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Abstract— Many modern computer vision algorithms are
built atop of a set of low-level feature operators (such as
SIFT [1], [2]; HOG [3], [4]; or LBP [5], [6]) that trans-
form raw pixel values into a representation better suited to
subsequent processing and classification. While the choice of
feature representation is often not central to the logic of
a given algorithm, the quality of the feature representation
can have critically important implications for performance.
Here, we demonstrate a large-scale feature search approach to
generating new, more powerful feature representations in which
a multitude of complex, nonlinear, multilayer neuromorphic
feature representations are randomly generated and screened
to find those best suited for the task at hand. In particular,
we show that a brute-force search can generate representations
that, in combination with standard machine learning blending
techniques, achieve state-of-the-art performance on the Labeled
Faces in the Wild (LFW) [7] unconstrained face recognition
challenge set. These representations outperform previous state-
of-the-art approaches, in spite of requiring less training data
and using a conceptually simpler machine learning backend.
We argue that such large-scale-search-derived feature sets can
play a synergistic role with other computer vision approaches
by providing a richer base of features with which to work.

I. INTRODUCTION

Face recognition has long been, and continues to be, a
highly active area of research [8], [9], [10], [11], [12], [13],
[14], [15], [14], [16], [17]. In recent years, interest in the
problem of unconstrained face recognition has grown in
the community, driven in large part by the creation of the
Labeled Faces in the Wild (LFW) [7] test set, which has
provided a standardized benchmark against which to measure
progress. While face recognition research per se has a long
and rich history, much work prior to the last decade was
focused on face recognition in relatively constrained envi-
ronments (e.g. posed photographs, under controlled lighting
conditions [18], [19], [20], [21], [22], [23]). More recently,
thanks in large part to the rise of the internet, it has become
possible to assemble large collections of face images “in the
wild” in the sense that they come from a wide variety of
sources and were not posed for the purpose of research.
While this set has proven to be quite challenging, large
strides have been in made in recent years towards higher
performance [24], [25], [26], [27], [28], [29].

While a variety of different approaches to the LFW set
have been taken, a common feature of most approaches is
the use of some low-level visual feature set, such as SIFT
[1], [2]; HOG [3], [4]; or LBP [5], [6] that transforms raw

pixels values into a better form for subsequent processing.
While individual algorithms often do not depend critically
on the choice of a particular feature representation used,
the choice of features used does frequently play a key role
in determining performance. Meanwhile, there are only a
handful of visual feature representations in common use, and
arguably less attention has been paid to developing new or
better features.

One potentially promising source for new, more complex
visual feature representations is the class of “biologically-
inspired” representations. Biologically-inspired approaches
seek to build artificial visual systems that capture aspects
of the computational architecture of the brain, in the hope of
eventually mimicking its computational abilities. Such efforts
to model visual computations done by the brain have a long
history, at least dating back to Fukushima’s Neocognitron
(1980; [30]). More recent experiments with biologically-
inspired models have shown them to be highly competitive
in a variety of different face and object recognition contexts
[31], [32], [33], [24], [34].

However, the range of possible feature representations
that would count as “biologically-inspired” is broad, and it
is not clear which particular instantiations of biologically-
inspired ideas are best for a given task. Pinto et al. [35]
previously demonstrated a high-throughput screening ap-
proach for biologically-inspired algorithms, wherein a large
number of possible candidate models from an inclusive
model family are considered, and the best performing models
are “skimmed off the top” and evaluated further. However,
while that work showed success with synthetic test images, it
has not been known to date whether models from this class
are competitive with current state-of-the-art approaches on
standard face and object recognition test sets.

Here we present a modified large-scale feature search
procedure that simplifies and accelerates the search proce-
dure described in [35], with the goal of generating feature
representations tailored for unconstrained face recognition,
as embodied by the LFW test set. Multiple complimentary
representations are further derived through training set aug-
mentation, alternative face comparison functions, and feature
set searches with a varying number of model layers. These
individual feature representations are then combined using
kernel techniques to achieve even better performance. We
show that our approach yields multiple feature sets that



outperform previous state-of-the-art approaches on the LFW
set, even while requiring less training data and using simpler
machine learning backends. In addition to providing evidence
for the utility of large-scale feature search for standard “real
world” test sets, these results emphasize the value of good
underlying representations and point a path forward in the
generation of new, more powerful visual features.

II. METHODS

A. Large-scale feature search framework

The large-scale feature search approach used here consists
of four basic components: (1) a parametric family of feature
representation, wherein key aspects of the behavior of the
features are controlled by a fixed set of parameters, (2) a
generation procedure for choosing models from the larger
family to evaluate, (3) a screening procedure, run on each
candidate feature representation, to determine which models
to evaluate further and (4) a validation procedure, using
independent data, to evaluate the utility of representations
found during the screening procedure.

The approach we follow here is similar to that described
in [35], with two important differences, which we describe
briefly here, and detail in depth below. First, Pinto et al.
[35] used an unsupervised learning procedure in order to
learn certain model parameters from a pre-training video set.
Here, we dispense with this unsupervised learning proce-
dure, instead opting for greatly speeded model generation,
allowing more model architectures to be evaluated per unit
time. Second, we used the LFW View 1 subset as a screening
set. Details of the model family considered, and generation,
screening and validation procedures used are described be-
low.

B. Biologically-inspired visual representations

In our experiments, we used two basic classes of
biologically-inspired visual representations, shown in Fig. 1.

First, as a control, we used V1-like, a one-layer model
characterized by a cascade of linear and nonlinear processing
steps and designed to encapsulate some of the known proper-
ties of the first cortical processing stage in the primate brain.
Our V1-like implementation was taken without modification
from [33], [24].

Second, we used two and three layer models following the
basic multi-layer model scheme described in [35]. Briefly,
these models consist of multiple stacked layers of linear-
nonlinear processing stages, similar to those in the V1-like
model. Importantly, in order to speed the processing of these
models, we disabled the unsupervised learning mechanisms
described in [35] and instead used random filter kernels
drawn from a uniform distribution. Prior experience of our
group and others [34] has suggested that random filters can in
many cases function surprisingly well for models belonging
to this general class. Details of each model class follow.

C. “V1-like” visual representation

In the V1-like representation, features were taken without
additional optimization from Pinto et al.’s V1S+ [33]. This

visual representation is based on a first-order description
of primary visual cortex V1 and consists of a collection
of locally-normalized, thresholded Gabor wavelet functions
spanning a range of orientations and spatial frequencies.

In spite of their simplicity, these features have been
shown to be among the best-performing non-blended fea-
tures set on standard natural face and object recognition
benchmarks [33], [24], [25] (i.e. Caltech-101[36], Caltech-
256[37], ORL[18], Yale[19], CVL[20], AR[21], LFW[7]) and
are a key component of the best blended solutions for
some of these same benchmarks [38]. We used the authors’
publicly available source code to generate these features and
followed the same basic read-out/classification procedure as
detailed in [33], with two minor modifications. Specifically,
no PCA dimensionality reduction was performed prior to
classification (the full vector was used), and a different SVM
regularization parameter was used (C = 105 instead of
C = 10, see below).

For a detailed description of the V1-like visual represen-
tation, we refer the interested reader to the methods of the
original publication [33] and its source code.

D. High-throughput-derived multilayer visual representa-
tions: HT-L2 and HT-L3

1) Model architecture: : Candidate models were com-
posed of a hierarchy of two (HT-L2) or three layers (HT-L3),
with each layer including a cascade of linear and nonlinear
operations that produce successively elaborated nonlinear
feature-map representations of the original image. A diagram
detailing the flow of operations is shown in Fig. 1, and,
for the purposes of notation, the cascade of operations is
represented as follows:

Layer0 :

Input
Grayscale−→ Normalize−→ N0

and generally, for all ` ≥ 1:

Layer` :

N`−1 Filter−→ F`
Activate−→ A` Pool−→ P` Normalize−→ N`

Details of these steps along with the range of parameter
values included in the random search space are described
next.

2) Input and Pre-processing: The input of the HT-L2 and
HT-L3 models were 100x100 and 200x200 pixel images, re-
spectively. In the pre-processing stage, referred to as Layer0,
this input was converted to grayscale and locally normalized:

N0 = Normalize(Grayscale(Input)) (1)

where the Normalize operation is described in detail below.
Because this normalization is the final operation of each
layer, in the following sections, we refer to N `−1 as the
input of each Layer`>0 and N ` as the output.
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Fig. 1. A schematic diagram of the system architecture of the family of models considered. Each model consists of one to three feedforward filtering
layers, with the filters in each layer being applied across the previous layer.

3) Linear Filtering: The input N `−1 of each subsequent
layer (i.e. Layer`, ` ∈ {1, 2, 3}) was first linearly filtered us-
ing a bank of k` filters to produce a stack of k` feature maps,
denoted F `. In a biologically-inspired context, this operation
is analogous to the weighted integration of synaptic inputs,
where each filter in the filterbank represents a different cell.

The filtering operation for Layer` is denoted:

F` = Filter(N`−1,Φ`) (2)

and produces a stack, F `, of k` feature maps, with each map,
F `i , given by:

F `i = N `−1 ⊗ Φ`i ∀i ∈ {1, 2, . . . , k`} (3)

where ⊗ denotes a correlation of the output of the previous
layer, N `−1 with the filter Φ`i (e.g. sliding along the first and
second dimensions of N `−1). Because each successive layer
after Layer0 is based on a stack of feature maps, N `−1 is
itself a stack of 2-dimensional feature maps. Thus, the filters
contained within Φ` are, in turn, 3-dimensional, with the
their third dimension matching the number of filters (and
therefore, the number of feature maps) from the previous
layer (i.e. k`−1).

Parameters:
• The filter shapes fs`×fs`×fd` were chosen randomly

with fs` ∈ {3, 5, 7, 9} and fd` = k`−1.
• Depending on the layer ` considered, the number of

filters k` was chosen randomly from the following sets:
– In Layer1, k1 ∈ {16, 32, 64}
– In Layer2, k2 ∈ {16, 32, 64, 128}
– In Layer3, k3 ∈ {16, 32, 64, 128, 256}

All filter kernels were fixed to random values drawn from a
uniform distribution.

4) Activation Function: Filter outputs were subjected to
threshold and saturation activation function, wherein output
values were clipped to be within a parametrically defined
range. This operation is analogous to the spontaneous activity
thresholds and firing saturation levels observed in biological
neurons.

We define the activation function:

A` = Activate(F`) (4)

that clips the outputs of the filtering step, such that:

Activate(x) =

 γmax
` if x > γmax

`

γmin
` if x < γmin

`

x otherwise
(5)

Where the two parameters γmin
` and γmax

` control the
threshold and saturation, respectively. Note that if both
minimum and maximum threshold values are −∞ and +∞,
the activation is linear (no output is clipped).

Parameters:
• γmin

` was randomly chosen to be −∞ or 0
• γmax

` was randomly chosen to be 1 or +∞
5) Pooling: The activations of each filter within some

neighboring region were then pooled together and the re-
sulting outputs were spatially downsampled.

We define the pooling function:

P` = Pool(A`) (6)

such that:

P`
i = Downsampleα( p

√̀
(A`i)

p` � 1a`×a`) (7)
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Fig. 2. The high-throughput screening process used to find good representations. Here, data is shown for the screening of HT-L3 models. A distribution
of the performance of 6,917 randomly generated models is shown on the left, with the top five high-performing models replotted on the right. Following
screening, the models were evaluated exclusively with sets that do not overlap with the screening set.

, where � is the 2-dimensional correlation function with
1a`×a` being an a` × a` matrix of ones (a` can be seen
as the size of the pooling “neighborhood”). The variable p`

controls the exponents in the pooling function.
Parameters:
• The stride parameter α was fixed to 2, resulting in a

downsampling factor of 4.
• The size of the neighborhood a` was randomly chosen

from {3, 5, 7, 9}.
• The exponent p` was randomly chosen from {1, 2, 10}.

Note that for p` = 1, this is equivalent to blurring with a
a` × a` boxcar filter. When p` = 2 or p` = 10 the output is
the Lp

`

-norm 1.
6) Normalization: As a final stage of processing within

each layer, the output of the Pooling step was normalized
by the activity of their neighbors within some radius (across
space and across feature maps). Specifically, each response
was divided by the magnitude of the vector of neighboring
values if above a given threshold. This operation draws
biological inspiration from the competitive interactions ob-
served in natural neuronal systems (e.g. contrast gain control
mechanisms in cortical area V1, and elsewhere [39], [40])

We define the normalization function:

N` = Normalize(P`) (8)

such that:

N ` =

{
ρ` · C` if ρ` ·

∣∣∣∣∣∣C` ⊗ 1
b`×b`×k`

∣∣∣∣∣∣
2
< τ`

C`∣∣∣∣∣∣∣∣C`⊗1
b`×b`×k`

∣∣∣∣∣∣∣∣
2

otherwise

(9)
with

C` = P ` − δ` · P
` ⊗ 1b`×b`×k`

b` · b` · k`
(10)

Where δ` ∈ {0, 1}, ⊗ is a 3-dimensional correlation over
the “valid” domain (i.e. sliding over the first two dimensions

1The L10-norm produces outputs similar to a max operation (i.e. softmax).

only), and 1b`×b`×k` is a b` × b` × k` array full of ones.
b` can be seen as the normalization “neighborhood” and δ`

controls if this neighborhood is centered (i.e. subtracting the
mean of the vector of neighboring values) before divisive
normalization. ρ` is a “magnitude gain” parameter and τ ` is
a threshold parameter below which no divisive normalization
occurs.

Parameters:
• The size b` of the neighborhood region was randomly

chosen from {3, 5, 7, 9}.
• The δ` parameter was chosen from {0, 1}.
• The vector of neighboring values could also be stretched

by gain values ρ` ∈ {10−1, 100, 101}. Note that when
ρ` = 100 = 1, no gain is applied.

• The threshold value τ ` was randomly chosen from
{10−1, 100, 101}.

E. Final model output dimensionality
The output dimensionality of each candidate model was

determined by the number of filters in the final layer, and
the x-y “footprint” of the layer (which, in turn, depends on
the subsampling at each previous layer). In the model space
explored here, the possible output dimensionality ranged
from 256 to 73,984.

F. Screening (model selection)
A total of 5,915 HT-L2 and 6,917 HT-L3 models were

screened on the LFW View 1 “aligned” set [26]. We selected
the best five models from each “pool” for further analysis on
the LFW View 2 set (Restricted Protocol). Note that LFW
View 1 and View 2 do not contain the same individuals and
are thus mutually exclusive sets. View 1 was designed as
a model selection set while View 2 is used as an indepen-
dent validation set for the purpose of comparing different
methods.

Examples of the screening procedure for HT-L2 and HT-
L3 models on the LFW View 1 task screening task are shown



in Fig. 2. Performance of randomly generated HT-L3 models
ranged from chance performance (50%) to better than 80%
correct; the best five models were drawn from this set and
are denoted HT-L3-1st, HT-L3-2nd, and so on. An analogous
procedure was undertaken to generate five two-layer models,
denoted HT-L2-1st, HT-L2-2nd, etc.

G. Evaluation Protocol

To evaluate the performance of our biologically-inspired
representations, we followed the standard LFW face verifica-
tion “Restricted View 2” protocol. 6,000 different face image
pairs (half “same”, half “different”) were drawn randomly
from the sets and divided into 10-fold cross validation splits
with 5,400 training and 600 testing examples each.

Because the biologically-inspired representations used
here generate one feature vector per image, comparison
functions were used to generate a new feature vector for
each pair, and these “comparison” features were used to
train binary (“same” / “different”) hard-margin linear SVM
classifiers. Following [25] we used the following element-
wise comparison functions: |F1 − F2|,

√
|F1 − F2|, (F1 −

F2)2, where F1 and F2 are the feature vectors generated
from the first and the second image of the pair, respectively.
We additionally added the comparison function (F1 · F2),
which was not used in [25], under the logic that it serves
as a soft “AND”-like function (i.e. it primarily results in a
large response for elements where both F1 and F2 are large).
We hypothesized that such a function would be valuable
since our representations are all quite sparse, and thus a
coincidence of high feature values in common between the
two test images is likely to provide meaningful evidence of
similarity.

H. Kernel combinations and data-set augmentation

While the high-throughput search techniques described
above are capable of yielding relatively high-performing
individual representations for LFW by themselves, effec-
tively all of the top-performing face recognition systems on
LFW employ some form of more advanced machine learning
backend to enhance their performance [26], [27], [28], [29].
One common approach in this regard is to blend together
a large number of weak learners to produce a blended
classifier.

To explore what performance enhancement can be gained
with modest amounts of blending on top of our feature
representations, we pursued a progressive strategy of layering
on additional kernels to produce successively larger and
higher performing blends. Two basic strategies were used for
generating new kernels: 1) feature augmentation, performing
operations on the input image, such as cropping and rescaling
to produce alternate kernels using the same representation,
and 2) representation blending, that is, combining together
kernels derived from multiple separate feature representa-
tions (e.g. blending over the five HT-L2 top models, or
combining the top five HT-L2 and HT-L3 models).

The progression of these additional elaborations is de-
scribed below:

1) Multiple rescaled crops: Following [25], we aug-
mented the dataset by computing features on three dif-
ferent centered crops of the image: 250x250 (original),
150x150 and 125x75. Each of these crops was resized to
the standard input size of each representation, and SVMs
were trained separately for each crop size. Blending of the
resulting kernels was done by simple kernel addition, with
each kernel being trace-normalized (by the training kernel
trace) prior to summation. More sophisticated blending (e.g.
IKL/MKL[41], LP-Boost[38]) were not used at this stage.

2) Blending of the top 5 models within class: While the
top five models found by our high-throughput search all yield
similar levels of performance, they achieve this performance
with different parameter sets. Consequently, to the extent
that the top five models represent a diversity of different
ways to achieve good performance, we would expect that
blending these models would yield further enhancement of
performance. At this stage, we combined all of the Stage 1
kernels above (multiple rescaled crops) from each of the top
five models within each model-class (e.g. HT-L2 and HT-L3).

3) Hierarchical blends across model class: Finally, we
also explored a more principled way to blend the represen-
tations from each model class. Following [42] we assigned
exponentially larger weight to higher-level representation
(V1-like < HT-L2 < HT-L3) resulting in the following kernel:

K(·, ·) =
∑
`

(2`−1)k`(·, ·) (11)

where ` = 1 for V1-like (one layer), ` = 2 for the top five
HT-L2 (two layers) and ` = 3 for the top five HT-L3 (three
layers).

We note that the choice of blending strategies to consider
on the View 2 set was driven by performance on the View
1 set, thereby avoiding selection bias artifacts.

III. RESULTS

A. High-throughput screening with LFW View 1

Fig. 2 shows the results of high-throughput screening to
select model instantiations that are well-suited to the LFW
verification task. For each model class, a multitude of models
were randomly generated and evaluated on the LFW view 1
set, and the best five were selected for further analysis.

B. Performance on LFW Restricted View 2

Performance of individual models and model blends are
shown in Table I. Performance ranging from 77.1 % for
the simplest V1-like model to 88.1% for the largest blend
were observed. Taken together, these results show that state-
of-the-art level performance is possible within the model
family, and there exist multiple paths (e.g. based purely on
V1-like models, and based on high-throughput, multi-layer
models) to achieving high levels of performance. Fig. 3
shows receiver-operator characteristic (ROC) curves for each
of these models.

Interestingly, the inclusion of a single additional compari-
son function to the V1-like model blend described in [25]
brings an additional 3% performance, placing it close to



TABLE I
PERFORMANCE (LFW RESTRICTED VIEW 2) OF THE FAMILY OF BIOLOGICALLY-INSPIRED MODELS AND BLENDS THEREOF.

alone +crops within blend V1+L2+L3 V1+L2+L3(weighted )
V1-like 77.0 ± 0.5 82.4 ± 0.5

87.6 ± 0.6 88.1 ± 0.6

HT-L2
5th 77.8 ± 0.4 82.8 ± 0.5

87.5 ± 0.5
4th 81.3 ± 0.4 85.4 ± 0.6
3rd 81.5 ± 0.6 85.1 ± 0.5
2nd 80.8 ± 0.4 83.6 ± 0.5
1st 81.0 ± 0.3 83.3 ± 0.5
HT-L3
5th 82.8 ± 0.6 84.5 ± 0.6

87.8 ± 0.4
4th 82.3 ± 0.3 82.7 ± 0.5
3rd 83.3 ± 0.4 85.6 ± 0.6
2nd 83.9 ± 0.3 86.8 ± 0.4
1st 84.1 ± 0.3 86.8 ± 0.3

the last reported best performance on this set, even without
extensive blending. Furthermore, we see that individual HT-
L3 models also perform surprisingly well — coming to
within a few percent correct of the previous state-of-the-art.

A major advantage of our high-throughput approach is
that it produces not one, but a diversity of models, and
this situation is ideally suited to kernel blending approaches.
Once blending is added, especially when coupled with an
intelligent algorithm for weighting blended kernels, several
different blends achieved performance exceeding previously
reported state-of-the-art values (see Figure 3(c)). ROC curves
for various blend groupings are shown in Fig. 3.

C. Analysis of Errors

To understand better where room for improvement lies, we
examined the error trials (misses and false alarms) produced
by each model for quantitative and qualitative trends. To
determine whether different models were primarily making
the same or different errors, we segregated the responses
of the V1-like and HT-L3 models (rescaled-crop augmented
variants, see Methods) into four categories: hits, misses,
false positives, and correct rejections. We then computed the
fraction of errors that these two models held in common
and found 84.3% of false positives were the same across
the two models, and that 87.3% of misses were missed by
both models. This high level of consistency between error
cases across the two models led us to ask whether a subset
of “hard” images within the larger LFW set could be driving
errors and capping performance.

Fig. 4 shows examples of misses and false positives held
in common for both models. While developing a quantitative
framework within which to analyze these errors is beyond the
scope of this paper, several patterns are evident, even upon
casual inspection. First, misses are dominated by situations
where the individual-to-be-matched is seen in non-frontal
view in at least one of the images. Second, false positives ap-
pear to occur more often in cases where different individuals
appear in a very similar view, or with a similar expression.

IV. DISCUSSION

Our results provide more evidence that biologically-
inspired models represent a promising and powerful direction
in face recognition research. Individual models from this
class are able to achieve good performance (e.g. around 77%
for V1-like models, 84% for HT-L3), and blends of these
models achieve more than 88% correct performance, beating
previously reported state-of-the-art values.

Consistent with expectations, progressively more complex,
multi-layer models are able to outperform the simpler V1-like
model. Whether this higher performance is due to a greater
ability to tolerate image variation (one of the original pur-
poses for the construction of the HT-L3 model class[35]) or
some other factor remains to be seen. It should be noted that
the HT-L2 and HT-L3 models used here were substantially
simplified from those present in [35], in that they did not
have structured filter kernels, nor were they subjected to any
unsupervised learning. Whether adding these features back
will result in higher levels of performance is an important
future research question.

While there still remains substantial room for improve-
ment, concerns that the LFW set does not necessarily ac-
curately reflect the “full” problem of unconstrained face
recognition remain [24], [25], [28]. LFW includes only a
handful of examples per individual, and these photographs
were often taken in the same setting and at the same event.
Furthermore, Kumar et al. [28] showed that human observers
were able to perform at greater-than-90% correct even when
the faces themselves were masked out of the test images,
indicating that the backgrounds in the LFW are more than
sufficient for solving the task at a level higher than the current
machine state of the art.

An analysis of the errors made by our models provides
some clues about which parts of the LFW set are difficult and
which ones are not. Our models failed on remarkably similar
sets of face pairs, indicating that a common core of “hard”
images may exist within the larger LFW set. A striking,
albeit anecdotal, observation is that common error cases are
dominated by misses when the same individual is shown in
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Fig. 3. ROC curves for various model sub-families on LFW Restricted View 2. Curves for [27], [28] and [29] are plotted in 3(b) for reference. Plots
are zoomed-in to facilitate comparison.

(a) Misses (b) False Positives

Fig. 4. Examples of common errors across models. Misses tend to be dominated by differences in view, while false positives frequently occur when
different individuals share a common view or expression.

differing views and by false positives when two different
individuals are compared while viewed from a similar angle
(e.g. Fig. 4). An important feature of the LFW set is that faces
must be detected by a Viola-Jones face detector in order to be
included in the set, and this effectively restricts the range of
face views that enter into the set (i.e. there is a bias towards

frontal views). We hypothesize that those more off-axis views
that do manage to pass the face detection filter will present
a particularly difficult challenge for a system trained on the
LFW set. The low-level (e.g. pixel-level) difference between
two different views of the same individual can easily be
larger than the low-level differences between two individuals



in a similar pose. A system that is not specially designed to
tolerate this kind of variation will have a high false alarm
rate on trials where two different individuals are seen in the
same pose and a high miss rate where the same individual
is compared across different poses. At the same time, if the
LFW set contains a relatively small fraction of these off-
axis faces, then a system trained exclusively on the LFW
set will face difficulty learning to tolerate these cases, even
if that system has the capability to learn such tolerance in
principle.

As continued research manages to chip away at the re-
maining “performance gap” between human and machines
on the LFW set, increased attention will need to be paid to
whether LFW truly represents the problem of interest. On
one hand, as long as some performance gap exists, the set
is obviously valid at a basic level. However, the question
remains whether a “fuller” formulation of the problem (i.e.
more natural, less filtered) might lead to faster progress.
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