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Abstract
Semantic parsing is a domain-dependent
process by nature, as its output is defined
over a set of domain symbols. Motivated
by the observation that interpretation can
be decomposed into domain-dependent
and independent components, we suggest
a novel interpretation model, which aug-
ments a domain dependent model with ab-
stract information that can be shared by
multiple domains. Our experiments show
that this type of information is useful and
can reduce the annotation effort signifi-
cantly when moving between domains.

1 Introduction

Natural Language (NL) understanding can be intu-
itively understood as a general capacity, mapping
words to entities and their relationships. However,
current work on automated NL understanding
(typically referenced as semantic parsing (Zettle-
moyer and Collins, 2005; Wong and Mooney,
2007; Chen and Mooney, 2008; Kwiatkowski et
al., 2010; Börschinger et al., 2011)) is restricted
to a given output domain1 (or task) consisting of a
closed set of meaning representation symbols, de-
scribing domains such as robotic soccer, database
queries and flight ordering systems.

In this work, we take a first step towards con-
structing a semantic interpreter that can leverage
information from multiple tasks. This is not a
straight forward objective – the domain specific
nature of semantic interpretation, as described in
the current literature, does not allow for an easy
move between domains. For example, a sys-
tem trained for the task of understanding database
queries will not be of any use when it will be given
a sentence describing robotic soccer instructions.

In order to understand this difficulty, a closer
look at semantic parsing is required. Given a sen-
tence, the interpretation process breaks it into a

1The term domain is overloaded in NLP; in this work we
use it to refer to the set of output symbols.

set of interdependent decisions, which rely on an
underlying representation mapping words to sym-
bols and syntactic patterns into compositional de-
cisions. This representation takes into account do-
main specific information (e.g., a lexicon mapping
phrases to a domain predicate) and is therefore of
little use when moving to a different domain.

In this work, we attempt to develop a domain in-
dependent approach to semantic parsing. We do it
by developing a layer of representation that is ap-
plicable to multiple domains. Specifically, we add
an intermediate layer capturing shallow semantic
relations between the input sentence constituents.
Unlike semantic parsing which maps the input to
a closed set of symbols, this layer can be used to
identify general predicate-argument structures in
the input sentence.The following example demon-
strates the key idea behind our representation –
two sentences from two different domains have a
similar intermediate structure.
Example 1. Domains with similar intermediate structures

• The [Pink goalie]ARG [kicks]PRED to [Pink11]ARG

pass(pink1, pink11)

• [She]ARG [walks]PRED to the [kitchen]ARG

go(sister, kitchen)

In this case, the constituents of the first
sentence (from the Robocup domain (Chen
and Mooney, 2008)), are assigned domain-
independent predicate-argument labels (e.g., the
word corresponding to a logical function is identi-
fied as a PRED). Note that it does not use any do-
main specific information, for example, the PRED

label assigned to the word “kicks” indicates that
this word is the predicate of the sentence, not a
specific domain predicate (e.g., pass(·)). The in-
termediate layer can be reused across domains.
The logical output associated with the second sen-
tence is taken from a different domain, using a dif-
ferent set of output symbols, however it shares the
same predicate-argument structure.

Despite the idealized example, in practice,



leveraging this information is challenging, as the
logical structure is assumed to only weakly corre-
spond to the domain-independent structure, a cor-
respondence which may change in different do-
mains. The mismatch between the domain in-
dependent (linguistic) structure and logical struc-
tures typically stems from technical considera-
tions, as the domain logical language is designed
according to an application-specific logic and not
according to linguistic considerations. This situa-
tion is depicted in the following example, in which
one of the domain-independent labels is omitted.
• The [Pink goalie]ARG [kicks]PRED the [ball]ARG to [Pink11]ARG

pass(pink1, pink11)

In order to overcome this difficulty, we suggest
a flexible model that is able to leverage the super-
vision provided in one domain to learn an abstract
intermediate layer, and show empirically that it
learns a robust model, improving results signifi-
cantly in a second domain.

2 Semantic Interpretation Model

Our model consists of both domain-dependent
(mapping between text and a closed set of sym-
bols) and domain independent (abstract predicate-
argument structures) information. We formulate
the joint interpretation process as a structured pre-
diction problem, mapping a NL input sentence (x),
to its highest ranking interpretation and abstract
structure (y). The decision is quantified using a
linear objective, which uses a vector w, mapping
features to weights and a feature function Φ which
maps the output decision to a feature vector. The
output interpretation y is described using a sub-
set of first order logic, consisting of typed con-
stants (e.g., robotic soccer player), functions cap-
turing relations between entities, and their prop-
erties (e.g., pass(x, y), where pass is a function
symbol and x, y are typed arguments). We use
data taken from two grounded domains, describing
robotic soccer events and household situations.

We begin by formulating the domain-specific
process. We follow (Goldwasser et al., 2011;
Clarke et al., 2010) and formalize semantic infer-
ence as an Integer Linear Program (ILP). Due to
space consideration, we provide a brief descrip-
tion (see (Clarke et al., 2010) for more details).
We then proceed to augment this model with
domain-independent information, and connect the
two models by constraining the ILP model.

2.1 Domain-Dependent Model

Interpretation is composed of several decisions,
capturing mapping of input tokens to logical frag-
ments (first order) and their composition into
larger fragments (second). We encode a first-order
decision as αcs, a binary variable indicating that
constituent c is aligned with the logical symbol s.
A second-order decision βcs,dt, is encoded as a bi-
nary variable indicating that the symbol t (associ-
ated with constituent d) is an argument of a func-
tion s (associated with constituent c). The overall
inference problem (Eq. 1) is as follows:

Fw(x) = arg maxα,β
∑
c∈x

∑
s∈D αcs ·w

TΦ1(x, c, s)

+
∑
c,d∈x

∑
s,t∈D βcs,dt ·w

TΦ2(x, c, s, d, t) (1)

We restrict the possible assignments to the deci-
sion variables, forcing the resulting output formula
to be syntactically legal, for example by restrict-
ing active β-variables to be type consistent, and
forcing the resulting functional composition to be
acyclic and fully connected (we refer the reader to
(Clarke et al., 2010) for more details). We take ad-
vantage of the flexible ILP framework and encode
these restrictions as global constraints.

Features We use two types of feature, first-order
Φ1 and second-order Φ2. Φ1 depends on lexical
information: each mapping of a lexical item c to a
domain symbol s generates a feature. In addition
each combination of a lexical item c and an sym-
bol type generates a feature.
Φ2 captures a pair of symbols and their alignment
to lexical items. Given a second-order decision
βcs,dt, a feature is generated considering the nor-
malized distance between the head words in the
constituents c and d. Another feature is gener-
ated for every composition of symbols (ignoring
the alignment to the text).

2.2 Domain-Independent Information

We enhance the decision process with informa-
tion that abstracts over the attributes of specific
domains by adding an intermediate layer consist-
ing of the predicate-argument structure of the sen-
tence. Consider the mappings described in Exam-
ple 1. Instead of relying on the mapping between
Pink goalie and pink1, this model tries to iden-
tify an ARG using different means. For example, the
fact that it is preceded by a determiner, or capital-
ized provide useful cues. We do not assume any
language specific knowledge and use features that
help capture these cues.



This information is used to assist the overall
learning process. We assume that these labels cor-
respond to a binding to some logical symbol, and
encode it as a constraint forcing the relations be-
tween the two models. Moreover, since learning
this layer is a by-product of the learning process
(as it does not use any labeled data) forcing the
connection between the decisions is the mecha-
nism that drives learning this model.

Our domain-independent layer bears some
similarity to other semantic tasks, most no-
tably Semantic-Role Labeling (SRL) introduced
in (Gildea and Jurafsky, 2002), in which identi-
fying the predicate-argument structure is consid-
ered a preprocessing step, prior to assigning ar-
gument labels. Unlike SRL, which aims to iden-
tify linguistic structures alone, in our framework
these structures capture both natural-language and
domain-language considerations.

Domain-Independent Decision Variables We
add two new types of decisions abstracting over
the domain-specific decisions. We encode the new
decisions as γc and δcd. The first (γ) captures local
information helping to determine if a given con-
stituent c is likely to have a label (i.e., γPc for pred-
icate or γAc for argument). The second (δ) consid-
ers higher level structures, quantifying decisions
over both the labels of the constituents c,d as a
predicate-argument pair. Note, a given word c can
be labeled as PRED or ARG if γc and δcd are active.

Model’s Features We use the following fea-
tures: (1) Local Decisions Φ3(γ(c)) use a feature
indicating if c is capitalized, a set of features cap-
turing the context of c (window of size 2), such
as determiner and quantifier occurrences. Finally
we use a set of features capturing the suffix letters
of c, these features are useful in identifying verb
patterns. Features indicate if c is mapped to an ARG

or PRED. (2) Global Decision Φ4(δ(c, d)): a feature
indicating the relative location of c compared to d
in the input sentence. Additional features indicate
properties of the relative location, such as if the
word appears initially or finally in the sentence.

Combined Model In order to consider both
types of information we augment our decision
model with the new variables, resulting in the fol-
lowing objective function (Eq. 2).
Fw(x) = arg maxα,β

∑
c∈x

∑
s∈D αcs·w1

TΦ1(x, c, s)+∑
c,d∈x

∑
s,t∈D

∑
i,j βcsi,dtj · w2

TΦ2(x, c, si, d, tj) +∑
c∈x γc ·w3

TΦ3(x, c)+
∑
c,d∈x δcd ·w4

TΦ4(x, c, d) (2)

For notational convenience we decompose the
weight vector w into four parts, w1,w2 for fea-
tures of (first, second) order domain-dependent de-
cisions, and similarly for the independent ones.
In addition, we also add new constraints tying
these new variables to semantic interpretation :
∀c ∈ x (γc → αc,s1 ∨ αc,s2 ∨ ... ∨ αc,sn)

∀c ∈ x, ∀d ∈ x (δc,d → βc,s1,dt1∨βc,s2,dt1∨...∨βc,sn,dtn)

(where n is the length of x).

2.3 Learning the Combined Model
The supervision to the learning process is given
via data consisting of pairs of sentences and (do-
main specific) semantic interpretation. Given that
we have introduced additional variables that cap-
ture the more abstract predicate-argument struc-
ture of the text, we need to induce these as la-
tent variables. Our decision model maps an input
sentence x, into a logical output y and predicate-
argument structure h. We are only supplied with
training data pertaining to the input (x) and out-
put (y). We use a variant of the latent structure
perceptron to learn in these settings2.

3 Experimental Settings

Situated Language This dataset, introduced in
(Bordes et al., 2010), describes situations in a sim-
ulated world. The dataset consists of triplets of the
form - (x,u, y), where x is a NL sentence describ-
ing a situation (e.g., “He goes to the kitchen”), u
is a world state consisting of grounded relations
(e.g., loc(John, Kitchen)) description, and y is
a logical interpretation corresponding to x.

The original dataset was used for concept tag-
ging, which does not include a compositional as-
pect. We automatically generated the full logical
structure by mapping the constants to function ar-
guments. We generated additional function sym-
bols of the same relation, but of different arity
when needed 3. Our new dataset consists of 25 re-
lation symbols (originally 15). In our experiments
we used a set of 5000 of the training triplets.

Robocup The Robocup dataset, originally in-
troduced in (Chen and Mooney, 2008), describes
robotic soccer events. The dataset was collected
for the purpose of constructing semantic parsers
from ambiguous supervision and consists of both
“noisy” and gold labeled data. The noisy dataset

2Details omitted, see (Chang et al., 2010) for more details.
3For example, a unary relation symbol for “He plays”,

and a binary for “He plays with a ball”.



System Training Procedure
DOM-INIT w1: Noisy probabilistic model, described below.
PRED-ARGS Only w3,w4 Trained over the Situ. dataset.
COMBINEDRL w1,w2,w3,w4:learned from Robocup gold
COMBINEDRI+S w3,w4: learned from the Situ. dataset,

w1 uses the DOM-INIT Robocup model.
COMBINEDRL+S w3,w4: Initially learned over the Situ. dataset,

updated jointly with w1,w2 over Robocup gold

Table 1: Evaluated System descriptions.

was constructed by temporally aligning a stream
of soccer events occurring during a robotic soc-
cer match with human commentary describing the
game. This dataset consists of pairs (x, {y0, yk}),
x is a sentence and {y0, yk} is a set of events (log-
ical formulas). One of these events is assumed to
correspond to the comment, however this is not
guaranteed. The gold labeled labeled data con-
sists of pairs (x, y). The data was collected from
four Robocup games. In our experiments we fol-
low other works and use 4-fold cross validation,
training over 3 games and testing over the remain-
ing game. We evaluate the Accuracy of the parser
over the test game data.4 Due to space consider-
ations, we refer the reader to (Chen and Mooney,
2008) for further details about this dataset.

Semantic Interpretation Tasks We consider
two of the tasks described in (Chen and Mooney,
2008) (1) Semantic Parsing requires generating
the correct logical form given an input sentence.
(2) Matching, given a NL sentence and a set of
several possible interpretation candidates, the sys-
tem is required to identify the correct one. In all
systems, the source for domain-independent infor-
mation is the Situated domain, and the results are
evaluated over the Robocup domain.

Experimental Systems We tested several vari-
ations, all solving Eq. 2, however different re-
sources were used to obtain Eq. 2 parameters (see
sec. 2.2). Tab. 1 describes the different varia-
tions. We used the noisy Robocup dataset to ini-
tialize DOM-INIT, a noisy probabilistic model, con-
structed by taking statistics over the noisy robocup
data and computing p(y|x). Given the training set
{(x, {y1, .., yk})}, every word in x is aligned to
every symbol in every y that is aligned with it. The
probability of a matching (x, y)is computed as the
product:

∏n
i=1 p(yi|xi), where n is the number

of symbols appearing in y, and xi, yi is the word

4In our model accuracy is equivalent to F-measure.

System Matching Parsing
PRED-ARGS 0.692 –
DOM-INIT 0.823 0.357
COMBINEDRI+S 0.905 0.627
(BÖRSCHINGER ET AL., 2011) – 0.86
(KIM AND MOONEY, 2010) 0.885 0.742

Table 2: Results for the matching and parsing tasks. Our
system performs well on the matching task without any do-
main information. Results for both parsing and matching
tasks show that using domain-independent information im-
proves results dramatically.

level matching to a logical symbol. Note that this
model uses lexical information only.

4 Knowledge Transfer Experiments

We begin by studying the role of domain-
independent information when very little domain
information is available. Domain-independent in-
formation is learned from the situated domain
and domain-specific information (Robocup) avail-
able is the simple probabilistic model (DOM-INIT).
This model can be considered as a noisy proba-
bilistic lexicon, without any domain-specific com-
positional information, which is only available
through domain-independent information.

The results, summarized in Table 2, show that
in both tasks domain-independent information is
extremely useful and can make up for missing do-
main information. Most notably, performance for
the matching task using only domain independent
information (PRED-ARGS) was surprisingly good,
with an accuracy of 0.69. Adding domain-specific
lexical information (COMBINEDRI+S) pushes this
result to over 0.9, currently the highest for this task
– achieved without domain specific learning.

The second set of experiments study whether
using domain independent information, when rel-
evant (gold) domain-specific training data is avail-
able, improves learning. In this scenario, the
domain-independent model is updated according
to training data available for the Robocup domain.
We compare two system over varying amounts
of training data (25, 50, 200 training samples
and the full set of 3 Robocup games), one boot-
strapped using the Situ. domain (COMBINEDRL+S)
and one relying on the Robocup training data
alone (COMBINEDRL). The results, summarized in
table 3, consistently show that transferring domain
independent information is helpful, and helps push
the learned models beyond the supervision offered
by the relevant domain training data. Our final
system, trained over the entire dataset achieves a



System # training Parsing
COMBINEDRL+S (COMBINEDRL) 25 0.16 (0.03)
COMBINEDRL+S (COMBINEDRL) 50 0.323 (0.16)
COMBINEDRL+S (COMBINEDRL) 200 0.385 (0.36)
COMBINEDRL+S (COMBINEDRL) full game 0.86 (0.79)

(CHEN ET AL., 2010) full game 0.81

Table 3: Evaluating our model in a learning settings. The
domain-independent information is used to bootstrap learn-
ing from the Robocup domain. Results show that this infor-
mation improves performance significantly, especially when
little data is available

score of 0.86, significantly outperforming (Chen
et al., 2010), a competing supervised model. It
achieves similar results to (Börschinger et al.,
2011), the current state-of-the-art for the pars-
ing task over this dataset. The system used in
(Börschinger et al., 2011) learns from ambigu-
ous training data and achieves this score by using
global information. We hypothesize that it can be
used by our model and leave it for future work.

5 Conclusions

In this paper, we took a first step towards a new
kind of generalization in semantic parsing: con-
structing a model that is able to generalize to a
new domain defined over a different set of sym-
bols. Our approach adds an additional hidden
layer to the semantic interpretation process, cap-
turing shallow but domain-independent semantic
information, which can be shared by different do-
mains. Our experiments consistently show that
domain-independent knowledge can be transferred
between domains. We describe two settings; in
the first, where only noisy lexical-level domain-
specific information is available, we observe that
the model learned in the other domain can be used
to make up for the missing compositional infor-
mation. For example, in the matching task, even
when no domain information is available, iden-
tifying the abstract predicate argument structure
provides sufficient discriminatory power to iden-
tify the correct event in over 69% of the times.

In the second setting domain-specific examples
are available. The learning process can still utilize
the transferred knowledge, as it provides scaffold-
ing for the latent learning process, resulting in a
significant improvement in performance.
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