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Abstract

Word Sense Induction (WSI) is an unsuper-
vised learning approach to discovering the dif-
ferent senses of a word from its contextual
uses. A core challenge to WSI approaches
is distinguishing between related and possibly
similar senses of a word. Current WSI evalu-
ation techniques have yet to analyze the spe-
cific impact of similarity on accuracy. There-
fore, we present a new WSI evaluation that
quantifies the relationship between the relat-
edness of a word’s senses and the ability of a
WSI algorithm to distinguish between them.
Furthermore, we perform an analysis on sense
confusions in SemEval-2 WSI task according
to sense similarity. Both analyses for a rep-
resentative selection of clustering-based WSI
approaches reveals that performance is most
sensitive to the clustering algorithm and not
the lexical features used.

1 Introduction

Many words in a language have several distinct
meanings. For example, “earth” may refer to the
planet Earth, dirt, or solid ground, depending on the
context. The goal of Word Sense Induction (WSI) is
to automatically discover the different senses by ex-
amining how a word is used. This unsupervised dis-
covery process produces a sense inventory where the
number of senses is corpus-driven and where senses
may reflect additional usages not present in a pre-
defined sense inventory, such as those for medicine
or law (Dorow and Widdows, 2003). Furthermore,
these discovered senses can be used to automati-
cally expand lexical resources such as WordNet or
FrameNet (Klapaftis and Manandhar, 2010).

Discovering the multiple senses is frequently

confounded by the relationships between a word’s
senses. While homonyms such as “bass” or “bank”
have unrelated senses, many polysemous words
have interrelated senses, with lexicographers of-
ten in disagreement for the number of fine-grained
senses (Palmer et al., 2007). For example, the most
frequent four senses for “law” according to Word-
Net, shown in Table 1, are similar in several aspects
and could be ascribed interchangeably in some con-
texts. The difficulty of automatically distinguishing
two senses is proportional to their similarity because
of the increasing likelihood of the two senses shar-
ing similar contexts.

While the issue distinguishing between related
senses is a recognized issue for Word Sense Dis-
ambiguation (Chugur et al., 2002; McCarthy, 2006),
which uses supervised training to learn sense dis-
tinctions, measuring the impact of sense related-
ness on the harder problem of WSI remains unad-
dressed. The recent SemEval WSI tasks (Agirre and
Soroa, 2007; Manandhar and Klapaftis, 2009) have
provided a standard framework for evaluating WSI
systems, with a controlled training corpus designed
to limit sense ambiguity in the example contexts.
However, given the potential relatedness of a word’s
senses, we view it necessary to consider how WSI
methods perform relative to the degree of contextual
ambiguity. Our goal is therefore to quantify the sim-
ilarity at which a WSI approach is unable to distin-
guish between two senses, which reflects the sense
granularity at which the approach operates.

We propose two new evaluations. The first, de-
scribed in Section 4, uses a similarity-based pseudo-
word discrimination task to measure the discrimi-
nation capability for related senses along a graded
scale of similarity. As a second evaluation, in
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1 the collection of rules imposed by authority
2 legal document setting forth rules governing a particular

kind of activity
3 a rule or body of rules of conduct inherent in human

nature and essential to or binding upon human society
4 a generalization that describes recurring facts or events

in nature

Table 1: Definitions for the top four senses of “law”
according to WordNet

Section 5 we perform an error analysis using the
SemEval-2010 WSI task, examining sense confu-
sion relative to the sense similarities. For both evalu-
ations, we examine twenty different WSI clustering-
based models through combining five feature types
and four clustering algorithms. These models were
selected to be representative of a wide class of exist-
ing algorithms as a way of influence future algorith-
mic directions based on the current model’s perfor-
mance.

2 Clustering Contexts to Discover Senses

Frequently, WSI is treated as an unsupervised clus-
tering problem: The contexts in which a word ap-
pears are clustered in order to discover its senses
(Navigli, 2009). We selected four diverse cluster-
ing algorithms for evaluation based on three crite-
ria: (1) the ability to automatically determine the fi-
nal number of clusters given an upper bound or a
set of parameters, (2) an efficient run time, and (3)
high quality results in either WSI or other fields re-
lated to text analysis. The first criteria is essential
for WSI; the final number of senses must be derived
without supervision in order to reflect the true num-
ber of senses present in the corpus.

K-Means K-Means builds clusters based on the
similarity between two data points. Clusters grow
by assigning data points to the cluster with the most
similar centroid. After every data point is assigned,
each cluster’s centroid is recalculated to be the av-
erage of all the data points assigned to the cluster.
This process repeats until the centroids converge to
a fixed point. We choose initial seeds at random and
use the H2 criterion function (Zhao and Karypis,
2001). Although K-Means is efficient and widely
used, it requires the number of clusters to be spec-
ified a priori. Therefore, we follow the WSI model

of Pedersen and Kulkarni (2006) and use the Gap
Statistic (Tibshirani et al., 2000) to automatically de-
termine the number of clusters.

The Gap Statistic runs K-Means repeatedly with
different values ofK, ranging from 1 to some sen-
sible maximum. The Gap Statistic first induces a
data model from the feature distributions of the ini-
tial dataset and then for eachK, creates a set of arti-
ficial datasets by sampling from the derived model.
K is increased until the “gap”, i.e. the distance be-
tween the objective function of the original dataset
and the average objective function of the artificial
datasets, is larger then the gap for the previousK

value. We calculate the gap using 10 artificial data
sets sampled from the model.

Spectral Clustering Spectral Clustering inter-
prets a dataset’s elements as vertices in graph with
edges based on their similarity (Ng et al., 2001).
Clusters are found by identifying the graph parti-
tion that produces the minimum conductance be-
tween every partition. This can be thought of as
trying to find small islands that are connected by as
few bridges as possible. We refer the reader to (von
Luxburg, 2007) for further technical details. To our
knowledge, only He et al. (2010) have applied spec-
tral clustering to WSI, which was performed on a
Chinese dataset. However, the algorithm used by He
et al. requires the number of clusters to be specified.

We instead use a hybrid spectral clustering algo-
rithm, first applied to information retrieval (Cheng
et al., 2006), that automatically selects the number
of clusters. This algorithm recursively partitions a
dataset in half by finding the cut that produces the
minimum conductance, which builds a tree of par-
titions. This split is done until either every data
point is in its own partition or a maximum number of
partitions is found. Partitions are then dynamically
merged, starting at leaf partitions, based on a cluster-
ing criteria. We use the relaxed correlation criteria
(Cheng et al., 2006), which tries to maximize both
inter cluster similarity and intra cluster dissimilarity.
The final cluttering generated is then the best tree-
respecting partition of the original data set.

Clustering By Committee Pantel and Lin (2002)
found that K-Means clustering folded all features
found in a cluster into the centroid, many of which
are not useful for identifying the desired word sense.
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To overcome this, they proposed a novel cluster-
ing algorithm for WSI, Clustering by Committee
(CBC), which includes only the most distinguishing
features for a cluster into the centroid.

For each context, an initial set of “committees”
is formed by clustering the most similar contexts to
each context, with the resulting committees ranked
to prefer larger, highly similar clusters. The final
set of committees (sense clusters) are selected by re-
cursively identifying the highest ranking committees
that are dissimilar to each other and then repeating
the process for any contexts not similar to existing
committees. In essence, CBC aims to find the clus-
ters that are similar to the largest set of contexts,
while keeping clusters dissimilar from each other.
CBC’s recursion ensures that contexts dissimilar to
the large committees are still grouped into their own
smaller committees, which enables the discovery of
infrequent senses with distinct contexts. We use a
hard sense assignment for each context, i.e., a con-
text is labeled with only one sense according to the
most similar cluster.

Streaming K-Means As WSI moves into induc-
ing senses from Web-scale amounts of data, exist-
ing clustering algorithms that keep all contexts in
memory become impractical. Jurgens and Stevens
(2010a) proposed an on-line hybrid clustering so-
lution using on-line K-Means and Hierarchical Ag-
glomerative Clustering, which automatically de-
cided the number of clusters without retaining all
the contexts. To the best of our knowledge, theirs
is the only work using an on-line approach. We
extend this work by applying a more theoretically
sound online K-Means algorithm, called Streaming
K-Means (Braverman et al., 2011), to WSI. We use
Streaming K-Means to conduct a direct algorithmic
comparison with K-Means in the hopes that online
approaches can be made just as effective as off-line
approaches.

Streaming K-Means processes each data point
only once, thus reducing the memory overhead dra-
matically. Instead of recording each data point, it
immediately assigns each data point to a cluster and
maintainsK·C clusters.C varies as the algorithm
runs, initially being set to 0. When assigning a data
point, it is only assigned to an existing cluster when
their similar is above some threshold, otherwise the

data point becomes the centroid of a new cluster.
OnceC reaches a threshold, based on an estimate of
the number of data points, or the overall K-Means
clustering cost reaches some limit, the centroids are
treated as new data points and re-clustered, with the
goal of merging some centroids. We follow (Jur-
gens and Stevens, 2010a) and cluster the final cen-
troids with Hierarchical Agglomerative Clustering,
with the average link criteria as suggested by (Ped-
ersen and Bruce, 1997).

3 Modeling Context

For each clustering algorithm, we consider five con-
text models that represent the types of lexical fea-
tures used by the majority of WSI approaches.

Co-Occurrence Contexts formed from word co-
occurrence are the most common in WSI algorithms.
For each occurrence of a word, those words within
a certain range are counted as features. Prior work
has used a variety of context sizes, e.g. words in
the same sentence (Bordag, 2006), in nearby lexi-
cal positions (Gauch and Futrelle, 1993), or within a
paragraph-sized context window (Pedersen, 2010).

We consider two co-occurrence context models:
a 5-word and a 25-word window. We note that in
co-occurrence-based word space algorithms, smaller
context sizes have shown to better capture paradag-
matic similarity, while larger sizes capture semantic
associativity (Peirsman et al., 2008; Utsumi, 2010).

Dependency-Relations Dependency parsing cre-
ates a syntax tree where words are directly linked
according to their relation. These links refine co-
occurrence based contexts by utilizing syntactic in-
dications of how words are related. Dependency
parsed features have proven highly effective for
word representations in many NLP applications,
e.g., (Padó and Lapata, 2007; Baroni et al., 2010).
We follow Pantel and Lin (2002) and Dorow and
Widdows (2003) using the sentence as contexts and
all words with a dependency path of length 3 or less,
with the last word and its relation as a feature. We
note that recently Kern et al. (2010) achieved good
WSI performance with only a small, manually-tuned
subset of all relations as context.

Word Ordering Word ordering can provide a
mild form of syntactic information (Jones et al.,
2006; Sahlgren et al., 2008). While other syntac-
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tic features may provide significantly more informa-
tion, word ordering is efficient to compute and pro-
vides an alternative source of syntactic information
for knowledge-lean systems or for languages where
NLP tools are not readily available.

Because we treat word ordering as a syntactic fea-
ture, we limit the context to words occurring in the
same sentence. A feature is the combination of a
co-occurring word and its relative position, i.e. the
same word in different positions is treated as two
separate features.

Parts of Speech Part of speech tagging can pro-
vide a preliminary coarse-grained sense disambigua-
tion of a word’s contextual features, where a word
may have as many senses as it does parts of speech.
For example, consider an occurrence of “house” in
the context of “address” as a noun and verb: “I went
to his house address,” and “I heard the legislator ad-
dress the house.” Labeling “address” with its part
of speech provides for more semantic information
on its meaning, which further constrains the sense
of “house.” Prior work (Pedersen and Bruce, 1997)
has suggested that this information can improve per-
formance, but to our knowledge, the impact of POS
features has not been evaluated in isolation.

Each context is formed from the containing sen-
tence; a feature is a combination of each word and its
part of speech, e.g., “board-NOUN” is distinct from
“board-VERB.”

4 WSI Performance on Related Senses

The proposed methodology measures the ability of a
WSI approach to distinguish between related senses.
However, generating a large corpus with manu-
ally labeled sense assignments and sense similarity
judgements is prohibitively expensive. Therefore,
we employ a pseudo-word discrimination task where
a base word and a second word, itsconfounder,
are replaced throughout the corpus with a pseudo-
word. The objective is then to determine which of
the words was originally present given the context
of an occurrence of the pseudo-word. Due to not
requiring manual annotation, this type of task was
initially proposed as a substitute for word sense dis-
ambiguation (Schütze, 1992; Gale et al., 1992) and
for selectional preferences (Clark and Weir, 2002).

Following the suggestions of Chambers and Ju-

festival laws

offices 0.13660 interests 0.18289
play 0.13751 politics 0.20440
convention 0.20296 governments 0.29125
tournament 0.29007 regulations 0.40761
concerts 0.48348 legislation 0.56112

Table 2: Example confounders for “festival” and
“ laws” and their similarities

rafsky (2010) on designing pseudo-words, pseudo-
words were created from words with the same part
of speech and equal frequency in the training cor-
pus. We selected nouns occurring more than 5,000
times in a 2009 Wikipedia snapshot and then drew
5,000 contexts for each. The snapshot was tagged
with the Stanford Part of Speech Tagger (Toutanova
et al., 2003) and parsed with the Malt Parser (Nivre
et al., 2006).

To evaluate the impact of sense similarity, pseudo-
words were created from word pairs with a broad
range of lexical similarities. We selected lexical
similarity as an approximation of sense similarity
in order to model the hypothesis that similar senses
may appear in similar contexts. Similarity scores
were calculated using cosine similarity on contex-
tual distributions built from a sliding±2 word win-
dow over the Wikipedia corpus. Table 2 highlights
several example confounders and their similarities
with the base term. In total, we generated 5000 term-
confounder pairs from 98 base terms, with a mean of
51 confounders per term.

All clustering parameters were chosen using the
default values provided in the original papers. K-
means and Streaming K-Means were both set with
a maximum of 15 clusters, with the final number of
clusters being determined by the data itself.

4.1 Evaluation

The pseudo-word’s senses are induced from a train-
ing segment using each feature and clustering com-
bination. Given that both words making up the
pseudo-word may be polysemous, more than two
senses may be induced. Each sense cluster is la-
beled according to which of the original words was
present in the majority of its contexts. For testing,
each instance of the pseudo-word in a previously
unseen context is assigned the label of the cluster
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(c) Dependency Relations
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(e) Parts of Speech (f)

Figure 1: Pseudo-word discrimination performance

to which it is most similar. We perform five-fold
cross-validation, using 4,000 contexts for training
and 1,000 contexts for testing. Discrimination ac-
curacy is reported as the average of all five runs.
Since an equal number of contexts are used for each
term, the base line accuracy of a most frequent sense
model is 50% for each pseudo-word.

4.2 Results and Discussion

Figure 1 shows the discrimination accuracy relative
to the similarity of a base pair and confounder, for
each feature and clustering algorithm combination.
Similarity values were binned at the 0.01 level with
a mean of 39.0 scores per bin (median=11). Be-
cause most word pairs are not related, the distri-
bution of similarity values is biased towards lower
values. Therefore, we omit similarity ranges above
0.5, as too few confounders occurred in that range to
draw reliable conclusions. The standard error (not
shown) is< 1 for all measurements.

The general trends suggests that the clustering al-
gorithm impacts the sense discriminatory ability far
more than the lexical feature choice. Furthermore,
sense similarity affects most clustering algorithms,
with most systems seeing a noticeable performance
drop when pseudo-word similarity is increased just

beyond 0. Performance at high similarity becomes
more variable for all algorithms and features.

For each clustering algorithm, we see dramati-
cally different trends. Streaming K-Means performs
well with co-occurrence based features and it does
poorly when either contexts have too many features,
as in the 25 Window Co-Occurrence feature space,
or the feature space overall is too sparse, as in the
Parts of Speech and Ordering feature spaces.

K-Means with the gap statistic converges to the
most frequent sense baseline for nearly every con-
founder pair. We note that this behavior significantly
differs from that seen in (Pedersen and Kulkarni,
2006), which clustered second-order co-occurrence
vectors rather than the first-order features that we
use. Our analysis showed that the H2 criterion was
responsible for this behavior. A subsequent analy-
sis revealed that K-Means still converged to MFS
for the E1, E2, I1, and I2 criterion functions (Zhao
and Karypis, 2001) as well as when the number of
artificial datasets was increased up to 100. How-
ever, additional tests using the same features on the
SemEval-1 WSI task did not converge to MFS. Fur-
ther investigation is needed to identify the cause of
convergence and what types of data are appropriate
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the Gap Statistic.
Clustering by Committee performs well on most

models, but significantly worse on dependency re-
lation features. A subsequent analysis showed that
CBC generates significantly more clusters than all
other models. For the POS, 5 word window, and 25
window Co-Occurrence feature spaces, CBC gener-
ated between 205 and 247 clusters on average, per
word. With the order feature space, CBC generated
1087 clusters per word. However, when paired with
dependency relation features, the number of clusters
drops to only 78 per word.

Spectral Clustering is most affected by sense
similarity, performing competitively for unrelated
senses but dropping significantly when words be-
come even slightly similar. This performance drop
is seen across all features. Performance is therefore
low, with the exception of dependency relations.

Overall, these results suggest that sense related-
ness is a important factor in WSI performance and
its impact should be considered in future WSI eval-
uations. A potential next step is to vary the pro-
portion of contexts from the confounder. The cur-
rent method intentionally uses a uniform distribu-
tion to avoid potential bias; however, word sense dis-
tributions are rarely equal, and a varied distribution
would more closely model real world distributions.
Similarly, the current method tested only two senses,
whereas an n-way disambiguation between multiple
confounders should also provide further insight into
a WSI approach’s discriminatory abilities.

5 Sense Confusion in SemEval-2 Task 14

As a second experiment, we analyze incorrect sense
assignments on SemEval-2 Task 14 (Manandhar et
al., 2010) to measure whether sense-relatedness bi-
ases which sense was incorrectly selected. For WSI
systems, a similarity bias would indicate that similar
senses are more likely to be incorrectly identified as
a single sense.

We summarize Task 14 as follows. Systems are
provided with an unlabeled training corpus con-
sisting of 879,807 multi-sentence contexts for 100
polysemous words, comprised of 50 nouns and 50
verbs. Systems induce sense representations for tar-
get words from the training corpus and then use
those representations to label the senses of the tar-
get words in unseen contexts from a test corpus.

The induced senses are then evaluated against the
gold standard labels OntoNotes (Hovy et al., 2006)
senses labels for the test corpus. For our evaluation,
we use both the two contrasting unsupervised mea-
sures, the paired FScore (Artiles et al., 2009) and the
V-Measure (Rosenberg and Hirschberg, 2007), and
a supervised measure. For each metric, we use the
evaluation framework provided by the organizers of
SemEval-2 Task 14.1

The V-Measure rates the homogeneity and com-
pleteness of a clustering solution. Solutions that
have word clusters formed from one gold-standard
sense are homogeneous; completeness measures the
degree to which a gold-standard sense’s instances
are assigned to a single cluster. The paired FScore
measures two types of overlap of a solution and the
gold standard in cluster assignments for all in pair-
wise combination of instances. This score tends
to penalize solutions with many small clusters and
highly heterogeneous clusters (Manandhar and Kla-
paftis, 2009).

The supervised evaluation measures the recall
when building a Word Sense Disambiguation classi-
fier from the induced senses. The WSI system labels
the entire corpus, which is then divided into train-
ing and test portions. The sense labels in the train-
ing portion are used to construct a mapping from in-
duced senses to the gold standard OntoNotes labels.
This mapping is then evaluated for the induced la-
bels in the test. We report the scores for the 80%
training and 20% testing scenario.

5.1 Evaluation

We expect that if sense similarity is a factor in sense
confusion, the probability of confusion will increase
with sense similarity. Therefore, we measure the
probability of labeling an instance with the incorrect
OntoNotes sense relative to the sense similarity with
the gold standard sense.

In order to calculate the incorrect assignments,
the induced senses must be mapped to OntoNotes
senses. Each induced sense,si, is mapped to the
OntoNotes sense that occurs most frequently among
the instances in the test corpus that are assigned in-
duced sensesi. We note that this labeling process
is only an approximate solution to assigning gold
standard labels to induced senses. A more robust

1
http://www.cs.york.ac.uk/semeval2010_WSI/
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(a) Streaming K-means
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Figure 2: The error frequency distributions for confusing the correct sense with another sense of the given
similarity when using a 5-word co-occurrence window as context. Dashed lines indicate the null models.

labeling could take into account the distribution of
gold standard senses labels in the corpus from which
the senses are induced; however, such labels are not
available in the Task 14 training corpus.

For each incorrect sense assignment, we mea-
sure the similarity of the confused sense to the
correct sense. To our knowledge, no work has
been done on calculating sense similarity within the
OntoNotes sense hierarchy.2 Therefore, we approxi-
mate OntoNotes sense similarity by using sense sim-
ilarity in the WordNet ontology, on which has many
similarity measures have been defined. Following
Budanitsky and Hirst (2006), we estimate the Word-
Net sense similarity using the method proposed by
Jiang and Conrath (1997).

Each OntoNotes sensesi is mapped to a set of
WordNet 3.0 sensesSi = {wn1, . . . , wnn} using

2We suspect that this is in part because a word’s OntoNotes
senses have been designed to minimize sense confusion.

the sense mapping provided by the CoNLL shared
task.3 The sense similarity for two OntoNotes
senses is computed using one of two methods:

sim =
1

|S1||S2|

∑

wni∈S1,wnj∈S2

JCN(wni, wnj),

(1)
or

sim = argmax
wni∈S1,wnj∈S2

JCN(wni, wnj), (2)

where JCN indicates the Jiang-Conrath similar-
ity of two WordNet senses, calculated using Word-
Net::Similarity (Pedersen et al., 2004). Eq. 1 com-
putes similarity as the average similarity of all pair-
wise WordNet sense combinations, while Eq. 2 uses
the highest similarity. The resulting OntoNote sense
similarities range from 0 to 1, with 1 being maxi-
mally similar. We excluded 10 words from the test

3
http://conll.bbn.com/index.php/data.html
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Context Feature Clustering V-Measure F-Score Recall # Clusters Purity GoF p-Value

5-Word Co-Occurrence

Streaming 6.7 55.5 54.8 4.74 0.103 p< 2.07e-37
Spectral 10.8 39.2 54.3 8.41 0.194 p< 1.11e-25

CBC 23.9 8.2 39.5 39.7 0.665 p< 0.916
K-Means 2.5 61.8 55.6 1.68 0.020 p< 1.20e-37

25-Word Co-Occurrence

Streaming 2.6 61.7 55.5 1.7 0.020 p< 1.20e-37
Spectral 5.0 48.6 55.9 3.3 0.083 p< 4.36e-32

CBC 21.3 11.6 45.0 32.2 0.561 p< 0.011
K-Means 2.5 61.8 55.6 1.68 0.020 p< 1.20e-37

Dependency Relations

Streaming 3.0 61.5 55.6 1.9 0.022 p< 7.33e-38
Spectral 8.5 46.8 55.3 5.9 0.134 p< 5.45e-14

CBC 12.9 31.3 52.4 11.4 0.259 p< 4.07e-12
K-Means 2.5 61.8 55.6 1.6 0.020 p< 1.20e-37

Word Order

Streaming 10.8 43.1 54.2 10.8 0.300 p< 4.46e-24
Spectral 12.2 32.4 53.7 10.0 0.26 p< 3.27e-20

CBC 27.2 11.8 30.3 54.9 0.857 p < 0.999
K-Means 2.5 61.8 55.6 1.6 0.020 p< 1.20e-37

Parts of Speech

Streaming 6.6 53.0 54.5 4.7 0.117 p< 1.06e-39
Spectral 10.9 39.4 53.7 8.3 0.201 p< 2.38e-13

CBC 23.8 08.0 40.1 39.7 0.678 p< 1.04e-2
K-Means 2.5 61.8 55.6 1.6 0.020 p< 1.20e-37

SemEval-2 Most Frequent Sense 0.0 63.4 58.6 1.0 0.0 p< 4.244e-23

Best SemEval-2 FScore 0.0 63.3 58.6 1.0 0.0 p< 2.893e-23

Best SemEval-2 VMeasure 16.2 26.7 58.3 10.7 0.367 p< 1.956e-14

Best SemEval-2 Supervised Recall 15.7 49.7 62.4 11.5 0.187 p< 8.910e-19

Table 3: Unsupervised and Supervised scores on the SemEval-2010 WSI Task for each feature and clustering
models, with reference scores for the top performing systems for each evaluation shown below.

set that did not have mappings from OntoNotes to
WordNet 3.0 senses, and additional 23 words that
only had two senses, which prevented testing for
a similarity bias. The remaining 67 words yielded
4,097 test instances for evaluation.

Each instance of the test corpus was tested for
sense confusion, recording the similarity of the in-
correctly assigned sense and the gold standard sense.
The resulting incorrect assignments are transformed
into an error distribution according by accumulating
error counts into similarity bins where each bin has a
range of 0.02. We analyze the WSI systems defined
in section 4 as well as the results of three systems
that participated in Task 14 and scored the highest
on the paired FScore, V-measure, or Supervised Re-
call evaluations.

To quantify the impact, we compare each system’s
error distribution against a null model over the set of
incorrect test instances missed by that system. In

the null model, the incorrect sense for each instance
is selected with uniform probability from the avail-
able senses. This behavior produces a distribution
with no similarity bias. The cumulative error dis-
tribution for the null model is not uniform due to
multiple sense pairings having the same similarity.4

To quantify the difference between a system’s error
distribution and corresponding null model, we cal-
culate the G-test as a measure of Goodness of Fit
(GoF). The resulting p-values reflect the probability
of observing the system’s error distribution if there
was no bias from sense-similarity.

5.2 Results and Discussion

We compare the error analysis against the evalua-
tion measures of Task 14. Table 3 displays the eval-

4Verb senses often have a JCN similarity of 0 due to hav-
ing no shared parent within the WordNet verb sense hierarchy,
which results in high frequency distribution around 0.
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uation measures. We also report the average num-
ber of clusters per word, the cluster purity, and the
p-value when using Eq. 2 to measure sense similar-
ity. Figure 2 visualizes the error distributions for the
four clustering algorithms on 5-word co-occurrence
features. The distributions in Figure 2 are represen-
tative of those of the other context models, which we
omit due to space. Each plot reflects the frequency
at which a sense with the specified similarity was
confused for the correct sense.

The low p-values in Table 3 indicate a significant
deviation from the null model. Examining the shape
of the error distribution in Figure 2 reveals a no-
ticeable skew towards higher similarity when an in-
correct sense assignment is made. This distribution
skew is also consistent for both similarity measures.

Comparing the Task 14 results in Table 3 to the
sense confusion trends in in Figure 2 highlights an
interesting pattern among the various models: as the
number of induced sense clusters increases, the er-
ror distribution better approximates the null model.
Specifically, the GoF for all models was well corre-
lated with cluster purity (ρ=0.66), and the number of
clusters (ρ=0.76). CBC generated the highest num-
ber of clusters and has a sense confusion distribution
that closely matches the null model, indicating that
it is less affected by sense similarity. In compari-
son, all of the Streaming K-Means models, which
have the fewest clusters, differ noticeably from the
null model. Spectral Clustering, which also gener-
ates fewer clusters than CBC, has an observed con-
fusion rate that differs from the baseline. K-Means
again reduces to the MFS baseline.

When comparing along the feature sets, we see
that on average Word Order features generate the
highest V-Measure scores, highest purity, and high-
est p-values for Streaming K-Means and CBC. This
result correlates well with the average number of
features seen per context: Word Order contexts used
0.03% of the feature space while contexts in other
feature spaces used between 0.07% and 0.12% of
the feature space, suggesting that the SemEval mea-
sures are determined in part by feature space den-
sity. Similarly, 25-word co-occurrence features had
the highest percentage of features used per context,
0.12%, and generated the lowest V-Measure, purity
score, and p-value for 3 clustering models.

These scores support another known trend in the

SemEval-2 evaluation: the performance on the V-
Measure is proportional to the number of induced
sense clusters, while the paired FScore is inversely
proportional. But what is surprising is that models
which perform well against the V-Measure also ex-
hibit a smaller sense similarity bias, suggesting that
CBC and similar clustering methods are suitable for
situations where competing senses of a word have a
high degree of overlap.

As a final comparison, we also computed the
sense bias for the top 3 SemEval systems under each
measure. The best of these models are listed in Table
3. We did not find any consistent trends between the
V-Measure, purity, and p-value among these mod-
els. The top F-Scoring models all used either a first
or second order co-occurrence feature space similar
to ours (Kern et al., 2010; Pedersen, 2010), whereas
the top supervised score was achieved by a graph-
based system (Klapaftis and Manandhar, 2008).

6 Future Work and Conclusion

We presented a two evaluation for WSI approaches
and examined the performance of a wide range of
algorithms. The results raise a potential issue for
clustering-based WSI approaches: sense discrimi-
nation degrades notably as the sense relatedness in-
creases. We highlight three potential avenues for
future research. First, this methodology should be
applied to additional WSI models, such as graph-
based (Klapaftis and Manandhar, 2008; Navigli and
Crisafulli, 2010) and probabilistic models (Dinu and
Lapata, 2010; Elshamy et al., 2010). Second, we
plan to extend the analysis to different sense dis-
tributions, varying number of senses, and for hu-
man annotated sense similarity data. Third, this
evaluation makes the simplifying assumption of one
sense per instance; however, Erk et al. (2009) note
that the relations between senses may cause a single
word instance to evoke multiple senses within the
same context. Therefore, a future experiment should
consider how WSI systems might address learning
senses given the presence of multiple, similar senses
for a single instance.

All models, associated data sets, testing frame-
work, and scores have been released as a part of the
open-source S-Space Package (Jurgens and Stevens,
2010b).5

5
http://code.google.com/p/airhead-research/
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