment 3. The instructions did not mention 

anything about sequential aspects of the experiment, and we recruited partici-
pants who were naive to the purposes of the experiment.

In the parsing phase of all three experiments, participants were told that they 
would see sequences of items in the correct orientation and to “simply press 
the spacebar at times in the sequence that you feel are natural breaking points” 
(“spacebar” was replaced with “any button” in experiment 3). We viewed the 
parsing data in experiment 3, collected during an anatomical scan, as unreliable 
because of reports from multiple subjects that their strategy in the task was heavily  
influenced by the timing of acoustic scanner noise (Supplementary Fig. 5).

For parsing analyses, we operationalized passage into a new community as 
involving arrival into any community following at least four consecutive steps in 
another single community. The imposition of this four-step restriction was based 
on the a priori prediction, independent of our central theory, that participants 
might show a simple reluctance to press the parse button twice in close tempo-
ral succession. The specific choice of four steps was based on the fact that this  
criterion was met by two-thirds of all boundary-traversal events. However,  
the same qualitative pattern of results was obtained in additional analyses 
employing both less restrictive (1–3 steps) and more restrictive (5 steps) criteria 
(Supplementary Table 2).

fmRI acquisition and preprocessing. MRI data were acquired using a 3T Siemens 
Allegra scanner at Princeton University, and were preprocessed using AFNI (http://
afni.nimh.nih.gov/afni/) and SPM (http://www.fil.ion.ucl.ac.uk/spm/). An echopla-
nar imaging sequence was used to acquire 34 3-mm oblique axial slices with 1-mm 
gap, repetition time (TR) = 2 s, echo time = 30 ms, flip angle = 90°, and field of view 
= 192 mm. An MPRAGE anatomical scan was acquired at the end of the session, 
consisting of 176 1-mm axial slices, repetition time = 2.5 s, echo time = 4.38 ms, flip 
angle = 8°, and field of view = 256 mm. We performed slice acquisition time correc-
tion using Fourier interpolation and motion correction using a six-parameter rigid 
body transformation to co-register functional scans. A despiking algorithm was 
used to attenuate outliers in each voxel’s time course. Data were spatially normalized 
by warping each subject’s anatomical image to match a template in Talairach space 
using a 12-parameter affine and nonlinear cosine transformation. This transforma-
tion was then applied to functional data.

fmRI glm analysis. For GLM analyses, data were spatially blurred until total 
estimated spatial autocorrelation was approximated by a three-dimensional  
6-mm full width at half maximum Gaussian kernel. Signal in each voxel was 
then intensity-normalized to reflect percent change. We ran two GLM analy-
ses using AFNI. Both contained zero- through fifth-order polynomial trends 
and estimated movement in six directions for 13 participants who had some 
detectable movement. Both also included regressors that indicated whether 
any stimulus was present, whether the stimulus was rotated, error trials, trials 
with no response, and whether the stimulus was generated from a Hamiltonian 
path. These indicators were convolved with a standard hemodynamic response 
function. One of the GLMs was designed to look at transient responses at event 
boundaries or responses lasting throughout a community traversal. It contained 
a regressor indicating event boundaries (specifically, arrival at an item in a new 
cluster) within Hamiltonian paths. We ran two additional control GLMs to test 
the specificity of the boundary effects: One shifted the boundary regressor two 
items back and the other shifted it two items forward such that they were mis-
aligned in both cases with the true boundaries. The other GLM was designed to 
detect adaptation effects during traversal through communities. It contained a 
regressor with the (hemodynamic response function convolved) values 2, 1, 0,  
–1 and –2 assigned to the first, second, third, fourth and fifth node, respec-
tively, in a Hamiltonian path through a given community. To test the reliability 
of beta weights across participants, we used randomise (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/randomise) in FSL to perform permutation tests and generate a 
null distribution of cluster masses for multiple comparisons correction (cluster-
forming threshold, P < 0.05 two tailed).

fmRI pattern analysis. We ran a searchlight multivoxel pattern analysis51 to 
assess the similarity structure of individual item representations after sequence 
exposure. We z scored each voxel’s activation values across time in each run 
from the preprocessed data. We then took the average z scored activation for all 
presentations of a particular item two TRs (4 s) after stimulus onset (which was 
always time-locked to a TR). We only included item presentations that occurred 
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four or more steps into a Hamiltonian path to minimize the possibility of picking 
up on any neural responses from items in the preceding random walk. The activ-
ity pattern for each of the 15 items was extracted from a cube of 3 × 3 × 3 voxels 
(a searchlight) centered on every voxel in the brain and stored as vectors with 
27 elements. The Pearson correlation between the vector corresponding to each 
item and the vector corresponding to each other item was calculated, yielding  
a 15 by 15 similarity matrix for each searchlight.

We created a statistic on this matrix to evaluate the extent to which a particu-
lar searchlight matched our predictions. The statistic was the average Fisher- 
transformed correlation between items in the same cluster minus the average 
Fisher-transformed correlation between items not in the same cluster. To ensure 
that temporal overlap of the hemodynamic response between item presenta-
tions could not bias the results, we only compared between- and within-cluster 
item similarities for pairs of items that appeared the same distance away in the 
sequence. For example, we compared item pairs that occurred four steps away 
within a cluster only to item pairs that occurred four steps away across clusters. 
We did this for one, two, three and four steps (five or more steps would not allow 
any within-cluster pairs) and then averaged the results. Across these steps, each 
item participated in exactly four within-cluster pair correlations and exactly four 
across-cluster pair correlations. The difference statistic was assigned to the center 
voxel of each searchlight for visualization and hypothesis-testing purposes.

We performed the same permutation test as with the GLM analyses to assess 
the reliability of each searchlight across participants. The searchlight procedure 
creates additional smoothness in the data, but this smoothness appears in the null 
distribution of clusters, making it appropriately more difficult to find a cluster 

mass large enough to reach significance. The searchlight statistic can thus be 
treated the same way as beta weights (or any other statistic) in the permutation 
test. As in the GLM analyses, the permutation test shuffles voxel values across 
subjects and uses a cluster forming threshold of P < 0.05 (two tailed).

computational model. The model was a fully connected three-layer feedforward 
neural network implemented in Emergent (http://grey.colorado.edu/emergent/), 
with 15 units in the input and output layers (one for each of the 15 items in the 
experiments), and 50 units in the hidden layer. The choice of number of units 
in the hidden layer was arbitrary, and results were the same for a wide range of  
values. The model was exposed to a sequence of stimuli generated from a random 
walk on the graph in Figure 1a, the same as for participants in all three experi-
ments. On each step of the sequence, the input unit corresponding to the item 
on that trial was set to a value of 1, and all other inputs were set to 0. Similarly, 
the output unit corresponding to the item on the next trial was set to a value 
of 1, and all other outputs were set to 0. The network adjusted weights from 
the input to hidden layer and from the hidden to output layer to predict what 
would come next in the sequence using back-propagation with a learning rate 
of 0.2. We trained 20 models with weights randomly initialized from a uniform 
distribution between –0.5 and +0.5 for 200 epochs (each epoch contained all  
60 input-output possibilities).

51. Pereira, F. & Botvinick, M. Information mapping with pattern classifiers: a comparative 
study. Neuroimage 56, 476–496 (2011).
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