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Abstract

A strategy is used by a participant in a persuasion
dialogue to select locutions most likely to achieve
its objective of persuading its opponent. Such
strategies often assume that the participant has a
model of its opponents, which may be constructed
on the basis of a participant’s accumulated dialogue
experience. However in most cases the fact that an
agent’s experience may encode additional informa-
tion which if appropriately used could increase a
strategy’s efficiency, is neglected. In this work, we
rely on an agent’s experience to define a mecha-
nism for augmenting an opponent model with in-
formation likely to be dialectally related to infor-
mation already contained in it. Precise computa-
tion of this likelihood is exponential in the volume
of related information. We thus describe and eval-
uate an approximate approach for computing these
likelihoods based on Monte-Carlo simulation.

1 Introduction
Agents engaging in persuasion dialogues aim to convince
their counterparts to accept propositions that the latter do
not currently endorse. As one would expect, agents then
strategise based on their assumptions about the beliefs of
their counterparts (opponents). This is widely studied in
terms of opponent modelling. Essentially, an opponent model
(OM) consists of five basic components: an opponent’s be-
liefs; abilities; preferences; objectives, and; strategy. Nu-
merous researchers who deal with the best response problem
in dialogues— optimally choosing which move to make —
rely on opponent modelling for implementing, and employ-
ing strategies [Riveret et al., 2007; 2008; Oren and Norman,
2010; Black and Atkinson, 2011]. The general idea is to rely
on such a model, built from an agent’s experience, for simu-
lating the possible ways based in which a game may evolve.
One may then rely on this simulation to optimally choose,
from a number of options, the most suitable option with re-
spect to one’s goals. Most approaches exploit an agent’s ex-
perience in a somewhat monolithic way, assuming that its op-
ponent’s beliefs can simply be modelled through collecting
the distinct utterances that the latter puts forth in dialogues.

Due to the simplicity of such modelling approaches, the for-
malisation of an OM is usually left implicit. In addition, such
approaches disregard the fact that an agent’s accumulated di-
alogue experience may encode additional information which
could also be used for modelling, and so increasing the effec-
tiveness of strategies that rely on OMs.

In this work, we rely on a simple framework for persua-
sion dialogue with abstract arguments. Participants maintain
OMs which are constantly updated with content (arguments)
obtained through new dialogues. We propose a mechanism
which is used for augmenting such an OM with additional
information that is likely to be associated with information
already contained in the OM. In other words, we attempt to
predict what else is likely to be believed by a particular agent,
given: a) what we currently assume the latter believes, and;
b) what others with similar beliefs know. To do this we rely
on an agent’s general history of dialogues, in which we mon-
itor the times that certain opponent arguments (OAs) follow
after certain others, thus utilising an agent’s experience in a
multifaceted way. For example, let two agents, Ag1 and Ag2,
engage in a persuasion dialogue in order to decide where is
the best place to have dinner:
- Ag1:(A) We should go to the Massala Indian restaurant

since a chef in today’s newspaper recommended it.
- Ag2:(B) A single chef’s opinion is not trustworthy.
- Ag1:(C) This one’s is, as I have heard that he won the na-

tional best chef award this year.
- Ag2:(D) Indian food is too oily and thus not healthy.
- Ag1:(E) It’s healthy, as it’s made of natural foods and fats.

The above dialogue is essentially composed of two lines of
dispute, {A←B←C} and {A←D←E}. Assume then, that
Ag2 engages in a persuasion dialogue with another agent,
Ag3, on which is the best restaurant in town. Let us also
assume that at some point in the dialogue Ag3 cites the news-
paper article, by asserting argument A in the game, as Ag1
did in the previous dialogue. It is then reasonable for Ag2
to expect that to some extent Ag3 is likely to also be aware
of the chef’s qualifications (argument C). Intuitively, this ex-
pectation is based on a relationship between consecutive ar-
guments in the same dispute lines of a dialogue. In this
case, the “chef’s proposition” (A) is defended against B’s at-
tack (i.e., ‘supported’) by “his qualifications” (C), suggesting
some likelihood that awareness of the first implies awareness



of the second. This is also the case for arguments A and E.
However, assuming such a relationship between the chef’s
qualifications (C) and the argument on why Indian food is
considered healthy (E), seems less intuitive, as these argu-
ments belong in different dispute lines, and so do not support
each other. We thus assume that two arguments can be re-
lated if they are found in the same dispute lines of a dialogue,
where this relationship can be understood in terms of the no-
tion of support, e.g., C supports A against B.

One can then rely on an agent’s accumulated dialogue ex-
perience to define a graph in which links between OAs as-
serted in a series of dialogues, indicate support. A participant
may then rely on this graph to augment an OM, by adding to
it arguments which, according to the graph, are linked with
arguments already contained in the OM, and which are thus
likely to be known to that opponent. For quantifying this like-
lihood we rely on how often a certain argument follows after
another in an agent’s history of dialogues. While this is a
simple approach, we believe that it is sufficient for increas-
ing the effectiveness of an agent’s strategising. In the future
we intend to investigate more complex ways for quantifying
this likelihood, accounting for contextual factors such as how
common certain information is, or whether an agent is part of
a certain group having access to shared information, etc.

Summarising, while an agent’s dialogue experience can be
utilised in many ways when modelling its opponents, in most
cases this is neglected. We thus present an applicable method
for updating and augmenting such a model utilising an agent’s
history of persuasion dialogues, making the following three
contributions. In Section 3, we rely on an argumentative per-
suasion dialogue framework (formalised in Section 2) to de-
fine and present two mechanisms responsible for updating
and augmenting an OM. Specifically; 1) Section 3.1 for-
malises a method for building a graph relating supporting ar-
guments, based on an agent’s experience; 2) Section 3.1 also
provides a method for augmenting an agent’s current beliefs
about its opponents’ beliefs based on these support relations,
enabling an agent to additionally account for this information
in its strategizing. Section 4 describes our third contribution;
we define and analyse a Monte-Carlo simulation approach
concerned with the augmentation process, which makes our
approach tractable. We also prove convergence and provide
supporting experimental results.

2 The Dialogue Framework
In this section we describe a framework for argumentation
based persuasion dialogues in which participants exchange
arguments constructed in a common language L. Participants
submit arguments that attack those of their opponent, and we
assume that participants share an understanding of when one
argument attacks another, based on the language dependent
notion of conflict. The arguments A that are submitted, dur-
ing the course of a dialogue are then assumed to be organised
into a Dung framework, AF = (A, C), where C is the binary
relation on A, i.e. C ⊆ A × A. We assume participants take
on the roles of proponent and opponent, where the former
submits an initial argument X, whose claim is the topic of the
dialogue. If X is a justified argument in theAF defined by the

Figure 1: (a) A dialogue tree T where the grey and the white nodes
concern Ag1’s respectively Ag2’s moves, (b) A 1-hop RG mod-
elling approach (c) A 2-hop RG modelling approach.

dialogue, then the proponent is said to have won the dialogue.
We define a dialogue D as a sequence of dialogue moves

< DM0, . . . ,DMn >, where the content of DM0 is the
initial argument for the topic of the dialogue. We assume that
the introduction of moves is contingent upon satisfying cer-
tain conditions, defined by a dialogue protocol, which con-
cern: turntaking; backtracking; the legality of a move, and;
the game’s termination rules. Turntaking specifies the par-
ticipant to move next and the number of dialogue moves she
can make. We assume agents take alternate turns introduc-
ing a single move at a time. We assume multi-reply protocols
which allow participants to backtrack and reply to previous
moves of their interlocutors. Thus, a dialogue D can be rep-
resented as a tree T :
Definition 1 Let D =< DM0, . . . ,DMn > be a dialogue
andM = {DM0, . . . ,DMn} the set of moves in D . Then
T = {M, E} is a dialogue tree with root node DM0, and
arcs E ⊆M×M, such that:
• for two movesDMi &DMj , (DMi,DMj)∈E means

that DMj is DMi’s target (DMi replies to DMj)
• every move inM that is not the target of another move,

is a leaf node
• Each distinct path from DM0 to a leaf node of T , is

referred to as a dispute.
For a tree with m leaf nodes, ∆ = {d1, . . . , dm} is the set

of all disputes in the tree. Each new dispute results from a
backtracking move by either of the participants. An example
is shown in Figure 1(a), where grey’s move DM6 is used as
an alternative reply against white’s move DM1.

The legality of a dialogue move is regulated by explicit
rules that account for the dialogical objective, a participant’s
role, and a participants commitments. The latter comprise a
commitment store (CS) which is updated with the contents
of the moves introduced by a participant during the course of
the dialogue.
Definition 2 The commitment store of an agent Ag partic-
ipating in a dialogue D =< DM0, . . . ,DMn >, at turn



t = 0 . . . n, is a set CSt = {A0, . . . , Ak}, k < n, containing
the arguments introduced into the game by Ag up to turn t,
such that CS0 = ∅, and:

CSt+1 = CSt ∪ Content(DMt+1) (1)

where Content(DM) is the argument moved in DM.

Finally, we assume that each agent engages in dialogues
in which its strategic selection of moves is based on what it
believes its opponent believes. Accordingly each agent main-
tains a model of the beliefs of its potential opponents in terms
of a set of arguments (as in [Oren and Norman, 2010]). Mod-
elling an agent’s goals is out of the scope of this work.

Definition 3 Let {Ag1, . . . , Agν} be a set of agents. Then
for i = 1 . . . ν, the belief base KB of Agi is a tuple KBi =<
A(i,1), . . . ,A(i,ν)> such that for j = 1 . . . ν, each sub-base
A(i,j) = {A1, . . . , Ak}, where k ∈ N, is a set representing
an OM expressing what Agi believes is Agj’s known argu-
ments; and where A(i,i) represents Agi’s own beliefs.

3 Modelling mechanisms
For modelling an agent’s opponents’ beliefs we rely on the ar-
guments they put forth in a dialogue game. We, assume that
agents believe what they utter, while. acknowledging that it is
not possible to impose that agents are truthful through proto-
col restrictions or regulations [Wooldridge, 1999]. However,
we believe our approach can readily be adapted to account for
notions of trust and its use in argumentation [Y. Tang and S.
Parsons, 2010]; a topic to be investigated in future work.

We begin by associating a confidence value c to the argu-
ments of a sub-base A(i,j). For an agent Agi this value ex-
presses the probability of a certain argument in A(i,j) being
part of Agj’s actual beliefs A(j,j). To compute this value we
differentiate between whether information is: a) gathered di-
rectly by Agi, on the basis of its opponent’s updated CS, or;
b) a result of Agi augmenting its current model of Agj . The
latter involves incrementing an OM with the addition of argu-
ments likely to also be known to Agi’s opponent.

As noted in Section 1, intuitively we expect our opponents
to be aware of arguments that are likely to follow in a cur-
rent dialogue, given that they have appeared in previous dia-
logues, and relate to what we currently assume our opponents
believe. We assume this likelihood to increase as the relation
between the contents of an OM and the arguments external to
the model becomes stronger. This may be due to the appear-
ance of particular sequences of arguments in dialogues, which
relate the two sets. For example, assumeAgi (P ) andAgj (O)
engage in a persuasion dialogue, represented as the dialogue
tree in Figure 1(a). In this case Agi and Agj introduce argu-
ments {A,C,E,G} and {B,D,F,H} respectively. Assume
then, that Agi engages in another persuasion dialogue with a
different agent Agm who also counters Agi’s A with B. It is
then reasonable to assume that Agm is likely to be aware of
arguments D, H or even F , given that D and H support B,
and F supports D. If then Agm does indeed put forth argu-
mentsD,H and F in the game, then the likelihood of another
agent knowing D,H and F , contingent that this other agent
knows B, should increase.

For assigning a confidence value c to the elements of an
A(i,j), we assume every agent’s set of arguments increase
monotonically. This is compatible with the idea that the be-
liefs from which arguments are constructed are not revised
upon incorporation of conflicting beliefs; rather the conflicts
are resolved through evaluation of the justified arguments un-
der acceptability semantics [Dung, 1995]. We therefore as-
sume that the confidence value associated with arguments ac-
quired by an an agent Ag from the commitment store of Ag’s
opponents (which we refer to as arguments ‘directly collected
by Ag’) is equal to 1, which represents the highest level of
confidence.

Definition 4 Let A(i,j) ∈ KBi. Then ∀X ∈ A(i,j), c is the
confidence level that Agi associates with X (denoted by the
tuple < X, c >) such that:

c[0,1] =

{
1 if X is directly collected by Agi
Pr(X) ifX is part of an augmentation ofA(i,j)

where Pr(X) is the likelihood of X being known to Agj .

Further details on how to determine Pr(X) follow in Sec-
tion 3.1. To define the mechanism for updating an agent’s
A(i,j) we first need to define the notion of history:

Definition 5 Let {Ag1, . . . , Agν} be a set of agents. For any
two agents Agi and Agj , j 6= i, h(i,j) = {D1, . . . ,Dµ} is
Agi’s history of dialogues with Agj . Then Hi =

⋃ν
j=1
j 6=i

h(i,j)

is the set of all histories of Agi with each Agj , j 6= i.
Commitment store updates to opponent models are then de-
fined as follows:
Definition 6 Let h(i,j) = {D1, . . . ,Dµ} be the dialogue his-
tory of Agi and Agj . Given the current version of a sub-base
Aµ−1(i,j) andAgj’s commitment storeCSj of the latest dialogue
Dµ, Agi can update its sub-base as follows:

Aµ(i,j) = Aµ−1(i,j) ∪ CSj

As explained above, in this case directly collected arguments
are given a confidence value of 1.

3.1 Building aRG & augmenting the OM
Augmenting an A(i,j) relies on an agent Agi’s relationship
graph (RG) in which nodes are arguments asserted by Agi’s
opponents inHi. Nodes are related by weighted directed arcs
which represent support relationships between arguments,
while the weights represent the likelihood of these relation-
ships. We assume RGi is empty at the start (when Hi = ∅)
and incrementally updated with newly encountered opponent
arguments (OAs) as Agi engages in dialogues. In the exam-
ple shown in Figure 1(a), assuming the grey agent Agi is the
modeller, then the OAs (the white’s arguments B,D,F and
H) can only appear in odd levels of the dialogue tree. Assign-
ing arcs between these arguments relies on how and when an
argument appears in a tree.

Essentially, we assume two OAs,X and Y , to be connected
in aRG if they are found in the same path of the dialogue tree
(i.e., dispute), and are of d-hop distance from each other (dis-
tance is measured disregarding the modeller’s DMs). For



Figure 2: (a) A dialogue D1 between Ag1 (grey) & Ag2 (white),
(b) The induced RG1, (c) A dialogue D2 between Ag1 (grey) &
Ag3 (white), (d) The updated RG1

example, in Figure 1(a), B and D are of 1-hop distance from
each other, whileB and F are of 2-hop distance. Figures 1(b)
and 1(c) illustrate two distinct RGs induced by Figure 1(a)’s
dialogue tree, for hop distances d = 1 and d = 2 respectively.
Through modifying the d value one can strengthen or weaken
the connectivity, between arguments in the same dispute, and
correspondingly between arguments in the induced RG. Of
course, assigning a large d may raise cognitive resources is-
sues, due to the large volume of information that needs to
be stored. An example of incrementally building a d = 1
RG after two consecutive persuasion dialogues is illustrated
in Figure 2.
Definition 7 Let AH represent the arguments introduced by
Ag’s opponents in H. Then RG is a directed graph RG =
{AH, R}, where R ⊆ AH × AH is a set of weighted arcs
representing support relationships. We write rAB to denote
the arc (A,B) ∈ R, and denote the arc’s weight as wAB
obtained via a weighting function w, such that w :R→ [0, 1].

Whether two opponent’s arguments in an agent’s RG are
connected is defined as follows:
Condition 1 Let T be a dialogue tree T and d a hop dis-
tance. Then rAB ∈ R if there exists a distinct pair of oppo-
nent dialogue moves DM1 and DM2 with respective con-
tents A and B, in the same dispute in T , respectively appear-
ing at levels i, j, j > i, where j−i

2 ≤ d;
Lastly, for providing a weight valuewAB which will essen-

tially represent the relationship likelihood of an argument A
with an argument B, we rely on Definition 8, which is essen-
tially a normalisation that allows us to compute a probability
value Pr(rAB) = wAB for arc rAB . We simply count the
number of agents that have used, in dialogues, argument A
followed by B, and we put them against the total number of
agents that have simply put forth argument A in dialogues.
Definition 8 Given an Agi and its RGi = {AHi , R}, and
two arguments A,B elements of AHi then:

Occurances(Hi, A,B) = MAB

is a function that returns a set MAB ⊆ Ags representing the
set of agents that have put forth argument A followed by B in
the same disputes and at a distance d in distinct dialogues in
Hi, satisfying Condition 1 such that rAB ∈ R, then:

wAB ≡ |MAB |/|MA| (2)

Figure 3: (a) RG1, (b), (c), (d) & (e) Possible augmentation
A′∅, A′D, A′F , & A′DF respectively.

In the case where B is omitted then MA will represent the set
of agents that have simply put forth argument A in distinct
dialogues, while it is evident that |MAB | ≤ |MA|.

We should note that there is a problem with the aforemen-
tioned approach. Namely, if we consider the example shown
in Figure 2, and based on Definition 8, then all the arcs in
the induced RG will initially have a weight value of 1. It
is apparent that this value does not represent the real likeli-
hood which relates the arguments at either endpoint of the
arc. In order to better approach the real likelihood a larger
number of dialogues with numerous distinct participants need
to be considered. This problem is better known as the cold
start problem and is encountered in various other contexts as
well [Lashkari et al., 1994].

Having built a RG an agent Agi can then attempt to aug-
ment its OM (A(i,j)) of Agj by adding to it the possible ar-
guments (nodes) that are of d-hop distance inRG from those
contained inA(i,j). In a trivial case, assume anRG1 induced
by Ag1 as it is illustrated in Figure 3(a), where for presen-
tation convenience we assume that the weights on the arcs
have received their values after numerous dialogue interac-
tions. Let us assume that based onAg1’s OM ofAg4,Ag1 be-
lieves that Ag4 is aware of two arguments A(1,4) = {B,H}
(the grey nodes in Figure 3(a)). Hence, Ag1 computes the
likelihood of each of the possible augmentations A′(1,4) ∈ P
where P = {A′∅,A′D,A′F ,A′DF }, as those appear in Fig-
ures 3(b)(c)(d) and (e), and selects the one with the high-
est likelihood for augmentingA(1,4) with additional contents.
Computing each of these likelihoods is done as illustrated in
the following example:
Example 1 Assume we want to calculate the likelihood of
augmentation A(1,4) → A′F . In this simple example the like-
lihood of including belief F is:

Pr(F ) = Pr(rHF ∪ rBF )

= Pr(rHF ) + Pr(rBF )− Pr(rBF ∩ rHF )

= wHF + wBF − wBF · wHF = 0.82

The probability of inducingA′F therefore is the probability of
including argument F and not including D which is:

Pr(A′F ) =Pr(F )(1−Pr(D)) =Pr(F )(1−wBD) = 0.328



Finally, Pr(F ) is also used to denote the confidence value c
of argument F , as defined in Definition 4.

For providing the general formula for computing the like-
lihood of a possible augmentation we rely on basic graph
theory notation with respect to a node X in a graph RG,
such as degree d(X), neighbouring nodes N(X) where
|N(X)| = d(X), and adjacent arcs R(X). In addition,
assuming a set of arguments A, we define NA such that
NA =

⋃
X∈AN(X)|{Y ∈ N(X) : Y /∈ A} and RA =⋃

X∈AR(X)|{rXY ∈ R(X) : Y /∈ A}. Essentially, set NA
represents the neighbours of the nodes in A, and is formed
from the union of the neighbours of every node X in A, ex-
cluding those that are already in A, while RA is the adjacent
arcs of the nodes in A and is equal to the adjacent arcs of
every element X in A, excluding those that connect with ar-
guments already in A. We note that for A(i,j) it reasonably
holds thatA(i,j) ⊆ AHi , while for convenience we will hence
refer to a A(i,j) as A and to its augmentation as A′. Given
these, let P = {A′0,A′1, . . . , } be the set of all possible dis-
tinct augmentations of A, then the number of all its possible
distinct expansions with respect to neighbouring nodes that
are of 1-hop distance from A, is:

|P | =
|NA|∑
k=0

(
|NA|
k

)
(3)

The general formula for computing the likelihood of a possi-
ble augmentation A′ with respect to the neighbouring nodes
(arguments), i.e. for every X ∈ NA of a set A is:

Pr(A′) =
∏
X∈A′

Pr(X)
∏
X/∈A′

(1− Pr(X)) (4)

Pr(X) = Pr(
⋃

r∈R−X

r) (5)

where R−X (the in-bound arcs) is used to denote the adjacent
arcs of X which are of the form (X,Y ), i.e. Y is the arc
target. Lastly, since the likelihood of each possible augmen-
tation should define a distribution of likelihoods then it must
also hold that

∑
A′∈P Pr(A′) = 1.

4 The Monte-Carlo Simulation
A drawback of the proposed approach is that, calculating the
probability of Equation 5 is of exponential complexity. This
makes the approach practically intractable. However, draw-
ing inspiration from the work of Li et al. [Li et al., 2011] we
rely on an approximate approach for computing these likeli-
hoods based on a Monte-Carlo simulation. Essentially, the
Monte-Carlo simulation attempts to estimate the argument
likelihoods for a RG through sampling. In the case of a
very large RG this approach is expected to be less expen-
sive than exhaustively computing these likelihoods based on
the inclusion-exclusion principle mentioned in Equation 5.

For the case of the 1-hop augmentation we know that the
number of possible augmentations is exponential on the size
of NA. It is possible to deduce a high likelihood augmenta-
tion in linear time, provided we know Pr(Y ) for ∀Y ∈ NA.

Also, Pr(Y ) is calculated through Equation 5 using the
inclusion-exclusion principle found in basic algorithm text-
books such as [Knuth, 1997]. However, this is of exponential
complexity on the in-degree to calculate. We therefore pro-
ceed to sample for Pr(Y ), by describing a method to sample
for high likelihood arguments which we will include in our
1-hop augmentation of a set A. We will generally refer to
the arguments in A as augmentation nodes. The method we
describe is as follows:
• Assume anRG= {AH, R} and a set A
• We begin with a set of nodes A′ = A
• For each argument Y ∈ NA and if ∃rXY ∈ R, where
X ∈ A, we accept rXY with probability wXY .
• If an arc rXY is accepted, we then add Y to A′

• At the end of the process A′ contains a possible 1-hop
augmentation of A

We denote the probability of accepting an arc as Pr(rXY ) =
wXY . We also assume the events of accepting rij and rkm,
where rij 6= rkm to be independent but not mutually exclu-
sive, therefore:

Pr(rij ∪ rkm) = Pr(rij) + Pr(rkm)− Pr(rij ∩ rkm)

which means that the probability for a node to be added in
A′ follows Equation 5. Consequently the probability of ob-
taining a specific augmentation A′ follows Equation 4, and
therefore the described procedure essentially samples from
the distribution of augmentations.

Assuming a sampling procedure which generates a num-
ber of n samples using the described method, then each node
Y is included with probability equal to Pr(Y ). Thus af-
ter n independent identically distributed (i.i.d.) samples, a
proportion of nPr(Y ) will contain argument Y . We define
kY =

∑n
i=1 I(Y ∈ A′i) where I is the indicator function

taking the value of 1 if the predicate within is satisfied and
A′i is the set of nodes contained in the i-th sampled augmen-
tation. In this case kY is used to denote the number of times
we sampled Y . The expected number of augmentations sam-
ples which contain Y follows a binomial distribution. Thus
the expected number of observations kY , of any given node
Y after n tries is E{kY } = nPr(Y ) and the variance is
Var{kY } = nPr(Y )(1 − Pr(Y )). This defines a multino-
mial distribution over the set of nodes. Due to the law of large
numbers and the fact that each sample is i.i.d., it holds that:

E{kY } = nPr(Y ) P̂ r(Y ) =
kY
n

where P̂ r(Y ) is our estimate of Pr(Y ). The described proce-
dure is a method to sample for the inclusion-exclusion prob-
ability. This is done since the exhaustive calculation of this
probability is exponential in the number of arcs considered.

The generated random graphs are Poisson graphs, with
edge probability set to 50/n (where n is the size of the graph).
We selected this probability to ensure there exists a giant
connected component and have a graph which is sufficiently
dense, justifying the need to use a sampling method to in-
fer the argument likelihoods rather than to directly measure
them, but also sufficiently sparse, to be able to use it on a



Figure 4: Error per argument likelihood over n samples

Figure 5: Average error over number of samples n

computer with limited capabilities. Due to the lack of bench-
marks to compare with, we do not know whether a random
graph better corresponds to a realistic argument graph. How-
ever, for the purposes of the Monte-Carlo simulation we be-
lieve that the graph structure is irrelevant for the purpose of
argument likelihood estimation (assuming that the real argu-
ment graphs don’t have a path-like or grid-like structure).

4.1 Sampling accuracy & Experimental results
The number of samples n required to achieve an accuracy ε
with confidence δ is given through the following theorem1:

Theorem 1 The Monte-Carlo approach to sample the proba-
bility distribution of the nodes inNA is at least ε, close to con-
vergence with probability at least δ after n = z2δ

1
4ε2 samples.

In essence, Theorem 1 gives us the expected upper bound
of the error, which is expected to reach an accuracy equal
to ε = 0.05, with δ = 0.05 confidence by taking n ≤
z20.975

1
4ε2 ≈ 385 samples, independently of the size of the

RG. Using the described algorithm we can estimate the like-
lihood of a given set of arguments (by dividing their obser-
vations by n) and infer a distribution of arguments. Based
on these results we can augment our OM by choosing the set
with the highest likelihood. Performing tests on randomly
generated graphs of various sizes we have obtained the re-
sults of the average error which can be seen in Figure 5. We
can see that the average error is upper bounded by the theo-
retically expected value. In practice the convergence is much
quicker than what the theory suggests, resulting in error less

1Space limitations preclude including proof of Theorem 1, which
can be found in [C. Hadjinikolis, 2013].

than 0.1 after only 15 samples. Additionally in Figure 4 we
can see the error per argument likelihood Pr(Y ).

5 Related Work & Conclusions

Specifically, in the context of dialogue games, Riveret et
al. [Riveret et al., 2007; 2008] model the possible knowl-
edge of opponents in the form of arguments as we do. They
however rely on the simplification that arguers are perfectly
informed about all the arguments previously asserted by all
their opponents in dialogues. Oren et al. [Oren and Norman,
2010] propose a variant of the min-max algorithm for strate-
gising through relying on models which represent both an
agent’s knowledge, in the form of arguments, as well as their
goals. However, nowhere in the aforementioned work is the
problem of acquiring and maintaining, or augmenting an OM
addressed. An exception, proposed by Black et al. [Black and
Atkinson, 2011], concerns a mechanism that enables agents
to model preference information about others—what is im-
portant to another agent—and then rely on this information
for making proposals that are more likely to be agreeable.
In their case the mechanism responsible for developing a
model of an agent’s preferences is explicitly provided, though
they do not model agents’ knowledge. A similar approach to
our work has been proposed Rovatsos et al. [Rovatsos et al.,
2005] who explored how to learn stereotypical sequences of
utterances in dialogues for deducing an opponent’s strategy,
though not relying on OMs. Finally, the work of Emele et
al. [Emele et al., 2011] is worth noting, as it is similar to ours
in the sense that they also explore the development of an OM
but based on what norms or expectations an opponent might
have, and not on its general beliefs.

Through this work we have provided a general methodol-
ogy for updating and augmenting an OM, based on an agent’s
experience obtained through dialogues. This methodology is
based on two mechanisms respectively responsible for up-
dating and augmenting an OM. In relation to the latter, we
provided a method for building a graph between related argu-
ments asserted by a modeller’s opponents, referred to a RG,
and proposed an augmentation mechanism, enabling an agent
to augment its current beliefs about its opponents beliefs by
including additional information (arguments), that is of high
likelihood to be related to what the opponent is currently as-
sumed to know. Thus, we enabled an agent to also account in
its strategizing for the possibility that additional information
may also be known to its opponents.

Finally, we defined and analysed a Monte-Carlo simulation
which enabled us to infer the likelihood of those additional ar-
guments in a tractable and efficient way. We are aware that
more investigation is needed with respect to relying on al-
ternative contextual factors for quantifying the likelihood be-
tween elements in a RG, such as the level of a participant’s
membership in a group, and this is something we intend to
investigate in the future. We also intend to evaluate the effec-
tiveness of our approach when employed in accordance with
trust related semantics [Y. Tang and S. Parsons, 2010] through
which one may define the trustworthiness of an agent’s utter-
ances against its actual beliefs.
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