
SEPTEMBER 2013 1

Online Algorithms for Factorization-Based
Structure from Motion

Ryan Kennedy, Laura Balzano, Stephen J. Wright, and Camillo J. Taylor

Abstract

We present a family of online algorithms for real-time factorization-based structure from motion, leveraging a
relationship between incremental singular value decomposition and recently proposed methods for online matrix
completion. Our methods are orders of magnitude faster than previous state of the art, can handle missing data and a
variable number of feature points, and are robust to noise and sparse outliers. We demonstrate our methods on both
real and synthetic sequences and show that they perform well in both online and batch settings. We also provide an
implementation which is able to produce 3D models in real time using a laptop with a webcam.

Index Terms

structure from motion, matrix completion, incremental singular value decomposition

F

1 INTRODUCTION

THE problem of structure from motion — recovering the 3D structure of an object and locations of the
camera from a monocular video stream — has been studied extensively in computer vision. For the rigid

case, many algorithms are based on the seminal work of Tomasi and Kanade [1], in which it was shown that
a noise-free measurement matrix of point tracks has rank at most 3 for an affine camera when the data are
centered at the origin. The 3D locations of all tracked points and camera positions can be easily obtained
from a factorization of this matrix. Due to occlusion, however, the matrix is typically missing many entries,
so standard matrix factorization techniques cannot applied.

Recent work in low-rank matrix completion has explored conditions under which the missing entries in a
low-rank matrix can be determined, even when the matrix is corrupted with noise or sparse outliers [2], [3],
[4], [5]. Most algorithms for matrix completion are static in nature, working with a “batch” of matrix columns.
In this paper, by contrast, we focus on online structure from motion, in which the 3D model of point locations
must be updated in real time as the video is taken. The algorithm must be efficient enough to run in real
time, yet still must deal effectively with missing data and noisy observations. The online problem has received
little attention in comparison to batch algorithms, although online algorithms have been developed for matrix
completion [6] that have shown promise in other real-time computer vision applications [7]. In this paper,
we extend these online algorithms to the problem of rigid structure from motion. Our algorithms naturally
address difficulties that have been observed in this field, specifically: (1) our method is inherently online, (2)
we naturally deal with data that are offset from the origin, (3) we directly deal with missing data, (4) we are
able to handle a dynamically changing number of features, (5) our algorithms can be made robust to outliers,
and (6) our method is extremely fast.

In addition to testing with online data, we compare our methods to batch algorithms, showing that they
are competitive with – and often orders of magnitude faster than – state-of-the-art batch algorithms. To
demonstrate the utility of our approach, we describe a laptop implementation of our algorithm that is able to
create 3D models of objects in real time using video from an attached webcam.

2 RELATED WORK

2.1 Structure From Motion
Much research on the rigid structure-from-motion problem is based on Tomasi and Kanade’s factorization
algorithm [1] for orthographic cameras, and subsequent work [8] that extended its applicability to other camera
models [9], [10], [11], [12], [13], [14]. Comparatively little work has been done on online structure from motion,

• Here I believe we say who we are, who is the corresponding author, etc.

ar
X

iv
:1

30
9.

69
64

v1
 [

cs
.C

V
]

 2
6

Se
p

20
13

SEPTEMBER 2013 2

apart from algorithms that employ batch methods or local bundle adjustment in an online framework [15],
[16].

In [13], Mortia and Kanade proposed a sequential version of the factorization algorithm but cannot deal
with missing data, nor can they handle outliers or a dynamically changing set of features. The approach
of McLauchlan and Murray [17] can handle missing data but uses simplifying heuristics to achieve a low
computational complexity. The related algorithm of Trajković and Hedley [18] dispenses with the heuristics,
but they focus on tracking moving objects within a scene. More recently, Cabral et al. [19] proposed a method
that performs matrix completion iteratively, in an online manner. However, it is difficult to add new features
dynamically, and their approach can be numerically unstable. The algorithm most similar to our own is the
incremental SVD (ISVD) approach of Bunch and Nielsen [20], which has been previously used for sequential
structure from motion by Brand [21]. In Section 4.2 we show how ISVD is related to our algorithms.

2.2 Matrix Completion and Subspace Tracking
Low-rank matrix completion is the problem of recovering a low-rank matrix from an incomplete sample of
the entries. It was shown in [3], [22] that under assumptions on the number of observed entries and on
incoherence of the singular vectors of this matrix with respect to the canonical coordinate axes, the nuclear
norm minimization convex optimization problem solves the NP-hard rank minimization problem exactly.
Since this breakthrough, a flurry of research activity has centered around developing faster algorithms to
solve this convex optimization problem, both exact and approximate; see [23], [24] for two examples. The
online algorithm Grouse [6] (Grassmannian Rank-One Update Subspace Estimation) outperforms all non-
parallel algorithms in computational efficiency, often by an order of magnitude, while remaining competitive
in terms of estimation error.

The Grouse algorithm was also developed for low-dimensional subspace tracking, which has been an active
area of research. Comprehensive reference lists for complete-data adaptive methods for tracking subspaces
and extreme singular values and vectors of covariance matrices can be found in [25], [26]; the authors discuss
methods from the matrix computation literature as well as gradient-based methods from the signal processing
literature.

A useful extension of these algorithms is toward “Robust PCA,” in which we seek to recover a low-rank
matrix in the presence of outliers. This work has had application in computer vision, decomposing a scene
from several video frames as the sum of a low-rank matrix of background (which represents the global
appearance and illumination of the scene) and a sparse matrix of moving foreground objects [4], [27]. The
algorithm Grasta [7], [28] (Grassmannian Robust Adaptive Subspace Tracking Algorithm) is a robust extension
of Grouse that performs online estimation of a changing low-rank subspace while subtracting outliers.

3 PROBLEM DESCRIPTION

Given a set of points tracked through a video, the measurement matrix W is defined as

W =

x1,1 . . . x1,m

...
. . .

...
xn,1 . . . xn,m

 , (1)

where xi,j ∈ R1×2 is the projection of point i in frame j, giving W a dimension of n × 2m, where n is the
number of points and m is the number of frames. If we assume that the data are centered at the origin, then
in the absence of noise this matrix has rank at most 3 and can be factored as

W = S̃M̃T , (2)

where S̃ is the n×3 structure matrix containing 3D point locations, while M̃ is the 2m×3 motion matrix, which
is the set of affine camera matrices corresponding to each frame [1]. Data that are offset from the origin have
an additional translation vector τ ; we can write

W =
[
S̃ 1

] [
M̃ τ

]T
= SMT , (3)

where W now has rank at most 4 and the constant ones vector is necessarily part of its column space. We use
this fact to naturally deal with offset data in our algorithms (Section 5.1).

In the presence of noise, one can use the singular value decomposition (SVD) [1] in order to find S and
M such that SMT most closely approximates W in either the Frobenius or operator norm. In this paper we
address the problem of online structure from motion in which we have an estimated factorization at time t
— Ŵt = ŜtM̂

T
t — and wish to update our estimate at time t+ 1 as we track points into the next video frame.

SEPTEMBER 2013 3

The new information takes the form of two additional columns for Wt, leading to successive updates of the
form Wt+1 =

[
Wt vt

]
. The algorithm for updating the approximate factorization must be efficient enough

to be used in real time, able to handle missing data as points become occluded, and able to incorporate new
points.

4 MATRIX COMPLETION ALGORITHMS FOR SFM
4.1 The Grouse Algorithm [6]
Here we review the Grouse algorithm in the context of structure from motion in order to set the stage for our
proposed algorithms, which are given in Section 4.2.

As in Section 3, we use the subscript t to denote values at time t. Let nt be the number of tracks started
up to time t and Ut ∈ Rnt×4 be an orthogonal matrix whose columns span the rank-4 column space of the
measurement matrix Wt, and let vt be a new column such that Wt+1 =

[
Wt vt

]
. (We consider the two

new columns provided by each video frame one at a time.) The indices of vt that are observed are given by
Ωt ⊆ {1, . . . , nt} such that vΩt and UΩt are row submatrices of vt and Ut corresponding to Ωt.

The Grouse algorithm [6] measures the error between the current subspace-spanning matrix Ut and the new
vector vt using the `2 distance

E(UΩt
, vΩt

) = ‖UΩt
wt − vΩt

‖22, (4)

where1

wt = U+
Ωt
vΩt

(5)

is the set of weights that project vΩt
orthogonally onto the subspace given by UΩt

. We would like to replace
Ut by an updated orthogonal matrix of the same dimensions, that reduces the error E in accordance with
the new observation vt. Denoting by rt the residual vector for the latest observation, we define the subvector
corresponding to the indices in Ωt by

rΩt = vΩt − UΩtwt, (6)

and set the components of rt whose indices are not in Ωt to zero. We can express the sensitivity of the error
E to Ut as follows:

∂E
∂Ut

= −2rtw
T
t , (7)

Grouse essentially performs projected gradient descent on the Grassmann manifold, taking a step in the
negative gradient direction while staying on the manifold to maintain orthonormality. For details, see [6].

Because it is known a priori that rank(W) ≤ 4, Grouse can be applied directly to the factorization problem,
but there are several issues that prevent Grouse from being easily used for online structure from motion. First,
Grouse only maintains an estimate of the column space of Wt, so the corresponding matrix Rt ∈ R2mt×4 for
which Ŵt = UtR

T
t must be computed whenever a final reconstruction is needed. This can be a problem for

online applications since it requires keeping all data until the algorithm is complete. Additionally, the choice
of a critical parameter in Grouse — the step size for gradient descent — can affect the rate of convergence
strongly. In the following section, we take advantage of a recent result on the relationship between Grouse
and incremental SVD to resolve these difficulties.

4.2 The Incremental SVD (ISVD) Formulation
The incremental SVD algorithm [20] is a simple method for computing the SVD of a collection of data by
updating an initial decomposition one column at a time. Given a matrix Wt of rank k whose SVD is Wt =
UtΣtV

T
t , we wish to compute the SVD of a new matrix with a single column added: Wt+1 =

[
Wt vt

]
. Defining

wt = UT
t vt and rt = vt − Utwt, we have

Wt+1 =
[
Ut

rt
‖rt‖

] [
Σt wt

0 ‖rt‖

] [
V T
t 0
0 1

]
, (8)

where one can verify that the left and right matrices are still orthogonal. We compute an SVD of the center
matrix: [

Σt wt

0 ‖rt‖

]
= Ũ Σ̃Ṽ T , (9)

1. Our notation A+b denotes the least-residual-norm solution to the least-squares problem minx ‖Ax− b‖22, obtainable from a singular
value decomposition of A or a factorization of ATA.

SEPTEMBER 2013 4

where Ũ , Σ̃, and Ṽ are of size (k + 1) × (k + 1). If only the first k singular vectors are needed, then as a
heuristic the smallest singular value and its associated singular vectors can be dropped. Let Û , Σ̂, and V̂
be the resulting (k + 1) × k, k × k and (k + 1) × k matrices. The updated rank-k SVD estimate is given by
Wt+1 = Ut+1Σt+1V

T
t+1, where

Ut+1 =
[
Ut

rt
‖rt‖

]
Û ; Σt+1 = Σ̂ ; Vt+1 =

[
Vt 0
0 1

]
V̂ . (10)

In the case of missing data when only entries Ωt ⊆ {1, . . . , nt} are observed, we can define the weights and
residual vector in these update formulae as in Equations (5) and (6), respectively.

We now examine the relationship of this algorithm to Grouse, in the context of SFM. Let Ŵt = UtR
T
t be

an estimated rank-4 factorization of Wt such that Ut has orthonormal columns. Given a new column vt with
observed entries Ωt, if wt and rt are the least-squares weight and residual vector, respectively, defined with
respect to the set of observed indices Ωt as in Equations (5) and (6), then we can write[

UtR
T
t ṽt

]
=
[
Ut

rt
‖rt‖

] [I wt

0 ‖rt‖

] [
Rt 0
0 1

]T
, (11)

where ṽt ∈ Rnt and the subvector of ṽt corresponding to Ωt is set to vΩt
, while the remaining entries in vt are

imputed as the inner product of wt and the rows i /∈ Ωt of Ut. Stated again in mathematics, letting [ṽt]i refer
to the ith component of the vector ṽt, we have:

[ṽt]i :=

{
[vt]i i ∈ Ωt

[Utwt]i i ∈ ΩC
t
.

Define the SVD of the center matrix to be [
I wt

0 ‖rt‖

]
= Ũ Σ̃Ṽ T . (12)

Let Û be the 5× 4 matrix obtained by dropping the last column of Ũ , corresponding to the smallest singular
value of Σ̃. Similarly, let V̂ be 5 × 4 matrix resulting from dropping the last column of Ṽ , and let Σ̂ be the
4× 4 diagonal matrix obtained by dropping the last column and row from Σ̃.

In [29], it was shown that updating Ut to

Ut+1 =
[
Ut

rt
‖rt‖

]
Û (13)

is equivalent to Grouse for a particular data-dependent choice of step size. Additionally, combining Equa-
tions (11) and (12), Rt is updated as

Rt+1 =

[
Rt 0
0 1

]
V̂ Σ̂. (14)

The result is a new rank-4 factorization Ŵt+1 = Ut+1R
T
t+1. This algorithm is again described as Algorithm 1

below.
The advantages of this method are two-fold. First, by updating both U and R simultaneously, there is no

need to calculate R when a reconstruction is needed. Instead, we keep a running estimate of both U and
R; estimates of the motion and structure matrices can be easily found at any point in time. We thus have
a truly online SFM approach because we no longer need to store the entire observation matrix W in order
to solve for R. Keeping a subset of the data is still useful so that old data can be revisited, but this can be
limited to a fixed amount if memory becomes an issue. Second, this formulation uses an implicit step size;
we no longer are required to specify a step size as in the original Grouse formulation, although the residual
vector can still be scaled to affect the step size if needed. In Section 6.2, we show that the parameter-free
algorithm outperforms other online SFM algorithms on real data. In Section 6.1, we show that the scaled
version markedly outperforms all other batch algorithms for SFM on both real and synthetic data in terms of
both error and speed.

4.3 Robust SFM
The Grasta algorithm [7], [28] is an extension of Grouse which is robust to outliers. Instead of minimizing the `2
cost function given in Equation (4), Grasta uses the robust `1 cost function Egrasta(UΩt

, vΩt
) = ‖UΩt

wt− vΩt
‖1.

Grasta estimates the weights wt of this `1 projection as well as the sparse additive component using ADMM [30]
and then updates Ut using Grassmannian geodesics, replacing rt with a variable Γt which is a function of the
sparse component and the `1 weights [7]. Thus, we can use these wt and Γt in place of wt and rt in the ISVD
formulation of Grouse (Section 4.2), resulting in an ISVD formulation of Grasta.

SEPTEMBER 2013 5

4.4 The Resulting Family of Algorithms
The algorithms that we have presented so far make up a family of algorithms that can be applied to SFM in
various circumstances. Both Grouse and Grasta are studied here, as well as the ISVD versions which carry
forward an estimate for the singular values Σ.

To obtain a final variant within this family, we scale the residual norm in (12) by some value αt before
taking its SVD: [

I wt

0 αt‖rt‖

]
= Û Σ̂V̂ T . (15)

This scaling provides us with more control over the contribution of the residual vector to the new subspace
estimate. In our experiments, we took αt to be decreasing with t. This scaling is useful in the batch setting,
but with online data we found that no scaling performs best.

We present in Algorithm 1 one iteration of the algorithm from which our family of algorithms is derived.
In Table 1 the reader will find a description of all proposed algorithms relative to this meta-algorithm, along
with their names as used in the experimental results.

Algorithm 1 One Iteration of the Meta-Algorithm

At time t, given Ut, an nt× k (the rank k = 4 for this paper) orthonormal matrix, Rt, an mt× k matrix, and
scaling parameter αt ;
Take the new column vΩt

with only points indexed by Ωt observed;
Define

wt := arg min
w
‖UΩt

w − vΩt
‖ ; (16)

Define

[ṽt]i :=

{
[vt]i i ∈ Ωt

[Utwt]i i ∈ ΩC
t

; pt := Utwt ; rt := ṽt − pt; (17)

Noting that [
UtR

T
t ṽt

]
=
[
Ut

rt
‖rt‖

] [I wt

0 ‖rt‖

] [
Rt 0
0 1

]T
we compute the SVD of the update matrix with singular values in decreasing order:[

I wt

0 αt‖rt‖

]
= ŨtΣ̃tṼ

T
t , (18)

Define Ût to be the (k+ 1)× k matrix obtained by removing the last column from Ũt. Similarly, remove the
last column of Ṽt to obtain V̂t and remove the last column and row from Σ̃t to obtain the k× k matrix Σ̂t.
Set

Ut+1 :=
[
Ut

rt
‖rt‖

]
Ût . (19)

Set
Rt+1 =

[
Rt 0
0 1

]
V̂tΣ̂t. (20)

The result is a new rank-k factorization Ŵt+1 = Ut+1R
T
t+1.

5 IMPLEMENTATION

5.1 The All-1s Vector
A few more issues need to be addressed for implementation of Grouse for SFM. The first issue is to exploit
the fact that the constant vector of ones, which we will denote as 1, should always be in the column space
of Wt and thus should be in the span of any estimate Ut of the column space of Wt, since the points may

SEPTEMBER 2013 6

A Family of Matrix Completion SFM Algorithms

Grouse (`2 cost) Grasta (`1 cost)

Track singular values Σ Eqns (9),(10), (9),(10), using wt from ADMM, and replacing rt with Γt [7],
“isvd” “isvd-grasta”

Use Σ = I and Eqns (18),(19),(20), (18),(19), (20) using wt from ADMM, and replacing rt with Γt [7],
setting αt = 1 “grouse” “grasta”

Use Σ = I and scale residual Eqns (18),(19),(20) (18),(19),(20) using wt from ADMM, and replacing rt with Γt [7],
by αt ∝ 1

t
“grouse (scaled)” “grasta (scaled)”

TABLE 1: Update steps for our family of matrix completion algorithms for structure from motion. The names
in quotes correspond to names used in our experiments.

be offset from the origin. Without loss of generality, suppose that Ut has the ones-vector as its last column
(appropriately scaled), so that

Ut =
[
Ūt 1/

√
nt
]
, Rt =

[
R̄t τt

√
nt
]
. (21)

Here τt is the corresponding translation vector, which is the (scaled) last column of Rt. Similarly, let wt =[
w̄t

T γt
]T . The derivative of the error E in Equation (4) with respect to just the first three columns is

∂E
∂Ūt

= −2rtw̄t
T . (22)

By not considering the derivative of E with respect to the ones vector it will remain in the span of U , since
the Grouse update will be applied only to Ũ . Our Grouse update for structure from motion is obtained by
first setting

Ūt+1 =
[
Ūt

rt
‖rt‖

]
Ũ , (23)

R̄t+1 =

[
R̄t 0
0 1

]
Ṽ Σ̃ , (24)

τt+1 =

[
τt

γt/
√
nt

]
, (25)

(where Ũ , Σ̃, and Ṽ are defined as in Equation (12) using w̄t), and then dropping the last column of Ūt+1

and R̄t+1. Because the residual vector rt is still based on the full matrix Ut, including the ones-vector, rt will
necessarily be orthogonal to the ones-vector. Therefore, since

Ut+1 =
[
Ūt+1 1/

√
nt
]
,

Ut+1 will retain the ones-vector in its span and will still have orthonormal columns.

5.2 Adding New Points
In online structure from motion, we are initially unaware of the total number of points to be tracked and need
to account for newly added points as the video progresses. If Ut ∈ Rnt×4 is the current subspace estimate,
then new points will manifest themselves as additional rows of Ut. However, when updating Ut, we have to
make sure that the columns of Ut remain orthonormal and the last column continues to be the vector of ones.
We thus perform the following update when each new point is added, where we increment nt+1 = nt + 1 so
that the columns of Ut remain orthonormal:

Ut ←
[
Ūt 1/

√
nt + 1

0 1/
√
nt + 1

]
. (26)

5.3 Updating Past Points
The Grouse update for structure from motion is fast enough that many updates can be done for each new
video frame. It is therefore advantageous to be able to revisit old frames and reduce the error more than
would be possible using a single pass over the frames. Using the original Grouse formulation described in
Section 4.1, we simply run additional Grouse updates using past columns of W . This does not work in the new

SEPTEMBER 2013 7

online formulation, where we also keep track of the matrix Rt, since running another Grouse update will add
a new row to Rt. Instead, we simply drop the associated row of Rt before the update and replace it with the
resulting new row. Because we do not impose any orthogonality restrictions on the matrix Rt, no correction is
needed. In our experiments, however, we also compare to ISVD, which requires that the the right-side matrix
be orthogonal. In this case, we first “downdate” our SVD using the algorithm given by Brand [31] before
performing an update.

6 EXPERIMENTS

We used three different datasets for comparison: the Dinosaur sequence from [32], the Teddy Bear sequence
from [14], and a sequence of a Giraffe that we created ourselves. The Dinosaur sequence consists of 4983
point tracks over 36 frames. We use the full data matrix and do not remove low-quality tracks. The Teddy
Bear sequence has 806 tracks over 200 frames and the Giraffe has 2634 tracks over 343 frames. The three
sequences have measurement matrices that are missing 91%, 89%, and 93% of their entries, respectively. Our
reconstruction results for these datasets are illustrated in Figure 1. Since no ground truth is available, we
report 2D RMSE error. We found this error measure to be a good indicator of the quality of the reconstruction,
and results were similar to a synthetic cylinder dataset for which 3D RMSE errors could be calculated. All 3D
reconstructions were created by imposing the standard scaled-orthographic metric constraints.

6.1 Batch SFM
We first consider the batch or offline setting where the entire measurement matrix W is input. In this section
we focus on the scaled version of our algorithms, because these allow us to diminish the stepsize with
continuing passes over the data, guaranteeing more stable convergence. We compare the scaled versions of
our algorithms to pf [33], dn [10], ga [12], csf [11] and balm [34]. For balm, we used the scaled-orthographic
projector. Each algorithm was run until convergence. All of the methods we compared to are in some way
iterative and require initialization, so in order to fairly compare across different methods, we initialized each
algorithm to the same random subspace and averaged over 5 random initializations.

Results are shown in Figure 2, where we plot the root-mean-squared error of each algorithm with respect
to the measurement matrix over time. Notice that our algorithm grouse (scaled) converges significantly
faster than most other batch algorithms, with pf being the only competitor in terms of convergence rate.
However, we found that pf was sensitive to initial conditions and did not always converge to the same
accuracy as grouse, especially for the Dinosaur sequence (Figure 2a). grouse also outperforms the more
robust grasta. For real datasets, then, rather than using a robust algorithm such as grasta, it may be
preferable to manually remove any extreme outliers and use the faster grouse algorithm, especially if the
data is of relatively high quality to begin with.

6.1.1 3D Errors
We ran all batch algorithms for 60 seconds on the Synthetic Cylinder. The resulting reconstructions for grouse
and damped-newton (which was the best algorithm from the literature after 60 seconds) are shown in Figure 4.
Surprisingly, no other algorithm was able to fully reconstruct the cylinder, which has relatively little noise,
even after a full minute of computation. In fact, not all algorithms converged within the full minute, though
they may reach lower errors if given more time or a better initial point. In particular, the damped-newton
method shown in Figure 4b converged after 3.5 minutes to the correct cylinder. We contend, however, that
the slowness of these algorithms would make it difficult to use them for a real-time application. In contrast,
our method converges rapidly to a good solution from a completely random initialization.

6.1.2 Large Dataset Experiment
To test our algorithm on a large dataset and directly compare to [34], we used the Venice dataset from Agarwal
et. al [35], as modified in [34]. The 3D model was projected onto 100 random orthographic cameras, producing
a measurement matrix of size 939551×200 from which 90% of the entries were randomly removed. We measure
the error as ‖S − Sgt‖F /‖Sgt‖F , where S is the resulting 3D reconstruction and Sgt is the ground-truth 3D
model. The algorithm of [34] reported a reconstruction error of 6.67%, which grouse achieved within 50
seconds. grouse had reduced the error to 2.48% after 2 minutes, and to 1.37% after 10 minutes.

SEPTEMBER 2013 8

(a) Dinosaur

(b) Teddy Bear

(c) Giraffe

Fig. 1: Dinosaur, Teddy Bear and Giraffe datasets used in our experiments. We show one video frame and the
reconstruction from our online algorithm as viewed from the estimated camera model of each frame. Color
indicates depth.

6.2 Online SFM
For online structure-from-motion, we evaluate our algorithm grouse along with its robust counterpart grasta,
and also evaluate the variants of both algorithms in which residual vectors for past frames are scaled (grouse
(scaled) and grasta (scaled)). We also compare to incremental SVD (isvd) and a robust version of
this approach, which we denote isvd-grasta. Our isvd algorithm is the same as in [21].

In [6], it was shown that for a static subspace, the step size for grouse should diminish over time. With our
formulation, we still have control of the step size by scaling the residual; here, at iteration t we scale by the
function C/t for a fixed C. We find that this is important for convergence when grouse is run in batch mode
(Section 6.1). For tests of the online methods, we show results both with and without scaling the residual for
past frames, and do not scale the residual for new frames.

Our algorithms were implemented in Matlab and were initialized by finding all points that were fully
tracked for the first 5 frames and running SVD on this subset of the measurement matrix.

Results for online SFM are shown in Figure 5. Each algorithm was run for enough iterations so that it
maintained a fixed frame rate, which we varied from 1-100 fps. The plots show the root-mean-squared pixel

SEPTEMBER 2013 9

10−1 100 101 102 103 104

100

101

102

103

Time (s)

R
M

SE
 fr

om
 m

ea
su

re
m

en
ts

(a) Dinosaur

10−1 100 101 102 103 104

100

101

102

103

Time (s)

R
M

SE
 fr

om
 m

ea
su

re
m

en
ts

(b) Teddy Bear

10−1 100 101 102 103 104

100

101

102

103

Time (s)

R
M

SE
 fr

om
 m

ea
su

re
m

en
ts

(c) Giraffe

grouse (scaled)
grasta (scaled)
isvd
isvd−grasta
pf
ga
dn
balm
csf

Fig. 2: Comparison of batch SFM algorithms. We show how the root-mean-squared pixel error (RMSE) varies
over time for each algorithm, averaged over 5 random initializations. Note that these results are shown on a
log-log scale. Power-factorization (pf) has lower error in the first second of execution, but grouse (scaled)
converges in 5-10 seconds to lower error than the other algorithms reach after 2+ hours.

error (RMSE) from the measurements after all frames have been processed for a given frame rate. For all
datasets, grouse performed better than either its robust grasta counterpart or the isvd algorithms. The
other methods do eventually catch up to grouse as the frame rate is slowed, but grouse is by far the
best-performing algorithm for frame rates that would correspond to videos streams at 15-30 fps.

6.2.1 Real-time implementation
To demonstrate the utility of our method, we implemented grouse in C++ using OpenCV. Our implementation
uses two threads running on separate cores: one thread reads frames from an attached webcam and tracks
point using the KLT tracker in OpenCV, while the other thread continually runs grouse and incorporates
new data as it becomes available. We used a MacBook Pro with a 2.66 GHz Intel Core 2 Duo processor and
8 GB of memory and a Logitech C270 webcam.

Our implementation was run at 15 fps and we used it to capture and reconstruct a 3D model of a toy
giraffe in real time (Figure 1c). The bottleneck in this process is tracking points between frames, and during
this time grouse completed an average of 205 iterations per frame where each iteration of grouse was run
on a randomly-selected past column of the measurement matrix. We envision this algorithm being useful in
applications where it is desirable to build a 3D model with low-cost hardware, such as at-home 3D printing;
using a simple webcam and a standard computer, we can obtain a 3D model of an object in real-time.

SEPTEMBER 2013 10

Time (s)

3D
 e

rr
or

 (
||S

Time (s)

3D
 e

rr
or

 (
||S

10
−1

10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

grouse (scaled)
grasta (scaled)
isvd
isvd−grasta
pf
ga
dn
balm
csf

Fig. 3: Comparison of batch SFM algorithms on a synthetic cylinder. The matrix is of size 748×1000 with 66.5%
missing data. Let S and Sgt be the reconstructed structure and the ground-truth structure respectively, both
n×3 matrices of 3D point locations. S is aligned with the ground truth Sgt using Procrustes, and then the error
is calculated as ‖S−Sgt‖F /‖Sgt‖F . Results are averages over 5 random initializations. Only grouse(scaled)
and grasta (scaled) are consistently able to reconstruct the cylinder correctly.

(a) grouse
(8.1520× 10−6)

(b) damped-newton
(2.7371× 10−4)

Fig. 4: Reconstructions using grouse and the best algorithm from the literature (damped-newton) for batch
SFM on the Synthetic Cylinder. Each algorithm was given one minute to run. While the grouse solution is
very close to the ground truth, the damped-newton method does not fully wrap into a cylinder. The sum-of-
squares error after Procustes alignment to the ground-truth cylinder is shown in parentheses. Color indicates
depth.

6.3 Effect of Noise
Using synthetic data allows us to systematically investigate the effect of noise on our method. We do so by
generating a noise-free cylinder dataset, and then adding variable amounts of noise to it. The synthetically-
generated cylinder has a radius of 10 pixels and a height of 50 pixels, centered at (50, 50). Two hundred random
points were tracked over 100 frames while the cylinder underwent one full rotation. The measurement matrix
for this cylinder has 66% of its entries missing.

The results in Figure 6a show how our algorithm performs when run in batch when Gaussian noise with
different standard deviations is added. Each algorithm was run for 60 seconds. We plot the resulting mean-
squared pixel error (MSE) from the ground-truth, noise-free, measurement matrix. Similarly, we added sparse
noise uniformly distributed in the interval [−50, 50] to a variable proportion of observations, and show the
results in Figure 6b. When only Gaussian noise is present, we find that the non-robust grouse gives the best
results, although both grouse and grasta perform well. With sparse noise, grasta is preferable.

Because grouse is much faster than grasta, it is better to use grouse if the point tracks are of high
quality. Even when bad tracks are present, due to the speed advantage it may be preferable to improve the

SEPTEMBER 2013 11

100 101 102

100

101

102

Frames per second

Fi
na

l R
M

SE
 fr

om
 m

ea
su

re
m

en
ts

(a) Dinosaur

100 101 102

100

101

102

Frames per second

Fi
na

l R
M

SE
 fr

om
 m

ea
su

re
m

en
ts

(b) Teddy Bear

100 101 102

100

101

102

Frames per second

Fi
na

l R
M

SE
 fr

om
 m

ea
su

re
m

en
ts

(c) Giraffe

grouse

grouse (scaled)

grasta

grasta (scaled)

isvd

isvd−grasta

Fig. 5: Comparison of online SFM algorithms. Each algorithm was run with enough iterations to ensure it
ran at a fixed frame rate. We plot the final root-mean-squared pixel error (RMSE) between the estimated and
actual measurement matrices as the number of frames per second is varied. grouse outperforms all other
versions of our online SFM algorithm.

tracking performance or throw out bad tracks rather than use grasta.

7 DISCUSSION

We have presented a family of online algorithms for factorization-based structure from motion, opening the
door to real-time recovery of 3D structure from a single camera video stream on low-power computers such as
cell phones. Our algorithms have state-of-the-art error performance in orders of magnitude less computation
time for the structure from motion problem. There are many remaining questions for exploration, but one
of immediate importance for the online matrix completion approach to SFM is a better understanding of the
algorithm’s convergence properties and, in particular, their dependence on the sampled observations. Existing
analyses assume that the observed subvector is chosen randomly and independently at each iteration. In
SFM, however, there is a great deal of structure to the visible features over time and the observations are not
independent at each iteration.

REFERENCES
[1] C. Tomasi and T. Kanade, “Shape and motion from image streams under orthography: a factorization method,” International Journal

of Computer Vision, vol. 9, no. 2, pp. 137–154, 1992. 1, 2
[2] E. Candès and T. Tao, “The power of convex relaxation: Near-optimal matrix completion,” IEEE Transactions on Information Theory,

vol. 56, no. 5, pp. 2053 –2080, May 2010. 1

SEPTEMBER 2013 12

10
−1

10
0

10
1

0

1

2

3

4

std. of Gaussian noise

R
M

SE
 fr

om
 g

ro
un

dt
ru

th
 (

60
 s

ec
)

grouse (scaled)
grasta (scaled)

(a) Gaussian noise

0 0.2 0.4 0.6
0

2

4

6

8

% of measurements with noise

R
M

SE
 fr

om
 g

ro
un

dt
ru

th
 (

60
 s

ec
)

(b) Sparse noise

Fig. 6: Effect of noise on our algorithms. In (a), we generate a synthetic cylinder and add a variable level
of Gaussian noise, while in (b) we add uniform random noise in the interval [−50, 50] to a variable fraction
of the measurements. For Gaussian noise, grouse (scaled) slightly outperforms the more robust grasta
(scaled), while grasta (scaled) has a clear advantage when there is sparse noise.

[3] B. Recht, “A simpler approach to matrix completion,” Journal of Machine Learning Research, vol. 12, pp. 3413–3430, 2011. 1, 2
[4] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?” Journal of the ACM, vol. 58, no. 1, pp. 1–37, 2009.

1, 2
[5] E. Candes and Y. Plan, “Matrix completion with noise,” Proceedings of the IEEE, vol. 98, no. 6, pp. 925–936, 2010. 1
[6] L. Balzano, R. Nowak, and B. Recht, “Online identification and tracking of subspaces from highly incomplete information,” in

Communication, Control, and Computing (Allerton). IEEE, 2010, pp. 704–711. 1, 2, 3, 8
[7] J. He, L. Balzano, and A. Szlam, “Incremental gradient on the grassmannian for online foreground and background separation in

subsampled video,” in Computer Vision and Pattern Recognition, June 2012. 1, 2, 4, 6
[8] C. Poelman and T. Kanade, “A paraperspective factorization method for shape and motion recovery,” Pattern Analysis and Machine

Intelligence, vol. 19, no. 3, pp. 206–218, 1997. 1
[9] H. Aanæs, R. Fisker, K. Astrom, and J. Carstensen, “Robust factorization,” Pattern Analysis and Machine Intelligence, vol. 24, no. 9,

pp. 1215–1225, 2002. 2
[10] A. Buchanan and A. Fitzgibbon, “Damped newton algorithms for matrix factorization with missing data,” in Computer Vision and

Pattern Recognition (CVPR), vol. 2. IEEE, 2005, pp. 316–322. 2, 7
[11] P. Gotardo and A. Martinez, “Computing smooth time trajectories for camera and deformable shape in structure from motion with

occlusion,” Pattern Analysis and Machine Intelligence, vol. 33, no. 10, pp. 2051–2065, 2011. 2, 7
[12] R. Guerreiro and P. Aguiar, “3d structure from video streams with partially overlapping images,” in International Conference on Image

Processing, vol. 3. IEEE, 2002, pp. 897–900. 2, 7
[13] T. Morita and T. Kanade, “A sequential factorization method for recovering shape and motion from image streams,” Pattern Analysis

and Machine Intelligence, vol. 19, no. 8, pp. 858–867, 1997. 2
[14] J. Tardif, A. Bartoli, M. Trudeau, N. Guilbert, and S. Roy, “Algorithms for batch matrix factorization with application to structure-

from-motion,” in Computer Vision and Pattern Recognition. IEEE, 2007, pp. 1–8. 2, 7
[15] G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in International Symposium on Mixed and Augmented

Reality. IEEE, 2007, pp. 225–234. 2
[16] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, “Generic and real-time structure from motion using local bundle

adjustment,” Image and Vision Computing, vol. 27, no. 8, pp. 1178–1193, 2009. 2
[17] P. McLauchlan and D. Murray, “A unifying framework for structure and motion recovery from image sequences,” in International

Conference on Computer Vision. IEEE, 1995, pp. 314–320. 2
[18] M. Trajković and M. Hedley, “A practical algorithm for structure and motion recovery from long sequence of images,” in Image

Analysis and Processing. Springer, 1997, pp. 470–477. 2
[19] R. Cabral, J. Costeira, F. De la Torre, and A. Bernardino, “Fast incremental method for matrix completion: an application to trajectory

correction,” in International Conference on Image Processing. IEEE, 2011, pp. 1417–1420. 2
[20] J. R. Bunch and C. P. Nielsen, “Updating the singular value decomposition,” Numerische Mathematik, vol. 31, pp. 111–129, 1978,

10.1007/BF01397471. [Online]. Available: http://dx.doi.org/10.1007/BF01397471 2, 3
[21] M. Brand, “Incremental singular value decomposition of uncertain data with missing values,” European Conference on Computer Vision,

pp. 707–720, 2002. 2, 8
[22] E. Candès and B. Recht, “Exact matrix completion via convex optimization,” Foundations of Computational Mathematics, vol. 9, no. 6,

pp. 717–772, December 2009. 2
[23] R. Keshavan, A. Montanari, and S. Oh, “Matrix completion from noisy entries,” Journal of Machine Learning Research, vol. 11, pp.

2057–2078, July 2010. 2
[24] K.-C. Toh and S. Yun, “An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems,” Pacific

Journal of Optimization, vol. 6, pp. 615–640, 2010. 2
[25] L. Balzano, “Handling missing data in high-dimensional subspace modeling,” Ph.D. dissertation, University of Wisconsin, Madison,

2012. 2
[26] A. Edelman, T. A. Arias, and S. T. Smith, “The geometry of algorithms with orthogonality constraints,” SIAM Journal on Matrix

Analysis and Applications, vol. 20, no. 2, pp. 303–353, 1998. 2

http://dx.doi.org/10.1007/BF01397471

SEPTEMBER 2013 13

[27] G. Mateos and G. B. Giannakis, “Sparsity control for robust principal component analysis,” in Asilomar Conference on Signals, Systems,
and Computers, 2010. 2

[28] J. He, L. Balzano, and J. Lui, “Online robust subspace tracking from partial information,” Arxiv preprint arXiv:1109.3827, 2011. 2, 4
[29] L. Balzano and S. J. Wright, “On grouse and incremental svd,” To appear in the Workshop on Computational Advances in Multi-Sensor

Adaptive Processing (CAMSAP), 2013. 4
[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction

method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–123, 2011. 4
[31] M. Brand, “Fast low-rank modifications of the thin singular value decomposition,” Linear algebra and its applications, vol. 415, no. 1,

pp. 20–30, 2006. 7
[32] A. Fitzgibbon, G. Cross, and A. Zisserman, “Automatic 3d model construction for turn-table sequences,” 3D Structure from Multiple

Images of Large-Scale Environments, pp. 155–170, 1998. 7
[33] R. Hartley and F. Schaffalitzky, “Powerfactorization: 3d reconstruction with missing or uncertain data,” in Australia-Japan Advanced

Workshop on Computer Vision, vol. 74, 2003, pp. 76–85. 7
[34] A. Del Bue, J. Xavier, L. Agapito, and M. Paladini, “Bilinear modeling via augmented lagrange multipliers (balm),” Pattern Analysis

and Machine Intelligence, vol. 34, no. 8, pp. 1496–1508, 2012. 7
[35] S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski, “Bundle adjustment in the large,” in European Conference on Computer Vision.

Springer, 2010, pp. 29–42. 7

