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Abstract Word Sense Induction (WSI) is the task of identifying the different uses

(senses) of a target word in a given text in an unsupervised manner, i.e. without

relying on any external resources such as dictionaries or sense-tagged data. This

paper presents a thorough description of the SemEval-2010 WSI task and a new

evaluation setting for sense induction methods. Our contributions are two-fold:

firstly, we provide a detailed analysis of the Semeval-2010 WSI task evaluation

results and identify the shortcomings of current evaluation measures. Secondly, we

present a new evaluation setting by assessing participating systems’ performance

according to the skewness of target words’ distribution of senses showing that there

are methods able to perform well above the Most Frequent Sense (MFS) baseline in

highly skewed distributions.

Keywords Word Sense Induction � Word Sense Disambiguation �
Lexical Semantics

1 Introduction

Word Sense Induction seeks to automatically identify the senses or uses of a given

target word directly from a corpus (Brody and Lapata 2009). It is also known as

unsupervised Word Sense Disambiguation, since WSI methods automatically create

a sense inventory and disambiguate the ambiguous instances of a given word

without relying on any external resources such as dictionaries or sense-tagged data.
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Table 1 shows four contexts for the target word mouse. As can be observed,

mouse appears with two senses, i.e. as a device in contexts B, D and as an animal in

contexts A, C. The aim of a potential WSI system is to group the contexts of that

target word into two clusters, so that each cluster contains only the target word

contexts that refer to the same sense (second column of Table 1).

The main motivation for developing sense induction methods comes from the

need to overcome the limitations of manually-constructed lexical databases such as

WordNet (Fellbaum 1998) or OntoNotes (Hovy et al. 2006). In these databases,

word senses are usually represented as a fixed-list of definitions. There are several

disadvantages associated with the fixed-list of senses paradigm.

Firstly, machine-readable dictionaries suffer from the lack of explicit semantic,

topical or contextual relations between concepts (Agirre et al. 2001). For instance,

WordNet does not relate cigarette with cancer, although one would expect to find

these two words co-occurring frequently.

Secondly, lexical databases often contain general definitions and miss many

domain specific senses (Lin and Pantel 2002). For example, the definition of the first

OntoNotes sense for the verb connect, i.e. physically link or join two or more

people, things, or parts, is general enough, to include any object that can be

connected to any other object. Such general definitions would possibly have a

negative impact on Information Retrieval (IR) and Machine Translation (MT)

applications that exploit word senses to semantically enhance their corresponding

tasks. Similarly, the word snood is monosemous in WordNet and defined to be an

ornamental net in the shape of a bag that confines a woman’s hair. A simple web

search for that word reveals that snood might also refer to a popular puzzle video

game.1

Another important limitation of machine-readable dictionaries is that they often

do not reflect the exact content of the context, in which the target word appears

(Véronis 2004). For instance, the word drug in FrameNet (Baker et al. 1998) is

defined to be a chemical that affects the nervous system causing changes in

perception. However, depending on the context in which that word appears, i.e. a

medical one, it is possibly beneficial to distinguish between the illegal narcotic and

the medicine uses of drug.

Table 1 WSI example with four contexts of the target word mouse

ID Induced

sense

Contexts

A S1 The mouse is also used a lot in scientific research though it is not an easy

animal to examine

B S2 Some mouse designs work like a joystick and may help. You can also use a touchpad ...

C S1 Mice are great animals for several reasons. They are small, inexpensive,...

D S2 I’ve been trying to install a new mouse on my touchpad but I have not succeeded yet...

1 http://en.wikipedia.org/wiki/Snood_(video_game) [Access:09/12/2011].
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A large part of work has been devoted on improving and enriching current sense

inventories to deal with the aforementioned limitation. For instance, Topic

Signatures (Agirre et al. 2001; Agirre and De Lacalle 2004) have been used to

associate each sense entry with a list of topically related words. These words were

derived by the web following a two-stage process. In the first stage, a query

containing the monosemous relatives of a WordNet synset was sent to a commercial

search engine and the retrieved web documents were downloaded. In the second

stage, the downloaded documents were processed, words were extracted and

weighted using v2 or TF.IDF.

Topic Signatures were further exploited in (Agirre and De Lacalle 2003) to

cluster WordNet senses and create a more coarse-grained sense inventory, as well as

in (Alfonseca and Manandhar 2002) for the purpose of extending WordNet with

new unknown concepts. In the same vein, Kilgarriff et al. (2010) use distributional

similarity to automatically create from a corpus a complete account of a word’s

grammatical and collocational properties having as a point of comparison the

Oxford Collocations Dictionary.2

While all of the above approaches have shown to improve some of the limitations

of hand-constructed lexicons, they are still based on the fixed-list of senses paradigm,

in effect being unable to automatically create a sense inventory or model the usage of

a particular word with respect to a given domain or application. WSI aims to

overcome these limitations. In this paper, we present a thorough description of the

SemEval-2010 WSI task (Manandhar et al. 2010), as well as an extension of the

evaluation scheme used in the task. The description includes: (1) the methodology

followed for constructing the publicly available datasets, (2) the participating teams,

(3) the evaluation framework and (4) a comparative analysis of systems results. In the

last part of our work, we extend the SemEval-2010 WSI evaluation setting by

assessing sense induction methods both in an unsupervised and supervised manner

according to the skewness of the distribution of senses for each target word.

The rest of the paper is structured as follows: Section 2 provides an overview of

the current-state-of-the-art in sense induction and discusses the evaluation setting

used in SemEval-2007 WSI task (Agirre and Soroa 2007a). Section 3 describes the

SemEval-2010 WSI task and summarises the methods of participating systems.

Section 4 describes the evaluation framework of the task and provides an analysis of

participating systems’ results. Section 5 evaluates WSI methods on a new evaluating

scheme and finally, the last section summarises our work providing an outlook on

future work.

2 Background

2.1 Overview of sense induction methods

Word Sense Induction methods can be broadly divided into three categories, i.e.

vector-based, graph-based and Bayesian methods. Most of the work in WSI is based

2 http://elt.oup.com/teachers/ocd/ [Access:09/12/2011].
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on the Vector Space Model (Salton and Buckley 1988). Typically, each instance

(context) of a target word is represented as a vector of features (e.g. first or second-

order word co-occurrences).

Table 2 shows an example of four context vectors for the contexts in Table 1. In

Table 2, nouns excluding the target word were selected as dimensions of the vector

space. We have applied binary weighting, i.e. each component of a context vector is

weighted either with 1 when the word (feature) appears in a context and with 0

otherwise.

The resulting vectors are then clustered to produce the induced senses, where

each sense might be a cluster of target word contexts (Schütze 1998; Purandare and

Pedersen 2004; Pedersen 2007; Niu et al. 2007; Pinto et al. 2007), or a cluster of

contextually related words (Lin and Pantel 2002).

Graph-based methods (Dorow and Widdows 2003; Véronis 2004; Agirre et al.

2006b) represent each word w co-occurring with the target word tw as a vertex. Two

vertices are connected via an edge if they co-occur in one or more contexts of tw.

Figure 1 shows an example of such a graph for the target word mouse.

Once the co-occurrence graph of tw has been constructed, different graph

clustering algorithms are applied to induce the senses. Each cluster (induced sense)

consists of a set of words that are semantically related to the particular sense. In the

example of Fig. 1, a graph clustering method should produce two clusters

corresponding to the two different senses of mouse.

Bayesian methods were recently applied to the task of sense induction. For

instance, Brody and Lapata (2009) presented a sense induction method that is

related to Latent Dirichlet allocation (LDA) (Blei et al. 2003). In their work, they

model the target word instances as samples from a multinomial distribution over

Table 2 Example word vectors

ContextID/Dimension Research Animal Design Joystic Touchpad

A 1 1 0 0 0

B 0 0 1 1 1

C 0 1 0 0 0

D 0 0 0 0 1

Fig. 1 Graph example for the target word mouse

582 I. P. Klapaftis, S. Manandhar

123



senses which are in turn represented as distributions over words (Brody and Lapata

2009). The topics learned from their model correspond to the different senses of a

given target word.

Klapaftis and Manandhar (2010) developed an unsupervised method for inferring

the hierarchical grouping of the senses of a polysemous word. Their method

constructs a graph, in which vertices are the contexts of a polysemous word and

edges represent the similarity between contexts. The method of Hierarchical

Random Graphs (Clauset et al. 2008) is then applied, in order to infer the

hierarchical structure (binary tree) of the constructed graph.

2.2 Overview of SemEval-2007 WSI task

The first effort to evaluate WSI methods under a common framework (evaluation

schemes and dataset) was undertaken in the SemEval-2007 sense induction task

(Agirre and Soroa 2007a) that evaluated WSI methods on 35 target nouns and 65

target verbs. For each target word (noun or verb), participating teams were

required to identify the senses of that word (e.g. as clusters of target word

instances, co-occurring words, etc.), and secondly tag the target word instances

using the automatically induced clusters. The output of a sense induction

method was a list of target word instances, each one associated with an induced

cluster.

For each target word the input corpus provided to participating teams consisted

of texts from the Wall Street Journal. Evaluation was performed on a version of the

input corpus tagged with OntoNotes (Hovy et al. 2006) senses. The evaluation

scheme consisted of two settings, i.e. unsupervised evaluation and supervised

evaluation described in the next section.

2.2.1 SemEval-2007 unsupervised evaluation

The aim of the unsupervised evaluation was to assess WSI methods in a similar

fashion to Information Retrieval exercises using F-Score, i.e. the harmonic of

precision and recall. The precision of a class Gi with respect to a cluster Cj is defined

as the number of their common instances divided by the total cluster size, i.e.

PðGi;CjÞ ¼ aij

jCjj : Similarly, the recall of a class Gi with respect to a cluster Cj is

defined as the number of their common instances divided by the total sense size, i.e.

RðGi;CjÞ ¼ aij

jGij : Recall and precision can then be combined to produce the F-Score

of a class with respect to a cluster (F(Gi, Cj)).

Given that a class can be associated with more than one clusters, the final F-Score

(F(Gi)) assigned to class Gi is the maximum F(Gi, Cj) value attained at any cluster

Cj. Finally, the F-Score of the entire clustering solution is defined as the weighted

average of the F-Scores of each GS sense (Eq. 1). In Eq. 1, m refers to the number of

GS senses, while N is the total number of target word instances. If the clustering is

identical to the original classes in the dataset, F-Score will be equal to one. In the

example of Table 3, F-Score is equal to 0.714.
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F-ScoreðK;GÞ ¼
Xm

i¼1

jGmj
N

FðGmÞ ð1Þ

F-Score attempts to assess the quality of a clustering solution by considering two

different angles, i.e. homogeneity and completeness (Rosenberg and Hirschberg

2007). Homogeneity refers to the degree that each cluster consists of data points

which primarily belong to a single gold standard class. On the other hand,

completeness refers to the degree that each gold standard class consists of data

points which have primarily been assigned to a single cluster. A perfect

homogeneity would result in a precision equal to 1, while a perfect completeness

would result in a recall equal to 1.

Rosenberg and Hirschberg (2007) have shown that F-Score suffers from the matching

problem which manifests itself either by not evaluating the entire membership of a

cluster, or by not evaluating every cluster. The former situation is present, due to the fact

that F-Score does not consider the make-up of the clusters beyond the majority class

(Rosenberg and Hirschberg 2007). For example in Table 4, the F-Score of the clustering

solution is 0.714 and equal to the F-Score of the clustering solution shown in Table 3,

despite the fact that these are two different clustering solutions.

Specifically, the clustering in Table 4 has a better homogeneity than the clustering in

Table 3, since each cluster contains fewer classes. Additionally, the second clustering

has a better completeness since each gold standard class contains fewer clusters. The

inability of F-Score to capture the difference in homogeneity and completeness between

different clusterings has also been shown and confirmed in (Amigó et al. 2009). An

additional instance of the matching problem of F-Score manifests itself, when it fails to

evaluate the quality of smaller clusters, since these might not get mapped to a gold

standard class. This might happen, when the clustering solution generates some clusters

that only group a small number of target word instances.

In the SemEval-2007 WSI task (Agirre and Soroa 2007a), there were no systems

able to perform better than the one-cluster-per-word (1Cl1W) baseline which groups

all of the instances of a target word into one cluster. Additionally, systems that were

able to perform close to that baseline did not perform well in the supervised

Table 3 Induced clusters and gold standard senses matrix

G1 G2 G3

C1 500 100 100

C2 100 500 100

C3 100 100 500

Table 4 Induced clusters and gold standard senses matrix

G1 G2 G3

C1 500 0 200

C2 200 500 0

C3 0 200 500
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evaluation scheme, since they were generating a very small number of clusters, in

effect being biased towards the 1Cl1W baseline.

2.2.2 SemEval-2007 supervised evaluation

In the supervised evaluation, the target word corpus is split into a testing and a

mapping part. The mapping part is used to apply a soft probabilistic mapping of the

automatically induced clusters to gold standard senses. In the next step, the testing

corpus is used to evaluate WSI methods in a WSD setting.

For example, let us assume that the matrix shown in Table 3 has been produced by

using the mapping part of the corpus. Table 3 shows that C1 is more likely to be

associated with G1, C2 is more likely to be associated with G2 and C3 is more likely to be

associated with G3. This information from the mapping part is utilized so as to create a

matrix M, in which each entry depicts the conditional probability P(Gi|Cj) (Table 5).

Given a new instance I of the target word from the testing corpus, a row cluster

vector IC is created, in which each entry k corresponds to the score assigned to Ck to

be the winning cluster of instance I. The product of IC and M provides a row sense

vector IG, in which the highest scoring entry a denotes that Ga is the winning sense.

For example, if we produce the row cluster vector [C1 = 0.8, C2 = 0.1, C3 = 0.1]

and multiply it with the matrix of Table 5, then we get the row sense vector

[G1 = 0.6, G2 = 0.2, G3 = 0.2] in which G1 is the winning sense.

The supervised evaluation seems to favor WSI methods producing a higher

number of clusters than the number of gold standard senses. This is due to the fact

that clusters are mapped into a weighted vector of senses, and therefore inducing a

number of clusters similar to the number of senses is not a requirement for good

results (Agirre and Soroa 2007a). Despite that, a large number of clusters might also

lead to an unreliable mapping of clusters to gold standard senses.

In the SemEval-2007 WSI task (Agirre and Soroa 2007a), an additional

supervised evaluation of WSI methods using a different mapping/testing split than

the official one resulted in a significantly different ranking of systems, in which all

of the systems outperformed the MFS baseline. This result indicated that the

supervised evaluation might not provide a reliable estimation of WSD performance,

particularly in the case where the mapping relies on a single dataset split.

3 SemEval-2010 Task description

Figure 2 provides an overview of the Semeval-2010 task (Manandhar et al. 2010).

As shown, the task consisted of three separate phases. In the first phase, training

Table 5 Mapping induced clusters to gold standard senses

G1 G2 G3

C1 0.714 0.142 0.142

C2 0.142 0.714 0.142

C3 0.142 0.142 0.714
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phase, participating systems were provided with a training dataset that consisted of

a set of target word (noun/verb) instances (sentences/paragraphs). Participants were

then asked to use this training dataset to induce the senses of the target word. No

other resources were allowed with the exception of NLP components for

morphology and syntax.

In the second phase, testing phase, participating systems were provided with a

testing dataset that consisted of a set of target word (noun/verb) instances

(sentences/paragraphs). Participants were then asked to tag (disambiguate) each

testing instance with the senses induced during the training phase.

In the third and final phase, the tagged test instances were received by the

organizers in order to evaluate the answers of the systems in a supervised and an

unsupervised framework. Table 6 shows the total number of target word instances

in the training and testing set, as well as the average number of senses in the gold

standard.

The main difference of the SemEval-2010 against the SemEval-2007 sense

induction task is that the training and testing data are treated separately, i.e the

testing data are only used for sense tagging, while the training data are only used for

sense induction. Treating the testing data as new unseen instances ensures a realistic

evaluation that allows us to evaluate the clustering models of each participating

system. Note however, that one of the participating teams (Duluth-WSI) used both

the training dataset and the untagged version of the testing dataset to induce the

senses. Using the untagged version of the testing dataset is likely to lead to an

improved performance as opposed to using only the training data. This has been

observed in (Agirre et al. 2006a) who extensively evaluated and optimised the

parameters of HyperLex, a graph-based WSI method due to Véronis (2004).

3.1 Training dataset

The target word dataset consisted of 100 words, i.e. 50 nouns and 50 verbs. The

training dataset for each target noun or verb was created by following a web-based

semi-automatic method, similar to the method for the construction of Topic

Signatures (Agirre et al. 2001). Specifically, for each WordNet (Fellbaum 1998)

sense of a target word, we created a query of the following form:

\Target Word[ AND\Relative Set[

The <Target Word> consisted of the target word stem. The <Relative

Set> consisted of a disjunctive set of word lemmas that were related to the target

word sense for which the query was created. The relations considered were

WordNet’s hypernyms, hyponyms, synonyms, meronyms and holonyms. Each

query was manually checked by one of the organizers to remove ambiguous words.

The example in Table 7 shows the query created for the first3 and second4 WordNet

sense of the target noun failure.

3 An act that fails.
4 An event that does not accomplish its intended purpose.
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The created queries were issued to Yahoo! search API5 and for each query a

maximum of 1,000 pages were downloaded. For each page we extracted fragments

of text that occurred in <p> < /p> html tags and contained the target word stem. In

the final stage, each extracted fragment of text was POS-tagged using the Genia

tagger (Tsuruoka and Tsujii 2005) and was only retained if the POS of the target

word in the extracted text matched the POS of the target word in our dataset. The

training dataset has been made available6 to the research community.

3.2 Testing dataset

The testing dataset consisted of instances of the same target words given during the

training phase. This dataset is part of the OntoNotes project (Hovy et al. 2006). The

texts come from various news sources including CNN, ABC and others. For

evaluation, we used the sense-tagged version of the dataset, in which target word

Fig. 2 Training, testing and evaluation phases of SemEval-2010 WSI Task

Table 7 Training set creation: example queries for target word failure

Word sense Query

Sense 1 failure AND (loss OR nonconformity OR test OR surrender OR ‘‘force play’’ OR ...)

Sense 2 failure AND (ruination OR flop OR bust OR stall OR ruin OR walloping OR ...)

Table 6 Training and testing set details

Training set Testing set Senses (#)

All 879,807 8,915 3.79

Nouns 716,945 5,285 4.46

Verbs 162,862 3,630 3.12

5 http://developer.yahoo.com/search/ [Access:10/04/2010].
6 http://www.cs.york.ac.uk/semeval2010_WSI/files/training_data.tar.gz.
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instances are tagged with OntoNotes (Hovy et al. 2006) senses. The testing dataset

has been made available7 to the research community.

3.3 Participating systems

In this section we provide a brief description of the 26 systems (5 teams) that

participated in the SemEval-2010 WSI task. Table 8 presents the key points of each

method regarding their features and clustering method. Note that the symbols next

to each system denote the corpus that was used to learn the senses of target words,

i.e. * for the training corpus, ? for the untagged version of the testing corpus and

*? for both.

Hermit Jurgens and Stevens (2010) presented a sense induction method that

models the contexts of a target word in a high-dimensional word space using

Random Indexing (RI) (Kanerva et al. 2000). RI represents the occurrence of a

contextual word with a sparse index vector that is orthogonal to all other words

index vectors with a high probability. A context of a target polysemous word is then

represented by summing the index vectors corresponding to the n words occurring

to the left and right of the target word. For clustering the target word contexts, they

apply a hybrid method of K-Means and Hierarchical Agglomerative Clustering

(HAC). Initially, context vectors are clustered using K-means, which assigns each

context to its most similar cluster centroid. In the next step, the K induced clusters

are repeatedly merged using HAC with average linkage. HAC stops cluster

merging, when the two most similar clusters have a similarity less than a predefined

threshold.

Duluth-WSI Pedersen (2010) participated in the WSI task with the SenseClusters

(Purandare and Pedersen 2004; Pedersen 2007) WSI method. SenseClusters is a

vector-based WSI system that constructs a word-by-word co-occurrence matrix by

identifying bigrams or word co-occurrences (separated by up to n intervening

words). Alternatively, the co-occurrence matrix can be constructed by considering

unordered pairs of words. The co-occurrence matrix may be reduced to 300

dimensions by applying Singular Value Decomposition. The resulting co-occur-

rence matrix was exploited to create second order co-occurrence vectors each one

representing a target word instance. Clustering of context vectors is performed by

using the method of repeated bisections (rb) and the number of clusters, k, is

automatically determined using either the PK2 measure or the Adapted Gap Statistic

(Pedersen and Kulkarni 2006). The team submitted 16 runs, 5 out of which were

random baselines.

UoY Korkontzelos and Manandhar (2010) presented a graph-based sense

induction method. They initially construct a graph in which single nouns are

represented as vertices. Subsequently, they generate noun pairs for each context of

the target word and include them as vertices in the graph, if and only if these pairs

are not distributionally similar to each one of their component nouns. Edges are

drawn according to the distributional similarity of the corresponding vertices.

7 http://www.cs.york.ac.uk/semeval2010_WSI/files/test_data.tar.gz.
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Chinese Whispers (Biemann 2006) is applied to cluster the resulting graph. Each

induced cluster is taken to represent one of the senses of the target word.

KCDC Kern et al. (2010) presented a sense induction method based on the

vector-space model, which exploits a variety of grammatical and co-occurrence

features. Specifically, each target word context was associated with a vector of

features, i.e. grammatical dependencies, noun and verb phrases containing the target

word, noun and verb phrases containing the target word that were also expanded

with distributionally similar words and combinations of these features. Clustering of

target word context vectors was performed using Growing k-Means (Daszykowski

et al., 2002). The number of clusters k was automatically identified using a

clustering evaluation stability criterion (Kern et al. 2010). The team submitted three

runs to assess the influence of the random initialization of their clustering algorithm.

Table 8 Participating systems overview

System Features Clustering method

KSU KDD (*) String tokens LDA ? K-means

Hermit (*) Word (pos ? lemma) k-means ? HAC

UoY (*) Word (pos ? lemma), collocations Chinese whispers

KCDC-GD (*) Grammatical dependencies Growing k-Means

KCDC-GD-2 (*) Grammatical dependencies Growing k-Means

KCDC-GDC (*) Grammatical dependencies Growing k-Means

KCDC-PC-2 (*) Noun/verb phrases Growing k-Means

KCDC-PC (*) Distributionally expanded noun/verb

phrases including the target word

Growing k-Means

KCDC-PT (*) Noun/verb phrases including

the target word

Growing k-Means

KCDC-PCGD (*) Combination of KCDC-GD, KCDC-PC Growing k-Means

Duluth-WSI (?) Bigrams, ordered co-occurrences Repeated bisections ? PK2

Duluth-WSI-Gap (?) Bigrams, ordered co-occurrences Repeated bisections ? GAP

Duluth-WSI-SVD (?) Bigrams, ordered co-occurrences, SVD Repeated bisections ? PK2

Duluth-WSI-Co (?) Unordered co-occurrences Repeated bisections ? PK2

Duluth-WSI-Co-Gap(?) Unordered co-occurrences Repeated bisections ? GAP

Duluth-WSI-SVD-Gap(?) Unordered co-occurrences, SVD Repeated bisections ? GAP

Duluth-Mix-Narrow-PK2 (*?) Bigrams, ordered co-occurrences Repeated bisections ? PK2

Duluth-Mix-Narrow-Gap (*?) Bigrams, ordered co-occurrences Repeated bisections ? GAP

Duluth-MIX-PK2 (*?) Bigrams Repeated bisections ? PK2

Duluth-Mix-Gap (*?) Bigrams Repeated bisections ? GAP

Duluth-Mix-Uni-PK2 (*?) Unigrams Repeated bisections ? PK2

Duluth-Mix-Uni-Gap (*?) Unigrams Repeated bisections ? GAP

Duluth-R-12 (?) N/A Random, 12 clusters

Duluth-R-13 (?) N/A Random, 13 clusters

Duluth-R-15 (?) N/A Random, 15 clusters

Duluth-R-110 (?) N/A Random, 110 clusters
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KSU KDD Elshamy et al. (2010) presented a sense induction based on LDA (Blei

et al. 2003). In their model, the corpus of a target word consists of N contexts, where

each one of them is represented by a multinomial distribution over C topics, which are

in turn multinomial distributions over words. For each target polysemous word,

Elshamy et al. (2010) trained a MALLET8 parallel topic model implementation of

LDA on all the training instances of that word. The trained topic model was then used

to infer the topic distributions for each test instance of the target word. For a C-topics

topic model, each topic distribution (for each test instance) was represented as a point

in a C-dimensional topic space and K-means was then applied for clustering.

4 SemEval-2010 evaluation scheme

4.1 SemEval-2010 unsupervised evaluation

Following the SemEval-2007 WSI task (Agirre and Soroa 2007a), the SemEval-

2010 WSI task also included an evaluation of WSI methods in a clustering task

applying measures that intended to deal with the deficiencies of the previous

competition as mentioned in Section 2.2.1. In SemEval-2010 WSI challenge there

were two evaluation measures, i.e. V-Measure (Rosenberg and Hirschberg 2007)

and (2) paired F-Score (Artiles et al. 2009). The implementations of V-Measure and

paired F-Score have been made available9 to the research community.

4.1.1 V-Measure

Let w be a target word with N instances (data points) in the testing dataset. Let

K ¼ fCjjj ¼ 1. . .ng be a set of automatically generated clusters grouping these

instances, and S ¼ fGiji ¼ 1. . .mg the set of gold standard classes containing the

desirable groupings of w instances.

V-Measure (Rosenberg and Hirschberg 2007) assesses the quality of a clustering

solution by explicitly measuring its homogeneity and its completeness. Recall that

homogeneity refers to the degree that each cluster consists of data points (target

word instances) that primarily belong to a single gold standard class, while

completeness refers to the degree that each gold standard class consists of data

points primarily assigned to a single cluster (Rosenberg and Hirschberg 2007). Let

h be homogeneity and c completeness. V-Measure is the harmonic mean of h and

c, i.e. VM ¼ 2�h�c
hþc

:
Homogeneity The homogeneity, h, of a clustering solution is defined in Eq. 2,

where H(S|K) is the conditional entropy of the class distribution given the proposed

clustering and H(S) is the class entropy.

8 http://mallet.cs.umass.edu.
9 http://www.cs.york.ac.uk/semeval2010_WSI/files/evaluation.zip.
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h ¼
1; if HðSÞ ¼ 0

1� HðSjKÞ
HðSÞ ; otherwise

(
ð2Þ

HðSÞ ¼ �
XjSj

i¼1

PjKj
j¼1 aij

N
log

PjKj
j¼1 aij

N
ð3Þ

HðSjKÞ ¼ �
XjKj

j¼1

XjSj

i¼1

aij

N
log

aij
PjSj

k¼1 akj

ð4Þ

When H(S|K) is 0, the solution is perfectly homogeneous, because each cluster

only contains data points that belong to a single class. However in an imperfect

situation, H(S|K) depends on the size of the dataset and the distribution of class

sizes. Hence, instead of taking the raw conditional entropy, V-Measure normalizes it

by the maximum reduction in entropy the clustering information could provide, i.e.

H(S). When there is only a single class (H(S) = 0), any clustering would produce a

perfectly homogeneous solution.

Completeness Symmetrically to homogeneity, the completeness, c, of a

clustering solution is defined in Eq. 5, where H(K|S) is the conditional entropy of

the cluster distribution given the class distribution and H(K) is the clustering

entropy. When H(K|S) is 0, the solution is perfectly complete, because all data

points of a class belong to the same cluster.

Returning to our clustering example in Table 3, its V-Measure is equal to 0.275.

In contrast, the V-Measure of the clustering solution in Table 4 is 0.45. This result

shows that V-measure is able to discriminate between these two clusterings in terms

of homogeneity and completeness by considering the make-up of the clusters

beyond the majority class. The ability of V-Measure to discriminate between two

clusterings, when one of them has a better homogeneity (resp. completeness) has

also been observed in (Amigó et al. 2009).

c ¼
1; if HðKÞ ¼ 0

1� HðKjSÞ
HðKÞ ; otherwise

(
ð5Þ

HðKÞ ¼ �
XjKj

j¼1

PjSj
i¼1 aij

N
log

PjSj
i¼1 aij

N
ð6Þ

HðKjSÞ ¼ �
XjSj

i¼1

XjKj

j¼1

aij

N
log

aij
PjKj

k¼1 aik

ð7Þ

4.1.2 Paired F-Score

In this evaluation, the clustering problem is transformed into a classification

problem of pairs of target word instances. For each cluster Ci, one can generate jCij
2

� �
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instance pairs, where |Ci| is the total number of instances that have been tagged with

cluster Ci. Similarly, for each gold standard class Gi one can generate jGij
2

� �
instance

pairs, where |Gi| is the total number of instances that belong to gold standard class

Gi.

Let F(K) be the set of instance pairs that exist in the automatically induced

clusters and F(S) be the set of instance pairs that exist in the gold standard. Precision

is the ratio of the number of common instance pairs between the two sets to the total

number of pairs in the clustering solution (Eq. 8), while recall is the ratio of the

number of common instance pairs between the two sets to the total number of pairs

in the gold standard (Eq. 9). Finally, precision and recall are combined to produce

the harmonic mean (FS ¼ 2�P�R
PþR

).

P ¼ jFðKÞ \ FðSÞj
jFðKÞj ð8Þ

R ¼ jFðKÞ \ FðSÞj
jFðSÞj ð9Þ

For example in Table 3, the paired F-Score for that clustering solution is equal to

0.55. In contrast, for the clustering solution in Table 4 the paired F-Score is equal to

0.59.

4.1.3 Results and discussion

In this section, we present the results of the top 10 best performing systems in the

unsupervised evaluation along with three baselines. The first baseline, Most

Frequent Sense (MFS), groups all testing instances of a target word into one cluster.

Note that the MFS baseline is equivalent to the 1Cl1W baseline that was used in the

SemEval-2007 WSI task (Agirre and Soroa 2007a). The second baseline, Random,

randomly assigns an instance to one out of four clusters. The number of clusters of

Random was chosen to be roughly equal to the average number of senses in the GS.

This baseline is executed five times and the results are averaged. The 1Cl1Ins

baseline creates a cluster for each instance of a target word.

Table 9 shows the top 10 best performing systems using the first evaluation

measure. The last column shows the number of induced clusters of each system in

the test set. The V-Measure of the MFS is by definition equal to 0. Since this

baseline groups all instances of a target word into a single cluster, its completeness

is 1 and its homogeneity is 0.

As can be observed, all participating systems outperform the MFS baseline,

apart from one. Regarding the Random baseline, we observe that 17 systems

perform better, which shows that they have learned useful information better than

chance.

Table 9 also shows that V-Measure tends to favor systems producing a higher

number of clusters than the number of GS senses. For instance, the 1Cl1Ins baseline

produces an average of 89.15 clusters per target word and has achieved the highest
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V-Measure that no system managed to outperform. The homogeneity of that

baseline is equal to 1, since each cluster contains one and only one instance of a

gold standard class. The completeness, however, of that baseline is not 0, as one

might expect, since each cluster captures a small amount (one instance) of the total

number instances of a gold standard class. Hence, the harmonic mean of

homogeneity and completeness for that baseline achieve a score which seems to

be high compared to systems participating in the task.

The bias of V-Measure towards clustering solutions with a large number of

clusters motivated us to introduce the second unsupervised evaluation measure

(paired F-Score) that penalizes systems when they produce: (1) a higher number of

clusters (low recall) or (2) a lower number of clusters (low precision), than the gold

standard number of senses.

Table 10 shows the top 10 best performing systems using the second unsupervised

evaluation measure. In this evaluation we again observe that most of the systems

perform better than Random. All systems perform better than the 1Cl1Ins baseline

which achieves the lowest paired F-Score due to its very low recall. Despite that, we

also observe that no system performs better than the MFS baseline. In fact, it appears

that the relationship between V-Measure and paired F-Score is inversely predictive.

The MFS achieves a higher paired F-Score compared to the rest of the systems,

because its recall is always 1, while its precision is well above 0, due to the dominance

of the MFS in the dataset. Specifically, in skewed sense distributions most target word

instance pairs on the gold standard are generated from the MFS, which in effect allows

that baseline to achieve a moderate precision.

Additionally, it seems that systems generating a smaller number of clusters than

the GS number of senses are biased towards the MFS, hence they are not able to

perform better. On the other hand, systems generating a higher number of clusters

are penalized by this measure (low recall), while systems generating a number of

Table 9 V-Measure unsupervised evaluation

System VM (%)

(all)

VM (%)

(nouns)

VM (%)

(verbs)

#Cl

1Cl1Ins 31.7 25.6 35.8 89.15

Hermit 16.2 16.7 15.6 10.78

UoY 15.7 20.6 8.5 11.54

KSU KDD 15.7 18 12.4 17.5

Duluth-WSI 9 11.4 5.7 4.15

Duluth-WSI-SVD 9 11.4 5.7 4.15

Duluth-R-110 8.6 8.6 8.5 9.71

Duluth-WSI-Co 7.9 9.2 6 2.49

KCDC-PCGD 7.8 7.3 8.4 2.9

KCDC-PC 7.5 7.7 7.3 2.92

KCDC-PC-2 7.1 7.7 6.1 2.93

Random 4.4 4.2 4.6 4

MFS 0 0 0 1
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clusters roughly the same as the number of gold standard senses tend to conflate

these senses a lot more than the MFS.

4.2 Semeval-2010 supervised evaluation

In this evaluation, the testing dataset is split into a mapping and an evaluation

corpus. The first one is used to map the automatically induced clusters to gold

standard senses, while the second is used to evaluate methods in a WSD setting.

This evaluation follows the supervised evaluation of SemEval-2007 WSI task

Agirre and Soroa (2007b) described in Section 2.2.2, with the difference that the

reported results are an average of 5 random splits. This repeated random sampling

was performed to overcome the deficiencies of the SemEval-2007 WSI challenge, in

which different splits were providing different system rankings. The supervised

evaluation scripts and dataset split has been made available10 to the research

community.

4.2.1 Results and discussion

In this section we present the results of the 26 systems along with two baselines, i.e.

MFS and Random. Note that the 1Cl1Ins baseline is not defined in this evaluation

setting, since clusters appearing in the mapping corpus do not appear in the

evaluation corpus and the mapping cannot be performed.

Table 11 shows the results of this evaluation for a 80–20 test set split, i.e. 80 % for

mapping and 20 % for evaluation, for the top 10 best performing systems. The last

column shows the average number of gold standard senses identified by each system in

Table 10 Paired F-Score unsupervised evaluation

System FS (%)

(all)

FS (%)

(nouns)

FS (%)

(verbs)

#Cl

MFS 63.5 57.0 72.7 1

Duluth-WSI-SVD-Gap 63.3 57.0 72.4 1.02

KCDC-PT 61.8 56.4 69.7 1.5

KCDC-GD 59.2 51.6 70.0 2.78

Duluth-Mix-Gap 59.1 54.5 65.8 1.61

Duluth-Mix-Uni-Gap 58.7 57.0 61.2 1.39

KCDC-GD-2 58.2 50.4 69.3 2.82

KCDC-GDC 57.3 48.5 70.0 2.83

Duluth-Mix-Uni-PK2 56.6 57.1 55.9 2.04

KCDC-PC 55.5 50.4 62.9 2.92

KCDC-PC-2 54.7 49.7 61.7 2.93

Random 31.9 30.4 34.1 4

1Cl1Ins 0.09 0.08 0.11 89.15

10 http://www.cs.york.ac.uk/semeval2010_WSI/files/evaluation.zip.
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the five splits of the evaluation datasets. In this evaluation setting, 14 systems perform

better than the MFS baseline and 17 perform better than Random. The ranking of

systems with respect to the part-of-speech of the target word is different, which in

effect indicates that the two POS classes should be treated differently by WSI methods

in terms of the clustering algorithm, features and parameters tuning.

As it has already been mentioned, the supervised evaluation changes the

distribution of clusters by mapping each cluster to a weighted vector of senses. As a

result, it has the tendency to favor systems generating a higher number of clusters

depending on the homogeneity of the corresponding clusters. For that reason, we

applied a second testing set split, where we decreased the size of the mapping

corpus (60 %) and increased the size of the evaluation corpus (40 %). The reduction

of the mapping corpus size allows us to observe, whether the above statement is

correct, since systems with a high number of clusters could potentially suffer from

an unreliable mapping of their induced clusters to gold standard senses.

Table 12 shows the results of the second supervised evaluation. The ranking of

participants did not change significantly, i.e. we observe only different rankings

among systems belonging to the same participant. Despite that, Table 12 also shows

that the reduction of the mapping corpus has a different impact on systems

generating a larger number of clusters than the gold standard number of senses.

For instance, UoY that generated 11.54 clusters tends to perform similarly in both

splits with respect to its distance from the MFS. The reduction of the mapping size did

not have any significant impact. In contrast, KSU KDD that generates 17.5 clusters was

below the MFS by 6.49 % in the 80–20 split and by 7.83 % in the 60–40 split. We

observe that the reduction of the mapping corpus had a negative impact in this case.

The overall conclusion is that systems generating a skewed distribution, in which a

small number of homogeneous clusters tag the majority of instances and a larger

number of clusters tag only a few instances, are likely to have a better performance

than systems that produce a more uniform distribution in this dataset.

Table 11 Supervised recall (SR) (test set split:80 % mapping, 20 % evaluation)

System SR (%)

(all)

SR (%)

(nouns)

SR (%)

(verbs)

#S

UoY 62.4 59.4 66.8 1.51

Duluth-WSI 60.5 54.7 68.9 1.66

Duluth-WSI-SVD 60.5 54.7 68.9 1.66

Duluth-WSI-Co-Gap 60.3 54.1 68.6 1.19

Duluth-WSI-Co 60.8 54.7 67.6 1.51

Duluth-WSI-Gap 59.8 54.4 67.8 1.11

KCDC-PC-2 59.8 54.1 68.0 1.21

KCDC-PC 59.7 54.6 67.3 1.39

KCDC-PCGD 59.5 53.3 68.6 1.47

KCDC-GDC 59.1 53.4 67.4 1.34

MFS 58.7 53.2 66.6 1

Random 57.3 51.5 65.7 1.53
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5 Evaluation according to the skewness of the distribution of senses

Both the Semeval-2007 and SemEval-2010 WSI tasks have evaluated sense

induction methods on two classes of words, i.e. nouns and verbs. Therefore, both

evaluation schemes have ignored an important aspect of Word Sense Induction and

Disambiguation, i.e. the skewness of the target word distribution of senses. A

contrastive evaluation according to the skewness of sense distribution would

possibly shed light on how different features and clustering methods perform under

highly skewed, less skewed or even uniform distribution of senses.

Véronis (2004) had criticized vector-based methods as being unable to detect rare

senses of words and suggested a graph-based clustering method that was able to

detect senses whose relative frequency was more than 5 %. In particular, Véronis

(2004) showed that the attempts to replicate the results of Schütze (1998) only

succeeded when the actual senses were few in number, more or less equiprobable

and highly individualized.

In this section, we evaluate the SemEval-2010 WSI participating methods in both

unsupervised and supervised evaluation settings by dividing the target words into

three categories according to the skewness of their distribution of senses.

Equation 10 defines the skewness of a distribution, where xi refers to the frequency

of sense i, i.e. number of target word instances that have been tagged with sense i in

the gold standard, �x refers to the mean of the distribution and N is the total number

of target word instances.

G ¼
1
N

PN
i¼1ðxi � �xÞ3

ð1
N

PN
i¼1ðxi � �xÞ2Þ

3
2

ð10Þ

Table 13 provides a description of the three categories that we generated in terms of

skewness range for each category, the total number of instances and the average

Table 12 Supervised recall (SR) (test set split:60 % mapping, 40 % evaluation)

System SR (%) SR (%) SR (%) #S

(All) (Nouns) (Verbs)

UoY 62.0 58.6 66.8 1.66

Duluth-WSI-Co 60.1 54.6 68.1 1.56

Duluth-WSI-Co-Gap 59.5 53.5 68.3 1.2

Duluth-WSI-SVD 59.5 53.5 68.3 1.73

Duluth-WSI 59.5 53.5 68.3 1.73

Duluth-WSI-Gap 59.3 53.2 68.2 1.11

KCDC-PCGD 59.1 52.6 68.6 1.54

KCDC-PC-2 58.9 53.4 67.0 1.25

KCDC-PC 58.9 53.6 66.6 1.44

KCDC-GDC 58.3 52.1 67.3 1.41

MFS 58.3 52.5 66.7 1

Random 56.5 50.2 65.7 1.65
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number of senses for each POS class. For a given POS class (noun or verb) the three

categories were generated by following the following process:

1. The skewness of target words was calculated.

2. Target words were sorted according to their skewness

3. All target words were assigned to one skewness category, so that all three

categories roughly have the same total number of target word instances.

5.1 Unsupervised evaluation

5.1.1 Results using V-Measure

Table 14 shows the V-Measure performance of the top five participating systems

and baselines in the three skewness categories. In all categories, we observe that

none of the systems was able to perform better than the 1Cl1Ins baseline, while

most of the systems were able to perform better than Random. As in the official

evaluation, we also observe that systems generating a higher number of clusters11

achieve a high V-Measure, although their performance does not increase

Table 13 Statistics of skewness categories

Category Instances Nouns Verbs All

Skewness Senses Skewness Senses Senses

(1) 2949 0.01–0.53 4.1 0.0–0.56 3.3 3.6

(2) 2851 0.55–0.88 3.8 0.57–0.71 2.5 3.1

(3) 3115 0.88–1.71 5.7 0.73–1.15 4.2 5.1

Table 14 V-Measure unsupervised evaluation in the three skewness categories

Skewness category

(1) (2) (3)

System CL VM (%) System VM (%) System VM (%)

1Cl1Ins 37.5 1Cl1Ins 28.7 1Cl1Ins 28.9

KSU KDD 20.0 UoY 15.3 UoY 16.3

Hermit 19.5 Hermit 14.6 Hermit 14.6

UoY 15.3 KSU KDD 13.7 KSU KDD 14.0

KCDC-PCGD 11.5 Duluth-WSI 9.9 Duluth-WSI 8.0

Duluth-R-110 10.3 Duluth-WSI-SVD 9.9 Duluth-WSI-SVD 8.0

Random 5.3 Random 3.7 Random 4.2

Top five participating systems are shown

11 The number of clusters of each system is shown in Table 9.
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monotonically with the number of clusters increasing. Recall that all systems

perform better than the MFS, since its V-Measure is 0.

By comparing the ranking of systems in the second and third skewness categories

of Table 14 we do not observe any difference. Despite that, the ranking is different

in the first and second skewness categories, as well as in the first and third. For

instance, KCDC-PCGD that was ranked 13th in the official evaluation, performs

significantly better in the first skewness category despite the small number of

generated clusters. This result indicates that the particular system tends to perform

better when sense distributions tend to be equiprobable, and worse when moving on

to more skewed distributions.

In contrast, systems Duluth-WSI and Duluth-WSI-SVD, which perform well in the

second and third skewness categories, are not included in the top five systems of the

first category. This result indicates that these systems perform better in more skewed

distributions.

5.1.2 Results using paired F-Score

Table 15 shows the paired F-Score performance of the top five participating systems

and baselines in the three skewness categories. In all categories, we observe that no

system was able to perform better than the MFS baseline, while most of the systems

perform better than Random. As the official evaluation has shown, systems

generating a very small number of clusters (see footnote 11) tend to be biased

towards the MFS baseline and achieved a high paired F-Score.

By comparing the ranking of systems in the three skewness categories of

Table 15 we do not observe any significant differences. Specifically, Duluth-WSI-

SVD-Gap and KCDC-PT perform in most categories better than other systems as a

result of the their small number of clusters. Given that performance in the paired

F-Score seems to be more biased towards a small number of clusters, than

V-Measure was towards a high number of clusters, the particular evaluation

measure does not offer any discriminative information among the three categories.

Table 15 Paired F-Score (FS) unsupervised evaluation in the three skewness categories

Skewness category

(1) (2) (3)

System FS (%) System FS (%) System FS (%)

MFS 56.5 MFS 66.5 MFS 67.2

Duluth-WSI-SVD-GAP 56.5 Duluth-WSI-SVD-GAP 66.1 Duluth-WSI-SVD-GAP 67.2

KCDC-PT 55.9 KCDC-PT 64.4 KCDC-PT 65.1

Duluth-Mix-Uni-Gap 53.8 Duluth-Mix-Uni-Gap 63.4 KCDC-GD 64.4

Duluth-Mix-Gap 53.7 KCDC-GD-2 61.4 Duluth-Mix-Gap 63.1

KCDC-GD-2 52.9 KCDC-GDC 61.4 KCDC-GD-2 60.2

Random 30.1 Random 32.7 Random 33.1

1Cl1Ins 0.1 1Cl1Ins 0.1 1Cl1Ins 0.1

Top five participating systems are shown
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5.2 Supervised evaluation

Table 16 shows the supervised recall of participating systems that managed to

perform better than the MFS in the 80–20 split of the dataset. As can be observed, in

the first skewness category in which the distributions of target word senses are less

skewed, 17 systems managed to outperform the MFS, where in most cases the

performance differences are statistically significant (McNemar’s test, 95 %

confidence level).

Despite that, as we move to the second and third skewness categories in which

the distributions of word senses become more and more skewed, we observe that a

decreasing number of systems performs better than the MFS. Specifically, in the

second skewness category 12 systems managed to perform better than the MFS. In

the third skewness category, this picture becomes worse since only six systems

outperformed this baseline. Overall, it becomes apparent that the majority of sense

induction systems perform worse as word sense distributions become more skewed.

For instance in Table 16, we observe that Hermit performs well in the first

skewness category (its position in the official evaluation was 17th) outperforming

Table 16 Supervised recall (SR) (test set split: 80 % mapping, 20 % evaluation) in the three skewness

categories

Skewness category

(1) (2) (3)

System SR (%) System SR (%) System SR (%)

UoY 51.9 UoY 65.7 UoY 69.9

Duluth-Mix-Narrow-Gap 51.4 Duluth-WSI-SVD 65.4 KCDC-PC 66.4

Hermit 51.2 Duluth-WSI 65.4 KCDC-PC-2 66.4

KCDC-PCGD 51.0 Duluth-WSI-Co-Gap 64.9 KCDC-PT 66.3

Duluth-Mix- 50.9 KCDC-PC 64.5 Duluth-WSI- 66.2

Narrow-PK2 Co-Gap

Duluth-WSI-SVD 50.6 Duluth-WSI-Co 64.5 Duluth-WSI-Co 66.1

Duluth-WSI 50.6 Duluth-WSI-Gap 64.3 MFS 65.9

Duluth-WSI-Co 50.5 KCDC-PC-2 63.5 Random 65.0

Duluth-WSI-Co-Gap 50.3 KCDC-GDC 63.0

KCDC-GD 49.8 KCDC-GD-2 62.4

KCDC-PC-2 49.7 Hermit 62.4

Duluth-WSI-Gap 49.5 Duluth-WSI-SVD-Gap 62.1

Duluth-R-13 49.3 MFS 62.1

KCDC-GDC 50.0 Random 61.0

KCDC-GD-2 48.7

KCDC-PT 48.6

KCDC-PC 48.5

MFS 48.1

Random 45.9

Only systems performing better than the MFS are shown
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the MFS by 3.08 %. In the second category, Hermit outperforms the MFS by

0.21 %, while in the third category it performs worse than the MFS.

Figure 3 shows the performance differences from the MFS for all systems that

perform better than this baseline in all skewness categories. As can be observed, the

performance difference of all systems, apart from KCDC-PC and UoY, decreases as

skewness increases. Interestingly KCDC-PC performs better in the second skewness

category, while UoY is the only system whose performance difference from the MFS

remains roughly the same along the three categories. Specifically, UoY outperforms

the MFS by 3.72 % in the first, 3.56 % in the second and 4 % in the third category.

5.3 Further discussion

Given that one of the primary aims of WSI is to build better sense inventories, it

would be interesting to re-visit the method of the system that performs consistently

above the MFS baseline as skewness increases, and draw conclusions useful for

lexicographers and linguists.

UoY (Korkontzelos and Manandhar 2010) is a graph-based method, in which

each vertex corresponds to either a single noun, or a pair of nouns co-occurring with

the target word. A single noun vertex is generated when the noun is judged to be

unambiguous, i.e. it appears with only one sense of the target word. Otherwise, the

noun is taken to be ambiguous and is combined with any other unambiguous noun to

form a pair. The method of determining whether a noun is ambiguous or not is

described in detail in Korkontzelos and Manandhar (2010).

In the next step, hard clustering of the constructed graph generates the clusters

(senses) and allows one ambiguous noun to be part of more than one clusters

(senses) of the target word by participating in more than one noun-noun pairs.

It appears that soft clustering methods that attempt to reduce the ambiguity of the

extracted features through the use of collocations (as in UoY) can produce less-sense

conflating clusters. These induced clusters correspond both to frequent and rare

senses of words, hence the output of such methods could be exploited by

Fig. 3 Performance difference from the MFS for 5 systems
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lexicographers as additional assistance in their hard-task of identifying infrequent or

idiomatic senses of words.

6 Conclusion and future work

This paper presented a comprehensive description of the SemEval-2010 word sense

induction challenge focusing on the task description, resources used, participating

systems, evaluation framework, as well as the main differences of the task from the

corresponding SemEval-2007 WSI challenge. Subsequently, we evaluated partic-

ipating systems in terms of their unsupervised (V-Measure, paired F-Score) and

supervised (supervised recall) performance according to the skewness of target

words distribution of senses.

The evaluation has shown that the current state-of-the-art lacks unbiased

measures that objectively evaluate the clustering solutions of sense induction

systems. Recently, Amigó et al. (2009) showed that BCubed (Bagga and Baldwin

1998) is a less biased measure than entropy-based ones (e.g. V-Measure) or

measures based on counting pairs (e.g. paired F-Score), since it is able to satisfy a

set of mathematical constraints mentioned in Amigó et al. (2009) that others do not.

BCubed decomposes the evaluation process by: (1) evaluating the precision and

recall of each data point, (2) averaging the calculated figures, and (3) producing the

harmonic mean of the averaged precision and recall. The precision of a data point

x represents how many other data points in the same cluster belong to the same gold

standard class as x, while recall represents how many data points from the class of

x belong to the same cluster as x. A data point with high BCubed recall means that

we would find most of its related data points without leaving the cluster (Amigó

Table 17 BCubed unsupervised evaluation

System BCubed (%)

(all)

BCubed (%)

(nouns)

BCubed (%)

(verbs)

#Cl

MFS 64.1 57.6 73.4 1

Duluth-WSI-SVD-Gap 64.0 57.6 73.2 1.02

KCDC-PT 63.1 57.4 71.2 1.5

KCDC-GD 61.2 53.9 71.8 2.78

KCDC-GD-2 60.5 53.1 71.3 2.82

Duluth-Mix-Gap 60.5 56.0 67.2 1.61

Duluth-Mix-Uni-Gap 59.7 57.6 62.6 1.39

KCDC-GDC 59.4 50.8 71.9 2.83

Duluth-Mix-Uni-PK2 57.9 57.8 58.1 2.04

KCDC-PC 57.6 52.4 65.3 2.92

KCDC-PC-2 57.0 52.0 64.3 2.93

Random 35.2 33.4 37.7 4

1Cl1Ins 8.0 7.9 8.2 89.15

Top ten participating systems are shown
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et al. 2009). Similarly, high precision means that we would not find noisy points in

the same cluster (Amigó et al., 2009).

In contrast to V-Measure that evaluates each cluster (resp. each class), BCubed

recall and precision are computed over single data points, in effect being less biased

towards the predominant class. Compared to paired F-Score, BCubed’s computation

over single data points reduces the quadratic effect caused by the cluster size

(Amigó et al. 2009). Despite that, our experiments on evaluating sense induction

methods using BCubed showed a very high correlation with the ranking of systems

as produced by paired F-Score. Table 17 shows the top 10 best performing systems

using the BCubed measure. As can be observed the ranking is identical to the paired

F-Score ranking (Table 10).

Based on our current results, it seems that the assessment on a task-oriented basis

is more appropriate allowing one to identify which features or clustering methods

benefit which applications. Given that different applications or domains may require

different sense granularity, such evaluations would possibly enhance our under-

standing of computational semantics and extend the current state-of-the-art,

provided that they correspond to clearly-defined end-user applications.

The second evaluation scheme, i.e. supervised evaluation, could be considered as

a task oriented-application, since it transforms WSI systems to semi-supervised

WSD ones. Therefore, we believe that it is a useful evaluation setting, in which the

results of systems can be interpreted in terms of the number of generated clusters

and the distribution of target word instances within the clusters. Moreover, Navigli

and Crisafulli (2010) have a presented an application of sense induction to web

search result clustering and showed that the use of WSI improves the quality of

search result clustering and enhances the diversification of search results. This is

another application-oriented evaluation that could be explored in the future.

Another angle for evaluating WSI methods could focus on two important factors

affecting their performance. The first one is the skewness of the distribution of gold

standard senses, and the second is the similarity between gold standard senses. For

the first factor, we presented an evaluation setting in which we split the dataset in

three skewness categories and showed that the ranking of systems (especially in the

supervised evaluation) changes with respect to the level of skewness. For the second

factor, one could measure sense similarity in different ways (e.g. in a distributional

similarity framework or by exploiting WordNet-type similarity measures such as

Jiang-Conrath similarity (Jiang and Conrath 1997)), and then assess WSI systems

on their ability to distinguish senses with different levels of similarity.
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