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a b s t r a c t

Detection of anomalies is a broad field of study, which is applied in different areas such as data monitor-
ing, navigation, and pattern recognition. In this paper we propose two measures to detect anomalous
behaviors in an ensemble of classifiers by monitoring their decisions; one based on Mahalanobis distance
and another based on information theory. These approaches are useful when an ensemble of classifiers is
used and a decision is made by ordinary classifier fusion methods, while each classifier is devoted to
monitor part of the environment. Upon detection of anomalous classifiers we propose a strategy that
attempts to minimize adverse effects of faulty classifiers by excluding them from the ensemble. We
applied this method to an artificial dataset and sensor-based human activity datasets, with different
sensor configurations and two types of noise (additive and rotational on inertial sensors). We compared
our method with two other well-known approaches, generalized likelihood ratio (GLR) and One-Class
Support Vector Machine (OCSVM), which detect anomalies at data/feature level.

We found that our method is comparable with GLR and OCSVM. The advantages of our method com-
pared to them is that it avoids monitoring raw data or features and only takes into account the decisions
that are made by their classifiers, therefore it is independent of sensor modality and nature of anomaly.
On the other hand, we found that OCSVM is very sensitive to the chosen parameters and furthermore in
different types of anomalies it may react differently. In this paper we discuss the application domains
which benefit from our method.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The field of activity recognition has gained an increasing level of
interest driven by applications in health monitoring and assistance,
manufacturing and entertainment. In addition, given the advances
in portable sensing technologies and wireless communication
many of these systems rely on the fusion of the information from
(heterogeneous) sensor networks. In this framework, the detection
of anomalous (e.g. faulty or misbehaving) nodes constitute an
important aspect for the design of robust, resilient systems. Be-
sides activity recognition, anomaly detection (AD) is an important
issue in the fields of control systems, navigation, and time series
analysis. Generally, an anomalous pattern is one that is not desired
or not expected. Therefore it often decreases the system perfor-
mance or generates abnormal behavior in the data stream. It can
be due to sensor failure, signal degradation, environmental fluctu-
ations, etc. In most fields, such as health monitoring, a desirable
characteristic is to process the data stream online and get a real-
time anomaly detection to take an appropriate counteraction.
As mentioned above, there is a tendency toward the use of
large number of sensors and with different sensor modalities to
have more information about the observed environment. In a pat-
tern recognition system, there are different levels to fuse sensor
information; data, feature, or classifier. Generally, the goal of data
fusion is to achieve more reliable data. Feature fusion concate-
nates different features from all the sensors before classification
(Fu et al., 2008). Classifier fusion is applicable when an ensemble
of classifiers is used and each classifier is assigned to different
subset of sensors, and finally, the decision is made by a combina-
tion of the classifier decisions (Ruta and Gabrys, 2000). This archi-
tecture allows for a decentralized classification system where
each classifier decides about a separate data stream. Therefore,
if a particular stream is faulty or misbehaving we can remove
the corresponding channel easily from the fusion in order to con-
tinue the classification, keeping the system performance as high
as possible. A good example of such systems is human activity
recognition (HAR) with on-body sensors mounted on specific
limbs. A good practice is to devote a distinct classifier to each
of the sensors (Roggen et al., 2011). In these systems, one inevita-
ble anomaly is the rotation or sliding of the sensors. If these
anomalies can be detected, it is easier to take an appropriate
counter-action for the misbehaving sensor, without the need of
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reconfiguring the whole system (Sagha et al., 2011a; Chavarriaga
et al., 2011). This desirable characteristic is the core feature of
Opportunistic activity recognition systems where elements in the
network may appear, disappear or change during life time
(Roggen et al., 2009).

Given a classifier ensemble, the anomaly detection process can
be applied at different levels; raw signal or feature level, or at clas-
sifier/fusion level. Hereafter, we call both raw and feature level as
low level and the detection process as Low Level Anomaly Detection
(LoLAD), while for the later case we name the process as Fusion Le-
vel Anomaly Detection (FuLAD). The former case is the most com-
monly applied (Chandola et al., 2009), however, it is often not
applicable as different sensor modalities may be available – requir-
ing to design specific AD for each modality – as well as the energy
and computational cost in the case of wireless sensor networks.
Therefore in this paper we introduce an anomaly detection mech-
anism at the level of classifier fusion, based on the consistency of
the classifier decisions. Applying the method on two human activ-
ity datasets, we show that, upon detection of anomalous classifiers,
an adaptation strategy such as removing them from the fusion
chain, leads to a graceful performance degradation.

The structure of the paper is as follows; the next section sum-
marizes related work on anomaly detection and resilience, then
we describe the proposed method in Section 3. The description of
the experiments and the results are presented in Sections 4 and
5, respectively. Finally, we discuss about the use of the method
and its pros and cons in Section 6, followed by a conclusion.
2. Related work

We can handle anomalies in two manners: through detection
and isolation, or by anomaly resilience and adaptation. In the for-
mer case, the goal is to detect whether there is an anomaly in
the data or not (detection) and which part of the system is affected
(isolation). While for the latter one, the system is designed to be
tolerant against anomalies, or to be able to take suitable counterac-
tion whenever an anomaly is detected. For example, by changing
the network structure in wireless sensor networks (WSN) or adapt-
ing parameters to the new data trend.
2.1. Anomaly detection and isolation

Numerous studies have been undertaken to detect anomalies at
the data level. Chandola et al. (2009) survey methods to detect
anomalous patterns in a pool of patterns. These methods (such as
computing distance to the nearest neighbor or to a cluster center,
estimating statistical models on the data, discriminating normal
and anomalous patterns using artificial neural networks, or support
vector machines) are used in fault detection in mechanical units
(Jakubek and Strasser, 2002), structural damage detection
(Brotherton and Johnson, 2001), sensor networks (Ide et al., 2007),
etc.

Time series change detection (Basseville and Nikiforov, 1993)
has been applied to fraud detection (Bolton et al., 2002), computer
intrusion detection (Schonlau et al., 2001) and concept drift (Lane
and Brodley, 1998). One of the well-known approaches is CUmula-
tive SUM (CUSUM) (Page, 1954) which is particularly used when
the parameters of the changed signal are known. CUSUM computes
the cumulative sum of the log-likelihood ratio of the observations
and once this value exceeds a threshold (which can be adaptive) it
is considered a change. It is widely used in change and drift detec-
tion in time series (Wu and Chen, 2006), exerting neuro-fuzzy
models (Xie et al., 2007), auto-regressive models (El Falou et al.,
2000), and Kalman filters (Severo and Gama, 2010) to generate
residuals whose changes should be detected. Li et al. proposed a
subspace approach to identify optimal residual models in a multi-
variate continuous-time system (Li et al., 2003).

When the parameters of the changed signals are unknown,
generalized likelihood ratio (GLR) (Lorden, 1971) and adaptive
CUSUM are proposed. GLR maximizes the likelihood ratio over pos-
sible values of the parameter of the changed signal, assuming the
normal data follows a Gaussian distribution. It is widely used for
change detection in brain imaging (Bosc et al., 2003), diffusion ten-
sor imaging for monitoring neuro-degenerative diseases (Boisgon-
tier et al., 2009), for detecting land mines using multi-spectral
images (Anderson, 2008), and target detection and parameter
estimation of MIMO radar (Xu and Li, 2007). In the same class,
Adaptive CUSUM is able to detect changes by suggesting a distribu-
tion for the unknown change model based on the distribution of
the known model of unaltered data (Alippi and Roveri, 2006a,b,
2008). One-Class Support Vector Machine (OCSVM) is another
common approach for anomaly detection (Das et al., 2011). Its
rationale is to compute a hyperplane around train data and sam-
ples are considered anomalous if they fall outside that hyperplane.

Other approaches have also been proposed in control systems to
detect abnormal sensors. One is to extract the model of the system
and detect faults by monitoring residual error signal (Hwang et al.,
2010). Another more complex way is to create the input–output
model of the system by regression methods and detect potential
faults when there is a change in the estimated parameters (Ding,
2008; Smyth, 1994).

There are many studies and methods toward detection of fault
and changes in the sensor networks. In this area, anomaly detec-
tion can be done by having redundancies in the network. Either
in the form of physical redundancy such as adding extra sensors,
thus increasing the cost of the system deployment; or from analyt-
ical redundancies (Betta and Pietrosanto, 1998). For instance,
Andrieu et al. (2004) discuss particle methods to model validation,
change/fault detection, and isolation. In this scope, model
validation is a process to ensure reliable operations. A survey on
the approaches to fault detection and isolation in unknown envi-
ronments has been done by Gage and Murphy (2010). Chen et al.
proposed a probabilistic approach that recognizes faulty sensors
based on the difference in the measurements of a sensor and its
neighbors (Chen et al., 2006). Other approaches are based on the
similarity between two time series (Yao et al., 2010), OCSVM
(Rajasegarar et al., 2007) and clustering (Rajasegarar et al., 2006)
to detect outliers in a sensor network, and kernel-based methods
(Camps-Valls et al., 2008) to detect changes in remote imaging
systems.

2.2. Anomaly resilience and adaptation

In sensor networks there are different strategies to introduce
robustness against changes and drifts in the sensors. Luo et al.
(2006) discuss how to optimize the parameters of the model of a
sensor under both noisy measurement and sensor fault. In turn,
Demirbas (2004) proposes scalable design of local self-healing for
large-scale sensor network applications, while Koushanfar et al.
(2002) propose to use an heterogeneous back-up scheme to substi-
tute faulty sensors. Other different designs, principles and service
managements have been proposed to provide self-healing services
and diagnosing the true cause of performance degradation
(Krishnamachari and Iyengar, 2003; Ruiz et al., 2004; Sheth et al.,
2005).

Alternatively, the system can be adapted to dynamic changes.
Snoussi and Richard (2007) model the system dynamics, including
abrupt changes in behavior, and select only a few active nodes
based on a trade-off between error propagation, communications
constraints and complementarity of distributed data. Wei et al.
(2009) used discrete-state variables to model sensor states and



Fig. 1. Classifier fusion architecture. FuLAD (DB) process is shown in gray.
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continuous variables to track the change of the system parameters.
Alternatively, fault detection in WSN has been addressed by find-
ing linear calibration parameters using Kalman and particle filters,
and state models (Balzano, 2007). Furthermore, Wang et al. (2005)
proposed a fault-tolerant fusion based on error-correction codes in
order to increase the classification performance where each node
sends class labels to the fusion process. Alternatively, Chavarriaga
et al. (2011) used mutual information between classifier decisions
to assess the level of noise in an activity recognition scenario.

2.2.1. AD in activity recognition systems
Advances in sensing, portable computing devices, and wireless

communication has lead to an increase in the number and variety
of sensing enabled devices. Activity recognition systems can fuse
information from networks of on-body and ambient sensors for
better performance. In such systems there are several approaches
to handle anomalies at the data, feature or classifier level. Some
of the mentioned approaches in Section 2.1 could be applicable
at the feature level. Another strategy is to identify possible anom-
alies and propose a method to compensate for them during the
network’s life-time. i.e., for specific well-defined anomalies, ad
hoc strategies can be devised, but this is application-dependent
and may not be easily generalized for other domains. For example,
in accelerometer-based HAR, sensor rotations are hardly avoidable.
One way to cope is to detect how much rotation is added to the sig-
nals, based on a reference, and then rotate the sensor readings back
before classification (Kunze and Lukowicz, 2008; Steinhoff and
Schiele, 2010). An alternative way is to use features or classifiers
that are robust against a particular anomaly. For example, Förster
et al. (2009) extract discriminative features based on genetic pro-
gramming, which are robust against sensor sliding in body area
sensor networks. Another approach is to use an adaptive classifier
robust to specific changes in the feature distribution using an
Expectation–Maximization approach (Chavarriaga et al., 2013a).
These methods are limited due to the fact that there is a need to
pre-determine the possible anomalies. Moreover, it may not be
feasible to characterize all of them in real world applications and
it may be impractical to have a rectifier for all of them.

Depending on the limitations of a sensor network, such as the
bandwidth, the power consumption, the modality and the cost of
each node, in practice it may not be feasible to design an efficient
LoLAD for a pattern recognition system as the ones described in
this Section. This process can increase the requirements of compu-
tational power and energy consumption of each node, depending
on the sampling rate and/or bandwidth. Also, as mentioned
previously, designing an AD for each modality may not be feasible.
In order to come up with these limitations there is a need to reduce
the communication of the nodes and make the AD independent of
the modality. Aiming at overcoming these limitations, we propose
a method for AD at the fusion level, particularly suitable for
classifier ensembles.

Classifier ensembles can provide great flexibility to recognition
systems. In particular, when an anomalous classifier is detected,
the ensemble can be reconfigured so as to reduce performance
degradation. The simplest way would be to remove it from the
ensemble by turning the node off or forcing it into stand-by mode.
Other approaches can attempt to adapt or retrain the anomalous
classifiers with the new data. In this case, since the ground truth
labels are not provided online, we can use the best classifier in the
ensemble as a trainer (Calatroni et al., 2011). Another way, is to
update the fusion parameters based on the output of the new
classifiers (Sannen et al., 2010). An alternative approach could be
to regenerate the decisions of anomalous classifiers based on the
decisions of the other classifiers and then use the same fusion
structure as before (Sagha et al., 2010). In this work we focus on
the detection of the anomalous classifiers and use the first strategy
(i.e., removal) to assess the increased robustness of the entire
system.

3. Method

We propose a method to automatically detect anomalies in a
classifier ensemble at the fusion level, as shown in Fig. 1. The
classifier ensemble architecture is more convenient in the sensor
networks deployed for pattern recognition in the sense that differ-
ent modalities could be covered with different classifiers and also
the ensemble could be easily reconfigured to attain different
criteria such as cost and accuracy (Chavarriaga et al., 2011).

The rationale behind the method is to find a model of classifier
coherence from the training set. Then, at run time, looking at a
sequence of classifiers’ outputs, we determine how much each
classifier deviates from this model. Whenever this deviation
exceeds a defined threshold the classifier is considered as
anomalous. Finally, to make the system resilient, we remove the
anomalous classifiers and reconfigure the ensemble.

To compute the deviation, we present two measures. One is
based on the Mahalanobis distance, Section 3.1, and the other is
based on an information theoretic approach, Section 3.2. Later,
we will discuss the pros and cons of each approach. The first was
originally proposed by Sagha et al. (2011b) and here we provide
further characterization of it. Moreover, in order to compare the
performance of the fusion level and feature level methods, in
Sections 3.3 and 3.4 we describe two commonly used anomaly
detection methods: GLR and OCSVM.

3.1. Distance based detection (DB)

We assume that a given classifier s in the ensemble and the
fused output yield posterior probability vectors, os ¼ ½p1; p2; . . . ;

pC � and f ¼ ½p1; p2; . . . ; pC � respectively, where each element de-
notes the probability of the sample belonging to a specific class
c 2 ½1; . . . ;C�. Fig. 1 shows the process of detection. By calculating
the distance between each classifier output and the final fusion
output we can deduce how similar they are. At runtime, if the aver-
age distance over the last w decisions exceeds a pre-defined
threshold, the corresponding classifier will be marked as anoma-
lous, while other classifiers are considered healthy.

The computed distance should take into account the informa-
tion obtained from the training set. We propose the Mahalanobis
distance, Dsc , which stores information about the classifier coher-
ence and correlation in a covariance matrix. The average distance
over past w decisions, ~Dsc , is defined as

~Dsc0 ðt0Þ ¼
1
w

Xt0

t¼t0�w

ðost � ftÞTU�1
sc0 ðost � ftÞ; ð1Þ

where ost is the output of the classifier s 2 ½1; . . . ;N� and ft is the
fusion output at time t. c0 2 ½1; . . . ;C� is the recognized class after
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classifier fusion. Usc0 represents the covariance between the
classifier s and the fusion output, for class c0. The covariance matrix
is estimated based on the training data set,

Usc ¼ Eððoc
s � f cÞTðoc

s � f cÞÞ; ð2Þ

where oc
s and f c are the output of the classifier s and the output of

the fusion for the specific class c 2 ½1; . . . ;C�, respectively, and Eð�Þ
is the mathematical expectation. When the distance between a
classifier and fused output is larger than the corresponding
threshold for the chosen class, we label the classifier as anomalous.
Thresholds, Hsc , are set individually for each classifier and class
such that

Hsc ¼ kmaxðDtr
scÞ; ð3Þ

where maxðDtr
scÞ is the maximum distance for class c and classifier s

computed on the training set. The constant k > 0 is the same for all
the classes and classifiers, and denotes the sensitivity of the detec-
tion. Larger values of k result in less sensitive detection. In this
work, we use the max function which is simple yet reasonable,
although more complex threshold estimations could also be applied
(e.g. by assessing the distance distribution).

Once one classifier is labeled as anomalous, we exclude it from
the fusion process. As a result the final fusion decision may change.
Therefore, to detect all the anomalous parts we perform the detec-
tion process iteratively until the distances of the remaining classi-
fiers are below the threshold or a predefined minimum number of
healthy classifiers, nHmin, is reached.

Moreover, we add a fixed epsilon value (0.01) to the diagonal
elements of the covariance matrix to avoid singularities, and an
upper bound is used to avoid large Mahalanobis distance values,
which affect the anomaly recognition. The bound is set for all clas-
ses and classifiers using training data and is obtained as a scaled
factor of the maximum value of Dtr

sc . So

Dsc ¼
Dsc Dsc < CmaxðDtr

scÞ
CmaxðDtr

scÞ Dsc P CmaxðDtr
scÞ

(
ð4Þ

The final algorithm is as follows:

begin
Usc � Covariance matrix for classifier s and class c
Hsc � Distance threshold for classifier s and class c
nHealthy � Number of healthy detected classifiers (init. = N)
nHmin � minimum number of classifiers for fusion
~Dsc � Average distance over specified window
f ðSÞ � Fusion of classifiers in set S
H � set of healthy sensors (initially H ¼ ½s1::sn�)
faulty � set of anomalous classifiers (init. ¼ /)
while nHealthy > nHmin

f ¼ fusionðHÞ
c0 ¼ argmaxcðf Þ
Compute distance ~Dsc0 8s 2 H
if maxð~Dsc0 Þ < Hsc

exit
else
faulty = [faulty argmaxsð~Dsc0 Þ�
nHealthy = nHealthy � 1

end
end

3.1.1. Computational cost
This procedure iterates at most N � nHmin times for computing

distances, where N is the number of classifiers and nHmin is the
minimum number of classifiers for fusion. At each iteration
nHealthy distances between each classifier and the fusion output
are computed. The cost of calculating each distance is two vector
subtractions of size C (number of classes) and a multiplication of
three matrices of sizes 1� C; C � C, and C � 1. Finally the order
of computation is OðN2C3Þ.

3.2. Information Theoretic approach (IT)

Information theory is a wide spread domain which has been
used for signal processing, cryptography, feature selection, among
others (Shannon, 2001). Two key concepts in information theory
are the entropy, which denotes the amount of information of a ran-
dom variable, and the mutual information, which quantifies the
shared information between two random variables. The entropy
of a random variable X is obtained by

HðXÞ ¼ �
X

i

pðxiÞlog2pðxiÞ; ð5Þ

where xi are possible values of X. Mutual information (MI) between
random variables X and Y is defined by

MIðX; YÞ ¼
X
x;y

pðx; yÞlog2
pðx; yÞ

pðxÞpðyÞ ; ð6Þ

where pðx; yÞ is the joint probability.
In the case of an anomalous classifier, we expect its mutual

information with the rest of the classifiers to change (Chavarriaga
et al., 2011). In consequence, MI changes between the classifiers
could be used to detect anomalies in the ensemble.

To identify which part of the system is anomalous, some care
should be taken when using these values; In order to have an on-
line detection, the computation of MI on the test set, MItest, is done
in a sliding window of classifier decisions. Inside the window, the
distribution of ground truth labels may vary compared to the train-
ing set (e.g. always feeding data from one class would result in
entropies and MI values equal to zero). This variation causes a com-
mon change in the estimation of MI elements. We call it common
information change (CIC) which is measured in bits and computed
as the minimum difference value between pairwise elements of
MItest and the one on training set, MItrain. To remove this effect,
we remove this difference from the computed MI. The algorithm
is as follows:

begin
faulty � set of faulty detected classifiers (init. ¼ /)
nHealty � Number of healthy detected classifiers, (init. ¼ N)
dif = MItrain � MItest

CIC = min(dif)
sub = dif � CIC
subii ¼ 0; % removing entropy
while true

si ¼
P

jR faulty subij

if max(s) > nHealhty � k
faulty = [faulty argmax(s)]
nHealthy = nHealthy � 1
else
break

end
if nHealhty = nHmin

break
end

end

Again, k denotes the sensitivity, dif is the difference between MI
of training and testing and its minimum value corresponds to the
CIC. Afterwards, we set the diagonal values of the consequent ma-
trix to zero to remove the entropy. Finally, the loop starts detecting
anomalous classifiers until no value exceeds the threshold.



Table 1
Sensor configurations. The number of classifiers for each configuration is written in
parenthesis for car manufacturing dataset and opportunity dataset, respectively.

Mode Acc Acc + Gyro Acc + Gyro + Magnetic

L Configl1ð7;5Þ Configl2ð7;5Þ Configl3ð7;5Þ
S – Configs2ð14;10Þ Configs3ð21;15Þ
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Opposite to the previous measure, this approach does not re-
quire the classifiers/fusion to provide their outputs as a probability
vector. The decision of the classifiers can be discrete or nominal
value.

3.2.1. Computational cost
The calculation requires the estimation of MI in a window of

length w; OðwC2N2Þ, then we have a matrix subtraction OðN2Þ
and the iteration continues at most until we reach to the nHmin.
So finally the computation order is OðwC2N2 þ N3Þ.

3.3. Generalized Likelihood Ratio (GLR)

As a comparison we used two standard approaches that detects
anomalies at the feature level. The first approach is based on Gen-
eralized Likelihood Ratio for vector based problems where the ini-
tial distribution of data h0 is known but it is unknown after change,

HðtÞ ¼
¼ h0; when t < t0;

– h0; when t P t0;

�
ð7Þ

where t0 is the time when change happens. The GLR solution leads
to the following equation (Basseville and Nikiforov, 1993):

gt ¼ max
t�w6j6t

t � jþ 1
2

ð�Yt
j � h0ÞTR�1ð�Yt

j � h0Þ; ð8Þ

where �Yt
j is the mean of the data vector from time j to time t. We

mark the data as anomalous when gt is greater than a threshold.
Here, we set the threshold as the maximum value of gt on the
training set.

3.4. One-Class Support Vector Machine (OCSVM)

One-Class Support Vector Machine computes a hyperplane
around the training data, every test data point outside this hyper-
plane is considered as anomalous. Two parameters must be tuned
for this method; m, which is the upper bound of the fraction of the
training data that are considered to be outside the hyperlane and
bandwidth, r, which affects the smoothness of decision boundary.
To set these parameters, different optimization approaches are
proposed (Zhuang and Dai, 2006; Lukashevich et al., 2009). Here,
we experimentally set the best parameters so as to have a good
detection accuracy on the rotational noise, Section 4.2.4. We have
used LIBSVM implementation (Chang and Lin, 2011).
1 For the complete list of the labels please refer to Stiefmeier et al. (2008).
2 <http://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition>.
3 Ubisense: <http://www.ubisense.net/>.
4. Experiments

The performance of the proposed methods has been evaluated
on one artificially generated dataset and two real datasets of hu-
man activities. The activity datasets contain several sensor modal-
ities, and different ensemble configurations were tested based on
the sensor modalities or location.

4.1. Synthetic dataset

The synthetic dataset consists of different classifier ensembles
where we systematically test different sizes, accuracies and levels
of noise. The number of classifiers and classes ranges from 2 to 16
and 3 to 15 with the step of 2 and 3, respectively. The number of
samples per class was set to 60 for both the training and the testing
sets and they are randomly distributed over time. In each simula-
tion, the accuracy of the healthy classifiers was set to 80%, while
the performance of anomalous classifiers ranges from 10% to
70%. The number of anomalous classifiers varies from 0% to 100%
of the available classifiers for each experiment. These values pro-
vide a general assessment on the methods and the effect of noise
for different ensemble configurations and number of classes.

In each experiment, we change one of the following character-
istics: number of classes, number of classifiers, percentage of
anomalous classifiers, or the level of anomaly. Presented results
are the average across 5 repetitions per each experiment.
4.2. Human activity datasets

4.2.1. Datasets
The two real datasets contain data from body mounted inertial

sensors, recorded while human subjects perform different activi-
ties. In order to emulate changes in the sensor network we artifi-
cially added different levels of noise to the sensor readings and
assessed the method ability to detect noisy channels, as well as
the recognition performance.

The first dataset corresponds to a car manufacturing scenario
(Stiefmeier et al., 2008). It contains data from 8 subjects perform-
ing 10 recording sessions each (except one subject who recorded
only 8 sessions). The sensors are accelerometers, rate gyros, and
magnetic sensors mounted on different parts of the body (i.e.,
hands, upper and lower arms, and chest). There are 20 activity clas-
ses to be recognized, such as Open/Close hood, Open/Check/Close
trunk.1 We use leave-one-subject-out cross validation for evaluating
the performance, and the classes are segmented and randomly
distributed.

The second dataset, named Opportunity dataset, comprises sen-
sory data of different modalities in a breakfast scenario. The data-
base is fully described by Chavarriaga et al. (2013b) and is publicly
available as a benchmark for HAR methods.2 The dataset was re-
corded in an instrumented kitchen with two doors and a dining table
at the center. The different sensor modalities are camera, micro-
phone, localization,3 reed switch, and inertial sensors. Inertial and
localization sensors are all mounted on a jacket worn by the subject
during the recording. For the current simulations we use a subset of
this dataset including 4 subjects and motion jacket inertial sensors.
Seventeen activities are detected, such as Open/Close door, Open/
Close drawer. For this dataset we also evaluate the methods with a
leave-one-subject-out cross validation and the data are previously
segmented and randomly distributed.
4.2.2. Configurations
We tested different sensor configurations using one, two or

three modalities for both datasets (i.e., accelerometer, gyro and
magnetic sensors). The configurations are listed in Table 1. For
one group of them, denoted as configl for location based, each clas-
sifier uses data from a set of sensors placed at the same location.
For the other group, denoted as configs for sensor type based, we
used one classifier per sensor per location (e.g. one classifier for
the tri-axial accelerometer located on the right upper arm). For
each case the number of classifiers are also provided in the table.

http://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition
http://www.ubisense.net/
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4.2.3. Classification
For classification we used Quadratic Discriminant Analysis

(QDA), unless otherwise stated. As features we used the mean
and variance of the segmented signals. For each class (i.e., activity),
the covariance matrix has been estimated, which is constrained to
be diagonal due to the lack of sufficient data to estimate the full
covariance matrix. The decisions of individual classifiers are fused
using a naïve Bayesian approach. It uses the normalized confusion
matrix of each classifier to represent the total reliability of this
classifier for each class. The fused output can be computed as
follows:

Cout ¼ arg maxa

Y
s

PðC ¼ cijOs ¼ osÞ
 !

; os 2 c1; . . . ; cm; ð9Þ

where Os is the class label from the classifier s. Computing the prob-
abilities is straightforward using Bayes rule:
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Fig. 2. The effect of noise on the overall classification accuracy after fusion. HAR
datasets – Configl2. Left: rotational noise, the level is in degree. Right: additive noise,
the level is in SNR.
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Fig. 3. Synthetic dataset. Left: the effect of (a) and (c) noise and ratio of noisy sensors, (b)
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PðC ¼ cijOs ¼ osÞ / PðCÞPðOs ¼ osjC ¼ ciÞ: ð10Þ

We suppose that the priors PðCÞ of all the classes are the same, and
PðOs ¼ osjC ¼ ciÞ is the confusion matrix estimated on the training
data.

In addition, to show the generality of the approach we also per-
form simulations using other classification and fusion methods
(Linear driscriminant analysis and Dempster–Shafer fusion).

4.2.4. Simulated anomalies
We simulate anomalies by introducing rotational and additive

noise to the testing signals. Each type of noise was tested sepa-
rately in the three datasets for different configurations (i.e., num-
ber of faulty classifiers, level of noise). In each simulation, noise
is added to a fixed number of randomly chosen sensors for the en-
tire test set. We report results on 10 repetitions of each
configuration.

In the case of rotational noise, for each simulation the level
noise is randomly chosen between 0� and 60� (with intervals of
10�). For additive noise the levels correspond to Signal to Noise Ra-
tios of 0 to 10 dB with a step of 2 dB. As a reference, Fig. 2 shows
how the classification performance in the HAR datasets degrades
with the increase of the noise level and the amount of faulty
classifiers.

5. Results

5.1. Synthetic dataset

Fig. 3 illustrates the effect of the number of faulty classifiers and
their accuracies for the synthetic dataset. It shows the average
computed distances (over the number of classes and classifiers)
for the healthy and faulty classifiers (Mean Healthy and Mean
Faulty, respectively) for the two proposed measures; Mahalanobis
distance and mutual information. The results suggest that the IT
measure performs better than DB when the number of noisy sen-
sors and noise itself are higher. That is because a large number of
faulty sensors will affect the fusion output, thus affecting the
detection using the DB approach. In contrast, the IT approach only
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considers the relation between classifiers without considering the
fused output.

In contrast, as it is shown in Fig. 3(b) and (d) when there are few
classifiers or classes, DB is able to detect the anomalies better. In
general, the number of classes has more effect on DB, while the
number of classifiers has more effect on the IT-based measure.
5.2. Human activity datasets

Besides comparison with the LoLAD approach (i.e., GLR and
OCSVM methods), we also compare the proposed methods with a
reference performance corresponding to a ‘perfect removal’ ap-
proach. In this case we exclude from the ensemble those classifiers
whose decisions are affected by the noise. This yields an upper
bound on the performance that can be achieved based on the re-
moval of anomalous classifiers. Obviously, such a removal cannot
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Fig. 4. Classification accuracy before and after anomaly detection. Car manufacturing dat
scale on y-axis.
be performed at run-time since there is no information about
noise. For all simulations we set k ¼ 1, window length = 50, and
in the case of DB measure, C ¼ 5.

The classification accuracies for the car manufacturing dataset
are shown in Fig. 4 with different sensor configurations for rota-
tional and additive noise, respectively. Similarly, Fig. 5 presents
the results on the Opportunity dataset. Given the characteristics
of the latter dataset, i.e., larger number and variety of realistic
activities, the classification accuracy is lower (e.g. below 70% with
QDA) than in the car manufacturing dataset.

Obviously, when no action is taken the performance decreases
dramatically in both datasets (c.f. Fig. 2; green traces in Figs. 4
and 5). In general, GLR performs satisfactorily in all situations, as
well as the IT-based method. Although for the latter, the perfor-
mance decreases dramatically when there are less than three
healthy classifiers in the Location-based configurations (configl�).
This is certainly due to the low number of available classifiers.
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Fig. 5. Classification accuracy before and after anomaly detection. Opportunity dataset, (a)–(e) Rotational noise, (f)–(j) Additive noise. Note: (a) and (f) has a different scale on
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The performance of the DB measure is similar when less than half
of the sensors are faulty. In turn, OCSVM reacts close to GLR for the
car manufacturing dataset, but performs poorly on the second
dataset. This results from its sensitivity to the number of features,
and data distribution, highlighting the need for tuning the param-
eters for each configuration (we kept the parameters which was
tuned for configl2 for all other configurations).

Altogether, the results show that (a) both LoLAD and FuLAD
succeed in increasing the classification accuracy, (b) There is a
possibility of detecting anomalies at fusion level, with comparable
performance to LoLAD.

As an example, Fig. 6 shows the average detection accuracy
across subjects with respect to the level of noise, for LoLAD and
FuLAD in the car manufacturing dataset using Configl2 . It is
computed as:
DetectionAccuracy ¼ TruePositive þ TrueNegative
#of samples � #of sensors

; ð11Þ

where TruePositive is the correctly detected noisy sensors and
TrueNegative is the correctly detected unaffected sensors and # of
samples is the number of samples in the trial. They show that once
the level of noise is low, the anomaly spotting is poor while by
increasing the level of noise, it rises. This is due to the fact that these
levels of noise do not affect the classifier decisions. Hence, the
inability to spot them does not impact the overall system perfor-
mance, see Fig. 2.

Fig. 7(a) and (c) show the average number of required iterations
per pattern with respect to the number of noisy sensors and the
level of rotational noise for both methods. During the DB iterations
as anomalous classifiers are removed from the ensemble, the
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Fig. 6. Anomaly detection accuracy. Left: car manufacturing dataset, Right:
opportunity dataset. Configl2, rotational noise. Each curve corresponds to a different
number of noisy sensors.
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manufacturing dataset, Right: opportunity dataset. Configl2, rotational noise.
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fusion output may change its decision; the average number of
changes is shown in Fig. 7(b). Unsurprisingly, as the noise or the
number of noisy sensors increases, the number of loops and
changes of decisions also increases as more classifiers are
recognized as anomalous.

The effect of the window length for DB and IT on the accuracy of
detection (car manufacturing database) is shown in Fig. 8(a) and
(b), respectively. Results show that a window length of 50 samples
yields the best results. Of course, there is a trade-off of choosing
the window length: lower values may lessen the performance
while larger values impose a delay on the detection.

Fig. 8(c) and (d) illustrates how the threshold value affects the
anomaly detection and classification accuracy, for DB method. It
shows that a threshold value equal to one yields good results
and it is reasonable since only distances in the range of the training
dataset are permitted. Also, we empirically found that for this
dataset, setting the value of C at least twice the threshold value
and at most three times the threshold achieves the best results.

To demonstrate that the methods do not depend on the classi-
fication or fusion method we tested them when a Linear Discrim-
inative Classifier (LDA) is used, as well as when Dempster–Shafer
fusion (Kuncheva et al., 2001) is applied for combining the classifi-
ers. Fig. 9 shows the results obtained on the car manufacturing
dataset with rotational noise. It is obvious that the IT approach is
not dependent on the fusion method, since it is not using its out-
put. But as the results show, the DB approach also is not particu-
larly sensitive to the type of classifier or fusion methods.
Comparing the performance of QDA (Fig. 4(b)) and LDA
(Fig. 9(a)), the former appears more robust to this kind of noise.
As expected, Dempster–Shafer fusion (Fig. 9(c)) is also less sensi-
tive to noise than the naïve fusion.

6. Discussion

Nowadays, multimodal sensor networks are increasingly used
to gather information about the environment and improve context
and activity recognition. Classifier ensembles can provide an effi-
cient and flexible approach to achieve this. However, sensors are
always prone to noise and anomalies that may degrade the system
performance. Therefore, the ability of detect such anomalies may
allow to dynamically adapt the system, bringing more robustness
to the recognition chain.

Anomaly detection can be performed at the data/feature or fu-
sion level. This choice depends on several factors, including the
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Fig. 8. (Top) Detection accuracy with respect to the length of moving average
window. Car manufacturing dataset – Configl2. Rotational noise. (a) IT measure, (b)
DB measure. (Bottom) Effect of different threshold values – DB measure. Car
manufacturing dataset, configl2; C ¼ 5, 3 noisy sensors out of 7. (c) Anomaly
detection accuracy. (d) Increase in classification performance with different
rotation levels.
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application requirements and the available technology. Comple-
menting existing methods for low level anomaly detection, in this
paper we assess the possibility of detecting anomalies at the fusion
level with a comparable performance.

The proposed method relies on a distance measure between the
expected system behavior (based on training data), and the data
collected at run time. We provide two metrics, one based on the
Mahalanobis distance and the other one based on information the-
oretical measures. We characterize the proposed methods using
both an artificially generated dataset and real data from two sce-
narios of human activity recognition using wearable sensors. The
final results show the possibility of recognizing the anomalous
behavior at the fusion level, resulting in graceful degradation of
the classification performance.

Regarding the proposed measures, the IT approach has an
advantage over the DB, as it does not take the fused decision into
account. In that sense, it could be more suitable for dynamic clas-
sifier ensembles – where sensors (and their corresponding trained
classifiers (Kurz et al., 2011a; Calatroni et al., 2011)) – may be
added or removed from the network on runtime. Having said so,
in this approach the length of the window should be carefully cho-
sen in order to have a reasonable estimate of the mutual
information.
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Fig. 9. Performance of different classification and fusion meth
An interesting characteristic of FuLAD is that nodes in the
ensemble will be removed only if the corresponding classifier is
affected by the anomaly. For example, if an accelerometer is
slightly rotated, the classifier decisions may not change, therefore
it may still be included in the fusion. This property is not provided
by LoLAD methods since do not take into account information
about classification.

The conventional approaches of LoLAD create a model of data
and detect anomalies when the new data does not follow the mod-
el. Even when the best model is chosen or the parameters are per-
fectly estimated, it may not cover all the possible anomalies. In
contrast, FuLAD is independent of the type of anomaly. There is
no need to investigate all the possible anomalies of each sensor.
Only monitoring the classifier decisions could bring information
if the sensor is affected or not. Moreover, in the case of multimodal
setup, LoLAD requires the development of methods and parame-
ters for each modality. In contrast, FuLAD is independent of the
modality of the sensors used, because the working space is com-
posed of the classifier outputs, independent of their input domain.

Another characteristic of FuLAD is that it puts the burden of the
computation of anomaly detection on a central node (fusion node).
This has consequences in the system design with respect to the
amount of computational power at each node and the communica-
tion requirements (i.e., need to transfer classification labels or raw
data). Noteworthy, this property, inherited from the classifier
ensemble approach, allows for more flexibility in the case of
dynamically changing, self-adaptive recognition systems (Roggen
et al., 2009).
7. Conclusions

We propose a method for detecting anomalies in classifier
ensembles. The detection process take place at the classifier fusion
level (FuLAD), in contrast to the most common approach of doing it
at the data/feature level (LoLAD). The proposed approach is inde-
pendent of the sensor modality and the type of noise or anomalies
it has to deal with. In this work, we thoroughly tested the method
on datasets from activity recognition with on-body sensors, but it
can be applied in any other application. Although there are many
alternative approaches that consider fault and change detection
at raw data or feature level, this work is the first one which ex-
plores them at fusion level.

We propose two different approaches: one is based on the
Mahalanobis distance which compares the individual classifier
decisions and the fused output, while the second approach is based
on the mutual information between classifiers in the ensemble.
They spot the faulty classifiers based on the behavior of the classi-
fiers from the training set. Upon detection of anomalous classifiers,
compensatory strategies (such as removing them from the ensem-
ble) can be applied to improve the performance.
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Besides testing on synthetic data, we applied our method to two
activity recognition datasets, allowing us to test it in realistic con-
ditions using different sensor modalities and configurations. The
results show the feasibility of change and anomaly detection at
the fusion level and the improvement of the classification for all
the cases. Although the proposed method does not build explicit
models for each sensor type or modality in the ensemble, its per-
formance is comparable to that achieved with LoLAD. The IT mea-
sure can detect anomalies just as well as the feature level method,
even when only two classifiers remain healthy. Whereas the DB
measure works satisfactorily until half of the classifiers are
affected.

Alternatively, the distance measures presented here can be used
to quantify the confidence of each classifier in the ensemble at run-
time. This measure can then be used to dynamically reconfigure
the ensemble, taking into account different specifications including
classification performance, as well as communication costs or en-
ergy consumption (Kurz et al., 2011b).
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