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Temporal segmentation of successive actions in a long-term video sequence has been a long-standing
problem in computer vision. In this paper, we exploit a novel learning-based framework. Given a video
sequence, only a few characteristic frames are selected by the proposed selection algorithm, and then
the likelihood to trained models is calculated in a pair-wise way, and finally segmentation is obtained
as the optimal model sequence to realize the maximum likelihood. The average accuracy on IXMAS data-
set reached to 80.5% at frame level, using only 16.5% of all frames in computation time of 1.57 s per video
which has 1160 frames on the average.
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1. Introduction (Ahmad and Lee, 2008), SVM (Hoai et al., 2011). When a newly ob-
Human activity analysis has been an attractive and popular re-
search topic in recent two decades. Most previous works are con-
centrating on recognizing classes/categories of actions performed
in an input video, independently of background. In these works,
many significant progresses have been reported with satisfactory
experimental results, but their experiments are mostly carried
out under well-controlled situations such as seen in WEIZMANN
(Blank et al., 2005) and KTH (Schuldt et al., 2004) datasets where
short-term clips of single action (manually segmented/aligned)
are provided. In real-world applications, however, human activity
is observed in a continuous flow of multiple actions. Moreover, in
general we cannot assume any prior knowledge of categories, tem-
poral or spatial extents of performed action(s). A human activity is
something like follows: a person steps into a room, picks up some-
thing to drink from a refrig, sits down on a sofa for a little break
and stands up. Given such a video containing a variety of actions
in a successive way (walking, picking up, sitting down and
standing up, etc.), we have to segment it into individual actions
as a natural demand as seen in action-based video index/classifica-
tion, event recording and vision-surveilance management.

One common and standard approach is as follows: First, in the
training phase, a set of features (e.g., interested point (Kovashka
and Grauman, 2011), HoG (Thurau and Hlavác, 2008), optical flow
(Fathi and Mori, 2008)) from each frame in the training sequences
is extracted, and then individual actions are modeled using these
features by some statistical or geometrical methods, e.g, HMM
served sequence is appeared in the evaluation phase, all frames of
the sequence are firstly evaluated their probabilities according to
the learned action models and segmentation result is obtained by
solving a global optimization problem (Hoai et al., 2011; Lv and
Nevatia, 2007) or a local optimization problem (Ogale et al.,
2007; Jia and Yeung, 2008). This approach has succeeded in some
practical problems (e.g., view-invariance (Weinland et al., 2007),
activity modeling (Wang and Suter, 2007), fast matching (Shakhna-
rovich et al., 2003)). However, there are still some issues to be
considered in order to increase its practical value (Poppe, 2010).
In this study, we consider two aspects as below:

(a) It is redundant to use every frame in a video sequence,
because neighboring frames are highly correlated (very sim-
ilar) on the temporal domain. Moreover, such a frame-by-
frame comparison is computationally expensive. In fact, it
is sometimes reported that only a few frames in an input
video are sufficient for action discrimination (Schindler
and Van-Gool, 2008; Weinland and Boyer, 2008).

(b) Single-frame based representation is sufficient for modeling
of human actions only where videos contain one single
action. For videos containing more than one action, this
approach would not work, since different actions can share
very similar frames in part (Fig. 1).

To cope with these problems, the following two techniques are
proposed in this study (Fig. 2):

(a) Given a long-term video sequence, just a few frames are
selected by a martingale framework proposed in our prior
work (Lu et al., 2012), which is executed without requiring
any prior knowledge of possibly performed action(s). Such
frames are called characteristic frames, here.
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Fig. 1. Typical frames taken from actions of stand (a), turn-around (b) and punch (c). For the case of videos containing one single action, these frames can be recognized
correctly. However, in a clip (d) containing multiple successive actions, similar frames appearing in different action contexts are not identified correctly sometimes.

Fig. 2. The proposed process: given a long-term video sequence, only a small number of characteristic frames are selected, and then pairwise based comparison to the models
of actions has carried out.
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(b) For modeling/segmenting actions, pairwise-frame represen-
tation using characteristic frames is employed to describe
the given video sequence.

Since we use a pairwise-frame representation instead of the single-
frame based representation, the time differentiated information in
two neighboring characteristic frames brings a higher level of dis-
criminative information among actions. In addition, a smaller
number of frames selected in the whole video sequence brings
an efficiency.

The rest of this paper is organized as follows: Section 2 reviews
the related works. In Section 3, selection procedure of characteris-
tic frames is presented. Section 4 indicates how to model a human
activity using characteristic frames. The detailed description on the
temporal segmentation of successive actions is given in Section 5.
Section 6 presents the experimental results on IXMAS dataset,
followed by the discussion in Section 7. Section 8 concludes this
paper and shows the future work.

2. Related work

Recent efforts on successive actions segmentation fall into five
approaches roughly (Hoai et al., 2011). As the first approach,
change-point detection based actions segmentation (Xuan and
Murphy, 2007; Harchaoui et al., 2009) is the most popular and is
based on change-point analysis with a sliding window along the
time extent. Xuan and Murphy (2007) modeled the joint density
of vector-valued observations using undirected Gaussian graphical
models by which the location of change points are detected by
computing the MAP segmentation. Harchaoui et al. (2009)
proposed a test statistic based upon the maximum kernel Fisher
discriminant ratio as a measure of homogeneity between seg-
ments, which allows to build a statistical hypothesis test procedure
for detecting change-points from an unlabeled sample of observa-
tions. The change-point detection can detect local changes in one
action, but it is often weak for detection of global changes in the
whole video.

Cyclic motion analysis is the second approach to segment
events by analyzing periodicity of cyclic events (Laptev et al.,
2005; Cutler and Davis, 2000). Laptev et al. (2005) exploited peri-
odicity as a cue and detected periodic motions in complex scenes.
Cutler and Davis (2000) proposed an assumption that the self-
similarity measure of periodic motion is also periodic and that
periodic motion can be detected and characterized by applying
time–frequency analysis. Cyclic motion analysis based events seg-
mentation is applicable for repetitive actions with discriminative
cyclic. However, actions appearing in a complex cyclic manner
are difficult to be segmented correctly.



Fig. 3. Temporal segmentation with the most likely path ðw�Þ. Assuming that ðŷk; ŷkþ1Þ is the searched model label of one pair ck ¼ ðfk; fkþ1Þ in ðw�Þ and there are N frames
between the two characteristic frames fk and fkþ1 in this pair, if ŷk ¼ ŷkþ1, the N frames are assigned to ŷk; Otherwise, these frames are separated into actions of ŷk or ŷkþ1

according to a pre-determined ratio a.

Fig. 4. Block-based representation of a normalized silhouette with a size of
100� 100 pixels (center-orientation). First, the silhouette extracted in one frame fi

is divided into nonoverlapping blocks with a fixed size of B� B pixels. Then, in each
block (bin), feature is computed as bðiÞ ¼ #fig

m ; i 2 f1;2; . . . ;Dg assuming there are D
blocks in this silhouette, where #fig is the sum of foreground pixels in the ith block
and m is the maximum value of all blocks; Finally, this frame fi is represented by a
vector of hi ¼ ½bð1Þ; bð2Þ; . . . ; bðDÞ�T .
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Third, action segmentation by clustering or by grouping frames
has also proposed in which a cluster is expected to represent a sin-
gle action (Zelnik-Manor and Irani, 2006; Loui and Savakis, 2000).
Zelnik-Manor and Irani (2006) proposed a statistical behavior-
based distance measure between video sequences which captures
the similarities in their behavioral contents, by which frames are
grouped into similar behavior frames. Loui and Savakis (2000)
created an event segmentation algorithm to automatically cluster
pictures into events and sub-events for albumin on the basis of
date/time meta data information as well as color content of the
pictures. This approach, however, lacks a mechanism to incorpo-
rate the dynamics of temporal events in the clustering process
(Hoai et al., 2011).

The fourth approach is exemplar-matching based approach and
it is a way to segment successive actions by evaluating similarity of
each newly arrived frame to exemplars representing each of
actions (Lv and Nevatia, 2007). Lv and Nevatia (2007) modeled a
human action as a series of synthetic 2D human poses as exem-
plars and segmentation is accomplished under constraints on the
transition of the synthetic poses which is represented by a graph-
ical model called Action Net. One drawback of this approach is that
this method does not consider the temporal correlation between
successive poses, consequently, e.g., stand action could not be dis-
criminated from the standing poses/frames appearing in another
action (e.g., the action of turn-around, as seen in Fig. 1).

The last approach is learning based approach which employs a
classifier for segmentation such as SVM (Hoai et al., 2011), HMM
(Boykin and Merlino, 2000). Hoai et al. (2011) proposed an ap-
proach using the spatial bag-of-words model for representing each
frame, in which classification is performed by a multi-class SVM.
Boykin and Merlino (2000) applied HMM to perform event (story
and advertisement) segmentation. One drawback of these learning
based approach is the requirement of fully labeled data for train-
ing. Unfortunately labeling of every frame is typically expensive
and requires much burden of human inspectors. In comparison
with other ways, this approach often gives a fast and natural solu-
tion for action segmentation.

In this study, we employ the learning-based approach for tem-
poral segmentation of successive actions, since it has advantages
on practical efficiency which is most expected in our work.
3. Selection of characteristic frames in a video

An efficient way of selecting characteristic frames in a given vi-
deo sequence has been proposed by the authors (Lu et al., 2012).
That selection way is supported by two basic ideas. The first one
is, an observed video sequence can be sufficiently characterized
by few characteristic frames for describing basic actions; The other
one is, by considering the input video sequence as a set of data
streams in which successive frames are almost the same, the char-
acteristics frames can be detected as the change frames between
two successive streams. Such change frames are detected by test-
ing exchangeability of a Martingale. This idea is based on the fol-
lowing three points:
(a) The changes are detected by testing the null hypothesis that
all n (strangeness) values s1; s2; . . . ; sn are exchangeable in
the index, through the corresponding exchangeability mar-
tingale M1;M2; . . . ;Mn, where Mn is a measurable function
of s1; s2; . . . ; sn satisfying
Mn ¼ EðMnþ1jM1;M2; . . . ;MnÞ: ð1Þ
(b) The following Doob’s inequality can be used for rejecting
this null hypothesis for a large value of Mn:
Pð9njMn P kÞ 6 1=k: ð2Þ
(c) This (exchangeability) martingale is constructed from a p-
value, the probability of obtaining a test statistic at least as
extreme as the one that was actually observed, and the p-
value is obtained by a strangeness value appropriately deter-
mined in each specific application.

We here describe the outline of this selection way as below. For the
details, please see the previous work Lu et al. (in press).

3.1. Frame representation

Given a video sequence F of n frames, i.e., F ¼ ff1; f2; . . . ; fng, a
time series of block-based features (as illustrated in Fig. 4)
H ¼ fh1;h2; . . . ;hng is calculated, where hi is the extracted feature
from frame fi.

3.2. Strangeness evaluation of observed frames

Given the feature series up to the ði� 1Þth frame Hi�1 ¼ fh1;

h2; . . . ;hi�1g; i 6 n, the strangeness si of a newly observed frame hi

against a model generated from Hi�1 is measured as

si ¼ sðHi�1;hiÞ ¼ jjhi � li�1jj; li�1 ¼
Xi�1

j¼1

hj=ði� 1Þ; ð3Þ

where li�1 is the center of model and jj � jj is a metric defined as
Euclidean distance in this study.



Fig. 5. Computation time of the procedure of selecting characteristic frames as the
number of frames increases. The values of k is k ¼ 1:1;1:4;1:7;2:0. It is noted that
the computation time shown here includes only two components of strangeness
calculation and change detection.
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On the basis of the strangeness values s1; s2; . . . ; sn, we construct
a family of Martingale indexed by � 2 ½0;1� as Vovk et al. (2003), as
seen in Fig. 6:

Mð�Þ
n ¼

Yn

i¼1

ð�p̂��1
i Þ; ð4Þ

where the p̂i’s are the p̂-values calculated from

p̂iðfh1;h2; . . . ;hig; hiÞ ¼
#fj : sj > sig þ hi#fj : sj ¼ sig

i
: ð5Þ

Here, the value of hi is a random value uniformly distributed over
½0;1� (fixed to 0.5 in the following experiments due to the relatively
less number of data) and #fjg indicates the number of j. It is noted
that Mð�Þ

i ¼ �p̂��1
i Mð�Þ

i�1. Therefore, no re-computation is needed for
p̂j; j 2 f1;2; . . . ; i� 1g in order to compute Mð�Þ

i . The initial Martin-
gale value is set to Mð�Þ

0 ¼ 1.

3.3. Detection on change frames

When a new frame fn represented by hn with strangeness value
sn is observed, a Martingale test below takes place to decide
whether a change occurs or not:

Mð�Þ
n P k or 0 < Mð�Þ

n < k; ð6Þ

where k is a positive threshold. A change is detected, at time n, if
Mð�Þ

n P k, otherwise no change is detected. Once a change is de-
tected, this frame hn is selected to be one characteristic frame and
then a new Martingale starts with this frame by initializing the
Martingale value (as illustrated in Fig. 6). Here it is noted that more
changing points, i.e., more characteristic frames, are detected if we
adopt a lower value of k and less for a larger value. Specially, all
frames will be theoretically selected as characteristic frames when
k 6 1.

4. Supervised training for human activity model

We will describe a way to learn models for individual actions
and transitions between two successive actions from a collection
of videos including many successive actions. Given a video se-
quence F ¼ ff1; f2; . . . ; fng of n frames with correct action labels
fy1; y2; . . . ; yng, we extract m characteristic frames Fc ¼ ffc1 ;

fc2 ; . . . ; fcmg# F ðm 6 nÞ by above Martingale test. For simplicity,
we regard Fc as F. Then we couple the characteristic frames pair-
wise such as
G ¼ fðf1; f2Þ; ðf2; f3Þ; . . . ; ðfm�1; fmÞg; ð7Þ

as well as the corresponding label pairs

L ¼ fz1 ¼ ðy1; y2Þ; . . . ; zm�1 ¼ ðym�1; ymÞg; yi 2 f; ð8Þ

where f is the label set of possible actions. It should be noted that yi

can be identical to yiþ1.
The characteristic frame set G is furthermore converted to a fea-

ture representation set

H ¼ fc1 ¼ ðh1;h2Þ; . . . ; cm�1 ¼ ðhm�1;hmÞg; ð9Þ

where hi is the block-based feature representation of ith character-
istic frame fi and ci is the pair of hi and hiþ1.

By collecting all training video sequences F1; F2; . . . ; FN , we have
C ¼

SN
j¼1Hj where Hj is the jth feature representation set in (9). If

yi ¼ yiþ1 for a couple of frames ci ¼ ðhi;hiþ1Þ 2 C, then it means that
more than one characteristic frame are chosen from one action yi

(i.e., yiþ1), while in the case of yi – yiþ1, the corresponding pair fi

and fiþ1 (hi and hiþ1) shows a transition from one action yi to an-
other action yiþ1. Moreover, the pairs from the same action imply
multiple appearances of the action, since characteristic frames
are usually dissimilar to each other to some extent. In contrast,
the transitional pairs between two different actions are somewhat
similar to each other because of the continuity of frames. We mod-
el all those training pairs with Gaussian Mixture Model (GMM). A
pair ci ¼ ðhi;hiþ1Þ is assumed to be generated according to a Gauss-
ian mixture distribution of K components in 2D dimensions (here,
D is the number of blocks/bins in one frame feature-representation
h, as seen in Fig. 4) as below:

pðcijutÞ ¼
XK

k¼1

wt
kNðcijlt

k;R
t
kÞ; ð10Þ

where the parameter set ut ¼ fwt
k;lt

k;R
t
kg

K
k¼1 is the one for the tth

trained model. In this paper, the value of K is chosen from 3 to 6
when ci is a one-action pair (i.e., yi ¼ yiþ1) and K ¼ 3 when ci is a
transitional pair (i.e., yi – yiþ1). In addition, we assume that two
frames in one pair are independent, consequently the covariance

matrix Rt can be represented as Rt ¼ Rt;1 0
0 Rt;2

� �
, where Rt;1 is

the covariance matrix for the first frame, and Rt;2 for the second
frame. The Expectation–Maximization (EM) algorithm is used for
parameter estimation. It should be noted that theoretically there
are T�ð¼ T þ TðT � 1Þ=2Þ GMMs: T for individual actions and
TðT � 1Þ=2 for possible pairwise transitions. However, in real-world
applications, there is sometimes no transition between some action
pairs (e.g., no transition exists from sit-down action to run action).
Therefore, the actual number of necessary models is far less than
the theoretical number.

5. Temporal segmentation of successive actions

5.1. Probability computation

With GMMs learned from training sequences, a newly observed
video sequence X is processed as follows. The characteristic frames
ff1; f2; . . . ; fmg are selected firstly and then a series of pairs
H ¼ fc1 ¼ ðh1;h2Þ; c2 ¼ ðh2;h3Þ; . . . ; cm�1 ¼ ðhm�1;hmÞg is generated
according to the same procedure as used in the training phase.
Then the posterior probability of GMM ut given
ci ði ¼ 1;2; . . . ;m� 1Þ is calculated by Bayes’ rule as

pðut jciÞ ¼
pðcijutÞpðutÞPT�

t¼1pðcijutÞpðutÞ
; ð11Þ

where T� is the number of trained models of possible T actions and
all possible transitions between them.



Fig. 6. Selecting characteristic frames from videos of nothing (stand) and turn-around actions. From top to bottom: (a) a short-term testing sequence of nothing, (b) a short-
term testing sequence of turn-around, and Martingale values of each frame and selected characteristic frames for k = 1.3 (a-1, b-1), 1.5 (a-2, b-2) and 1.7 (a-3, b-3),
respectively.
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5.2. Searching the most likely path

Our goal is to find the model sequence w ¼ ðu1;u2; . . . ;um�1Þ
under which the probability of the feature sequence
H ¼ fc1; c2; . . . ; cm�1g is maximized. It is obtained by solving

w� ¼ arg maxwPðHjwÞ ¼ arg maxwPðwjHÞPðHÞ: ð12Þ

We assume a constant prior PðHÞ and consider only the second de-
gree dependence on the basis of simple hidden Markov models as

PðwjHÞPðHÞ / PðwjHÞ ¼ Pðu1;u2; . . . ;um�1jh1;h2; . . . ;hmÞ

¼
Ym�1

i¼1

Pðwijhi; hiþ1Þ ¼
Ym�1

i¼1

PðwijciÞ: ð13Þ
Taking the logarithm, we have

ðw�Þ ¼ arg max
ðu1 ;...;um�1Þ

Xm�1

i¼1

log PðuijciÞ: ð14Þ

We solve this problem using Viterbi algorithm. The obtained ðw�Þ is
called the most likely path.

5.3. Temporal segmentation

Once the most likely path ðw�Þ is obtained for a given video
sequence, the obtained series of action labels is used to segment
this sequence. Let us assume that we have original N frames of
which both ends are characteristic frames fk and fkþ1 with



Table 1
Computation time [ms/frame] of block-based feature (Wang and Suter, 2007).

Size of a block [pixels] 4� 4 5� 5 10� 10 20� 20

Computation time 1.9 1.2 0.37 0.13
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estimated action labels ŷk and ŷkþ1. We label all the frames with ŷk

if ŷk ¼ ŷkþ1, otherwise label the first ð1� aÞN frames with ŷk and
the remaining aN frames with ŷkþ1 (Fig. 3). The ratio a 2 ½0;1� is
determined by the empirical ratio obtained from the training vid-
eos and their characteristic frames.
6. Experiment

6.1. Database

The proposed framework was validated on the publicly avail-
able multi-view IXMAS database (Weinland et al., 2007) containing
180 video sequences (36 shots� 5 views) in total. In each se-
quence, one of 12 actors performed 15 actions in a successive
way. This database includes 2D data (the resolution is 160 � 120
pixels) consisting of image sequences and 2D silhouette sequences.

6.2. Experiments setup and Implement

In the following two sub-sessions we firstly evaluated the effi-
ciency of the way of selecting characteristic frames (Section 6.3),
and then compared the segmentation performance with the
state-of-art approach with the same task/goal (Section 6.4). In
these two experiments, we set � ¼ 0:90 since any value of
� 2 ½0:80;1:00Þ for Martingale series (4) was demonstrated its
validation in (Ho and Wechsler, 2010). While, the value of k in Mar-
tingale test (6) was varied from 1 to 2, empirically. The PC for the
experiments is CPU3.10 GHz RAM4.0 GB. We implemented the
proposed framework in Matlab without any optimization for
speeding up the procedure.

As stated earlier, in this study a block-based description is com-
puted frame by frame for frame representation. Some studies use
instead flow computation based descriptions (e.g., motion based
description (Weinland et al., 2006) and optical flow based descrip-
tion (Fathi and Mori, 2008)) for frame representation, but these
descriptions need a specialized hardware for processing videos in
real time (Wang et al., 2003). Therefore, we used such a block-
based frame representation (Wang and Suter, 2007), as seen in
Fig. 4. The computation time shown in Table 1 guarantees the
real-timeness of our feature extraction method.

6.3. Evaluation on selection of characteristic frames

In the following sub-sessions, we will confirm the real-timeness
of the characteristic frame selection and its robustness against a
large variety of actions.

6.3.1. Evaluation on real-timeness
Since we use only a small number of characteristic frames

instead of the entire video sequence, the temporal segmentation
process is very fast. However, the selection procedure of character-
istic frames requires an additional processing time, consequently
the real-timeness has to be evaluated. This procedure includes
three components (Section 3): frame representation, strangeness
calculation and change detection. Since the real-timeness of
feature extraction was evaluated already, we will evaluate the
additional computation cost of the two residual components.

First, we chose at random a video sequence of a length of 1163
frames. Then, a number of sub-clips of 1 to 1163 frames were ex-
tracted. We have measured the time consumed by the frame selec-
tion procedure with several values of k, that is, k ¼ 1:1;1:4;1:7 and
2.0. The result is shown in Fig. 5 and it is observed that the time
increases almost linearly in the number of frames. In addition,
the efficiency is almost proportional to the reciprocal value of k.
Since even the largest amount of computation time is less than
0.085 s (for k ¼ 2:0 on the sub-clip with 1163 frames), we could
conclude that our selection procedure is sufficiently fast for real-
time processing.

6.3.2. Evaluation on robustness against various actions
We have already demonstrated in (Lu et al., in press) the valida-

tion and priority of the selection procedure of characteristic frames
for video sequences containing one single action, but not for long-
term video sequences containing multiple successive actions. In
such long-term videos, there is a large variety of temporal changes,
that is, only a slight change of silhouettes occurs in some actions
(e.g., nothing (stand) in Fig. 6(a)) but a large change can occur in
the other actions (e.g., turn-around in Fig. 6(b)), which is different
from the relatively stable frame-change in videos containing one
action. Therefore, a selection way is expected to be robust enough
for this frame-change, i.e., the numbers of selected characteristic
frames extracted from various actions would be almost the same,
or at least, not differ greatly.

Fig. 6 shows the selected frames in two actions of nothing and
turn-around for values of k = 1.3, 1.5 and 1.7. It is noted that al-
most the same pose is kept in nothing, while large changes of
poses are observed in turn-around. In Fig. 6(a-1, 2, 3), we see that
2–4 frames are selected even in this almost motionless action. In
turn-around action in Fig. 6(b-1, 2, 3), 2–4 frames are also selected
for several values of k. From these observations, we can see that
our selection procedure is capable to characterize actions with dif-
ferent degrees of frame-change. Here, it is noted that the results in
Fig. 6 (a-1, 2, 3) are different from those of most previous works
(e.g., in the work (Lv and Nevatia, 2007), only one pose is extracted
for modeling of nothing action). Our result gives an advantage on
discriminating similar frames/poses appearing in different actions
using a pairwise-frame representation, as seen in Fig. 7.

Here, it is noted that although any numerical evaluation has not
been conducted on these results, the validity of selected character-
istic frames is confirmed by the accuracy of action assignment that
will be shown in the following.

6.4. Performance on temporal segmentation

In the proposed framework, the leading parameters that affect
the efficiency and performance are the block size B in frame repre-
sentation and the Martingale threshold k for selection of character-
istic frames. It is clear that a larger B makes the frame
representation more robust against noise but loose precision and
resolution to some extent. Similarly, the value of k controls the bal-
ance between efficiency and the amount of information for
segmentation.

We have examined several combinations of values of (B; k). The
value of B ranges for 4� 4, 5� 5, 10� 10 and 20� 20, and the va-
lue of k ranges from 1 to 2 by step of 0.1. In each combination, the
experiment is carried out as follows: for given video sequences,
few characteristic frames were firstly selected and then GMMs of
pairwise characteristic frames were learned in the training phase
and the temporal segmentation was performed for a newly given
video sequence in the test phase. Evaluation was made by leave-
one-out cross-validation.

6.4.1. Experimental results
For the tested combinations of (B; k) stated above, the corre-

sponding accuracies of action assignment, compression rates and



Fig. 7. Given one respective frame of standing (a), it is difficult to certify the
performed action in it. However, a pairwise-frame representation gives a differen-
tiated information in temporal extent, by which we could confirm whether such a
standing frame is from turn-around (b) or nothing (c), i.e., the performed action in
it is identified correctly.
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the computation time are shown in Fig. 8. Here, the accuracy of ac-
tion assignment at frame level is measured as:

Accuracy ¼ Number of frames with correct assignment
Number of total frames of this action

ð%Þ

ð15Þ

The compression rate in this study is defined as:

Compression rate¼ Number of selected characteristic frames
Number of total frames in a video

ð%Þ

ð16Þ
Fig. 8. Three performance measures are measured as the value of k increases: (a) the acti
best accuracy 80:5% is achieved at the block size of 10� 10 pixels and k ¼ 1:3 in which th
noted that accuracy is 80:2% at the block size of 5� 5 and k ¼ 1:3 which is almost best, ho
confusion matrix of action assignment at frame level to the best average accuracy in (a
We can see that the best accuracy of 80:5% is attained at a block
size of 10� 10 and k ¼ 1:3 (Fig. 8(a)). To this best accuracy, 16:5%

frames are chosen on the average as characteristic frames
(Fig. 8(b)) and the computation time is 1.57 s (Fig. 8(c)) including
feature extraction, selection of characteristic frames and actions
segmentation, except for silhouette-extraction (since the silhou-
ettes have been provided in IXMAS dataset). These performance val-
ues show that our proposed framework has a good validation of
temporal segmentation of successive actions and a satisfactory effi-
ciency for practical usage. The IXMAS database includes 5 camera
views, therefore we can show the corresponding accuracy of each
view to the overall best. The result is shown in Table 2. It is ob-
served that the proposed framework performed best in Cam.4,
which probably means that this top-view gives most discriminative
appearances in selected characteristic frames of 15 actions. Fig. 8(d)
shows a confusion matrix of action assignment at frame-level with
the best accuracy. From Fig. 8(d), we can see that among all 15
action classes, action discrimination of pick-up and walk is the eas-
iest. It implies that these two actions are very contrastive to other
ones. It is also observed that some actions are wrongly assigned
on assignment accuracy; (b) the compression rate and (c) the computation time. The
e corresponding compression rate is 16.5% and computation time is 1.57s. Here, it is
wever, the corresponding computation time is larger, that is, 3.7 s. In (d), we show a

) on the whole dataset.



Table 2
Comparison of accuracy (%) with state-of-the-art approaches. The bold value is for emerging the best performance among different work.

Method Level Actions Actors Cam.0 Cam.1 Cam.2 Cam.3 Cam.4 Average

(a) Single-view based action recognition
Weinland et al. (2006) Pre-segmented 11 10 – – – – – 93.3

Action sequence 11 10 – – – – – 82.3
Lv and Nevatia (2007) Action sequence 15 10 81.5 82.1 80.1 81.3 78.4 80.6
Yan et al. (2008) Pre-segmented 13 12 72 53 68 63 – 64.0
Junejo et al. (2008) Pre-segmented 11 10 76.4 77.6 73.6 68.8 66.1 72.5
Liu and Shah (2008) Pre-segmented 13 12 76.7 73.3 72.0 73.0 - 73.8
Weinland et al. (2010) Pre-segmented 11 10 85.8 86.4 88.0 88.2 74.7 84.6
Junejo et al. (2011) Pre-segmented 11 10 80.0 83.9 80.5 85.5 73.3 80.6
Ramadan and Davis (2011) Pre-segmented 13 11 85.7 87.3 82.4 86.8 – 85.6
Ours Action sequence 15 12 77.6 79.3 78.8 83.1 83.6 80.5

Method Level Actions Actors Average

(b) Multiple-view based action recognition
Weinland et al. (2007) Pre-segmented 11 10 81.3
Yan et al. (2008) Pre-segmented 13 12 78
Lewandowski et al. (2010) Pre-segmented 12 12 83.1
Iosifidis et al. (2011) Pre-segmented 11 10 83.5
Ours Action sequence 15 12 81.0
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to other actions (e.g., check-watch is wrongly assigned to nothing
at 17%). This is not surprising because the transitional/boundary
frames between two successive actions are often similar to each
other, e.g., the ending frames of check-watch and the frames of
nothing are naturally similar.

Here, it can be shown theoretically that no selection occurs for
k ¼ 1, as stated in Section 3.3. In this case, two frames in one pair
are neighboring in the original video context and thus they are so
similar or even considered being duplicated. Using such pairs, the
accuracy is low (the accuracy is lower than 65% for all tested block
sizes in Fig. 8(a)). This means that our pairwise-frame representa-
tion using characteristic frames outperformed the single frame
representation.

6.4.2. Comparison
We have compared the proposed framework with eleven state-

of-the-art approaches. Eight of them are single-view based algo-
rithms and four of them are multiple-view based algorithms. The
results are shown in Table 2. The accuracy values were directly
translated from the corresponding references.

Let us first evaluate the proposed algorithm in the group of sin-
gle-view based algorithms. The proposed algorithm is comparable
in accuracy to many competitors, but is not the best. Seven of them
(Weinland et al., 2006, 2010; Yan et al., 2008; Junejo et al., 2008,
2011; Liu and Shah, 2008; Ramadan and Davis, 2011), however, as-
sume a pre-segmentation by which a long term video sequence has
already been segmented into a series of single action clips. This
kind of pre-segmentation process usually needs a heavy human
work-load, which reduces the practical value of those algorithms.
Only three algorithms including ours (i.e., the algorithms of Wein-
land et al. (2006) (action sequence) and Lv and Nevatia (2007), and
ours) do not require such a pre-segmentation of successive actions.
All these three algorithms show a similar degree of performance.
Another concern is the size of experiment. Their sizes are smaller
than ours: the algorithm in (Weinland et al., 2006) was tested on
11 actions performed by 10 actors; Lv and Nevatia (2007) tested
their algorithm only with 50 video sequences chosen from the
overall 180 sequences in IXMAS database, while all 180 sequences
containing 15 actions by 12 actors were tested in ours. In this
sense, our accuracy is more reliable than theirs.

Next, let us compare the proposed algorithm with multiple-
view based algorithms. Although our basic layout is to use a single
camera because of the simplicity of facilities and the ease of
application, but multiple-view can be utilized even in our frame-
work. We adopted a simple concatenating strategy to represent
one frame by combining the block-based features (Section 3.1) ex-
tracted from the five simultaneously observed images of this
frame, provided in the IXMAS database. The results are also shown
in Table 2. In spite of the fact that all four competitors assume pre-
segmentation, their performances are comparable to ours. The
usage of multiple views helped the proposed algorithm only by
0.5. This slight amount of improvement implies that the employed
concatenating strategy could not extract sufficient information
from multiple views.

The benefit of our algorithm is the improved processing speed
as a whole. The proposed algorithm uses a smaller number of se-
lected frames, thus it could be faster than any algorithm using en-
tire frames. In addition, the proposed algorithm does not require an
extra process for pre-segmentation. We could compare the time of
the proposed algorithm with only that of the algorithm in (Lv and
Nevatia, 2007). The result is, the average computation time of ours
is 1.57 s per video, while theirs is proximately 226 s per video that
is obtained by calculation from their reported speed (5.1 frames/s
on a PC of CPU P4-3 GHz).
7. Discussion

In the proposed framework for temporal segmentation of
successive actions, there is a little difficulty on how to determine
the martingale threshold k for selecting characteristic frames. As
seen in Figs. 6 and 8, it is difficult to choose the universally effec-
tive value of k. From Fig. 8(a) and (b), we recommend the Martin-
gale value of 1:25 6 k 6 1:35 and block size B of 10� 10 pixels for
practical usage, considering the possibly existing noise in a video
sequence.

Many approaches proposed so far need a relatively higher com-
putation cost compared with the proposed framework. Unfortu-
nately we cannot compare the actual computation time, because
the faithful implementation of those algorithms and fair execution
under the same condition are almost impossible. However, it is
clear that only our approach selects a smaller number of frames
from the entire video sequence (16.5% on the average). Therefore,
it is almost sure that our method is faster than any of them. At
least, we could speed up all of them by feeding the selected frames
to them instead of the entire frame sequence/series.
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8. Conclusion and future work

In this study, we have proposed a novel framework for temporal
segmentation of successive actions, as summarized as follows: (1)
Given a long-term video sequence, a smaller number of character-
istic frames are selected firstly by a change detection algorithm
using a Martingale nature, (2) pairwise-frame representation of
consecutive characteristic frames is then employed to calculate
the likelihood to trained actions models that are constructed for
individual actions and transitive actions, and (3) final segmenta-
tion is obtained by solving an optimization problem on the basis
of frame-based likelihood. The pairwise-frame representation
gives a time differentiated information in two neighboring charac-
teristic frames. Therefore, the similar frames appearing in different
actions can be discriminated. The selection of characteristic frames
brought a high efficiency, and the pair-wise treatment of charac-
teristic frames brought a high performance of accurate segmenta-
tion and recognition of human actions.

In the future work, we will evaluate the proposed framework on
(1) unconstrained video (e.g., Hollywood dataset (Marszalek et al.,
2009)) and (2) a long-term video sequence in realistic life (e.g.,
Ger’Home datasets (Zouba et al., 2008)).
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