
Segmentation Driven Object Detection with Fisher Vectors

Ramazan Gokberk Cinbis Jakob Verbeek Cordelia Schmid

LEAR, INRIA Grenoble - Rhône-Alpes, France Laboratoire Jean Kuntzmann
firstname.lastname@inria.fr

Abstract

We present an object detection system based on the
Fisher vector (FV) image representation computed over
SIFT and color descriptors. For computational and stor-
age efficiency, we use a recent segmentation-based method
to generate class-independent object detection hypotheses,
in combination with data compression techniques. Our
main contribution is a method to produce tentative object
segmentation masks to suppress background clutter in the
features. Re-weighting the local image features based on
these masks is shown to improve object detection signifi-
cantly. We also exploit contextual features in the form of
a full-image FV descriptor, and an inter-category rescoring
mechanism. Our experiments on the PASCAL VOC 2007
and 2010 datasets show that our detector improves over the
current state-of-the-art detection results.

1. Introduction

Object detection is an important computer vision prob-
lem, where the goal is to report both the location in terms
of a bounding box, and the category of objects in an image.
Significant progress has been made over the past decade, as
witnessed by the PASCAL VOC challenges [12]. Most of
the existing work, see e.g . [10, 14], is based on the slid-
ing window approach, where detection windows of vari-
ous scales and aspect ratios are evaluated at many posi-
tions across the image. This approach becomes computa-
tionally very expensive when rich representations are used.
To alleviate this problem, the seminal approach of Viola and
Jones [37] implements a cascade, which iteratively reduces
the number of windows to be examined. In a similar spirit,
two or three-stage approaches have been explored [20, 35],
where windows are discarded at each stage, while pro-
gressively using richer features. It is also possible to im-
plement non-exhaustive search with a branch and bound
scheme [24]. A recent alternative is to prune the set of can-

didate windows without using class specific information, by
relying on low-level contours and image segmentation, see
e.g . [1, 11, 17, 34]. In our work we use the method of [34].

Our first contribution is to explore the improved Fisher
vector representation of [31] for object detection. This rep-
resentation was recently shown to yield state-of-the-results
for image and video categorization [4, 26]. Chen et al . [6]
recently also explored Fisher vectors (FV) for detection,
and proposed an efficient detection mechanism based on in-
tegral images to find the best scoring window per image.
Their approach, however, does not allow the use of power
and `2 normalization of the FVs. We show that this is a sig-
nificant drawback, since these normalizations lead to sub-
stantially better detection performance when included.

Our second contribution is that we show that the image
segmentation that drives the object hypotheses generation,
can also be used to improve the appearance features com-
puted over the windows. To this end, we compute a mask
for each candidate window which counts for each pixel how
many superpixels that cover that pixel are fully contained in
the window, and weight the contribution of local descriptors
in the Fisher vector representation accordingly. This local
feature weighting process is class-independent, completely
unsupervised, and suppresses background clutter on super-
pixels that traverse the window boundary.

Related work in the literature has used segmentation
for object detection in different ways. Part of it, see e.g .
[9, 27, 28, 38], extracts explicit segmentation for each ob-
ject detection hypothesis as a post-processing step. Placing
a bounding box over the obtained segmentation, however,
can be sensitive to small defects in the segmentation. More-
over, if the supervision is limited to bounding box anno-
tations, it is difficult to learn accurate object segmentation
models. Other approaches, such as [18], instead rely on
a bottom-up process which scores superpixels individually,
and then assembles them into object detections. This ap-
proach has the drawback that the recognition of object frag-
ments is much harder than recognizing complete objects.
Recently, Fidler et al . [15] improve object detection using

1

ha
l-0

08
73

13
4,

 v
er

si
on

 1
 - 

15
 O

ct
 2

01
3

Author manuscript, published in "International Conference on Computer Vision (ICCV) (2013)"

http://hal.inria.fr/hal-00873134
http://hal.archives-ouvertes.fr


the output from the semantic segmentation of [3]. The se-
mantic segmentation is used to extract additional features
encoding spatial relationships between the associated seg-
ments and object detection windows. This approach, how-
ever, requires groundtruth segmentations to train the seman-
tic segmentation model.

Our work is different in the sense that we incorporate
segmentation into the feature extraction step for object de-
tection, and remain in the training-from-bounding-boxes
paradigm. Even if the segmentation step fails in accurately
delineating the object, our detector still benefits from the ap-
proximate segmentation since still part of the background
clutter can be suppressed. Note that segmentation based
post-processing may still be applied on top of our approach.

Our work is also related to recent work on weighting
local features in representations for image classification.
Khan et al . [23] use class-specific attention maps to weight
local descriptors, and concatenate the class-specific bag-of-
word histograms in their final representation. Sánchez et
al . [30] sample 1,000 windows per image using the object-
ness measure of [1], and weight local features proportional
to the number of windows that overlap them when comput-
ing a Fisher vector representation.

We evaluate our system using the PASCAL VOC 2007
and 2010 datasets, and compare it to results reported in the
literature. To the best of our knowledge, our results are the
best so far reported on these datasets, when considering the
average performance across classes. With a gain of around
2 mAP points, our approximate segmentation masks signif-
icantly contribute to the success of our method.

In the next section we describe our method in detail, fol-
lowed by the results of our experimental evaluation in Sec-
tion 3. Finally, we present our conclusions in Section 4.

2. Segmentation driven object detection
In this section we describe how we generate our approx-

imate segmentation masks, the feature extraction and com-
pression processes, and the detector training procedure.

2.1. Segmentation mask generation

Hierarchical segmentation was proposed in [34] to gen-
erate class-independent candidate detection windows. The
image is first partitioned into superpixels, which are then
hierarchically grouped into a segmentation tree by merg-
ing neighboring and visually similar segments. This step is
repeated using eight different sets of superpixels; obtained
using four different color spaces and two different scale pa-
rameters for the superpixel generation. In this manner, a
rich set of segments of varying sizes and shapes is obtained,
and the bounding boxes of the segments are used as can-
didate detection windows. When producing around 1,500
object windows per image, more than 95% of the ground
truth object windows are matched in the sense that they have

an intersection/union measure of over 50%, as measured on
the VOC’07 dataset. In this manner more computationally
expensive classifiers and features can be used since far less
windows need to be evaluated than in a sliding window ap-
proach. Examples of candidate windows together with their
generating segments can be found in Figure 1.

In general, however, the segments used to generate these
candidate windows do not provide good object segmenta-
tions. To obtain masks that are more suitable to improve ob-
ject localization, we exploit the idea that background clutter
is likely to be represented by superpixels that traverse the
window boundary. Therefore, we produce a binary mask
based on each of the eight segmentations by retaining the
superpixels that lie completely inside the window, and sup-
pressing the other ones. We average the eight binary masks
to produce the weighted mask, which we use to weight
the contribution of local features in the window descriptor.
The procedure is illustrated in Figure 1. The segmentation
quality varies across the eight segmentations from one im-
age to another, but the average mask produces a relatively
high quality segmentation for the correct object hypotheses
shown in the first two rows, in particular considering that the
method is completely unsupervised and class-independent.

It is important to consider the segmentation masks pro-
duced for incorrect candidate windows too, since these rep-
resent the vast majority of the candidate windows. For ex-
ample, in the VOC 2007 dataset there are on average 2.5 ob-
jects per image, while we use on the order of 1,000 to 2,000
candidate windows per image. The first incorrect candidate
window in Figure 1 shows a case where a partially visible
horse is largely suppressed, since the superpixels on the ob-
ject straddle outside the window. As a result this window
gets a lower score than the correct one containing the entire
horse. The second incorrect window shows a case where
the car features are retained, and background is suppressed.
Since the window does not accurately cover the object, this
might be detrimental to the detector performance. It is,
therefore, important to also take into account the features
of the entire window as shown experimentally in Section 3.

2.2. Feature extraction

To represent the candidate object windows we use two
local features: SIFT and the local color descriptor of [8].
Both descriptors are extracted on a dense multi-scale grid,
with step size equal to 25% of the patch width, and on 16
scales separated by a factor 1.2, with 12 × 12 patches at
the smallest scale. We project both features to D = 64
dimensions using PCA.

We aggregate the local feature vectors using the Fisher
vector (FV) representation [31]. This representation ex-
tends the well-known bag-of-words representation by ex-
tracting first-order and second-order moments from the de-
scriptors assigned to a visual word in addition to the number

ha
l-0

08
73

13
4,

 v
er

si
on

 1
 - 

15
 O

ct
 2

01
3



Figure 1: Segmentation masks for two correct (top) and two incorrect (bottom) candidate windows. The first four columns
show the window, the merged segment that produced that window, our weighted mask, and the masked window. The eight
images on the right show the binary masks of superpixels lying fully inside the window, for each of the eight segmentations.

of assigned descriptors. Formally, the FV is defined as the
gradient of the log-likelihood of the data under a generative
model, normalized by the inverse square-root of the Fisher
information matrix. We learn a mixture of Gaussian (MoG)
distribution p(x) with diagonal covariance matrices from a
large collection of 106 local descriptors off-line. The nor-
malized gradients with respect to µkd, and σkd —the mean
and standard deviation of the k-th Gaussian in dimension
d— for a single local descriptor x are given by:

∂ ln p(x)

∂µkd
=
p(k|x)
√
πk

(
xd − µkd

σkd

)
, (1)

∂ ln p(x)

∂σkd
=
p(k|x)
√
πk

(
(xd − µkd)

2

σ2
kd

− 1

)
, (2)

where πk is the mixing weight of the k-th Gaussian, and
p(k|x) is the soft-assignment of x to the k-th Gaussian. In
practice we use a hard-assignment instead of the posterior to
speed-up feature calculation for many candidate windows.

To represent a candidate window we sum up these nor-
malized gradients, and weight the contribution of local de-
scriptors by the averaged segmentation masks when we use
them. After aggregating the local gradient vectors, we ob-
tain a K(2D + 1) dimensional feature vector to which we
apply the power and `2 normalization [31]. The power
normalization consists in taking a “signed square-root”,
z ← sign(z)

√
abs(z), on each dimension separately. In

[7], power normalization was shown to provide an approx-
imation to the fisher vectors w.r.t. an improved MoG-like
model incorporating dependencies across image patches.

To obtain the final window descriptor we concatenate the

FVs obtained over the color and SIFT features. We also em-
ploy a form of rigid spatial layout [25], and compute FVs
over cells in a 4×4 grid over the window; we also do this in
combination with our masks. To capture global scene con-
text, we compute a FV over the full image. In our experi-
ments we assess their relative importance of these features.

2.3. Feature compression

During training we apply our detectors several times to
the training images to retrieve hard negative examples. Re-
extracting descriptors at each hard negative mining iteration
would be very costly. For example, the PASCAL VOC 2007
dataset contains about 5,000 training images and we have
between 1,000 and 2,000 candidate windows per image,
thus we have to assess in the order of 5 to 10 million candi-
date windows in each iteration. On the other hand, storing
all window descriptors in memory is also problematic. In
our experiments we use K = 64 Gaussians, which leads to
K(2D+1) = 8, 256 dimensional FVs, which for 5 million
candidate windows represents about 160 GB when using 4-
byte floating point encoding. When using more elaborate
descriptors, e.g . when including color, spatial pyramids, or
masks, the memory usage becomes quickly prohibitive.

To overcome this problem, we compress the feature vec-
tors using product quantization (PQ), which was recently
proposed for large-scale image retrieval and classification
[21, 29]. In product quantization, the large H dimensional
feature vector is split into B subvectors, and a separate k-
means quantizer with 2M centers is learned for each sub-
vector. A high dimensional vector can then be compressed

ha
l-0

08
73

13
4,

 v
er

si
on

 1
 - 

15
 O

ct
 2

01
3



to B ×M bits, by encoding for each subvector the index of
the nearest k-means center. In practice we use M = 8, and
H/B = 8 dimensional subvectors, which leads to a com-
pression factor of 32 as compared to a 4-byte floating point
encoding of the original vector. To reduce the memory re-
quirements even further, we use Blosc compression [2] on
the PQ codes per image. Blosc is a highly-optimized loss-
less data compression algorithm with low computational
overhead, which exploits regularities across the descriptor
PQ codes.1 Note that PQ compression was used for object
detection before in [36], but for a HOG feature based sys-
tem which is far less demanding in terms of storage. We
compare to their results in our experimental evaluation.

One can choose not to compress the data during test time,
and apply the detector in an online manner computing the
features for one image at the time. In our experimental
setup, however, we have used the same compression ap-
proach on the test images; in [29] it was shown that this
only has a small impact on performance. Using PQ codes,
all window descriptors for the whole dataset take 580 GB
of disk space. Blosc compression further reduces the data
size roughly by a factor 4, down to 137 GB.

In order to apply a detector (for hard negative mining or
evaluation), we only need to decompress Blosc-compressed
data on-the-fly back to PQ codes. The PQ codes can be
used directly to score windows efficiently using lookup ta-
bles [36]. Once data is loaded into memory, applying a
detector on 5,000 images takes around 5 minutes using 35
cores for a single category and around 20 minutes for all
20 categories. Since most time is spent reading data from
memory and decompressing the Blosc codes, the detection
time scales sub-linearly with the number of categories.

2.4. Training the detector

For each category we train a linear SVM classifier on the
concatenated FV representation of the windows. As pos-
itive training examples, we use the windows given by the
ground-truth annotation. We initialize the set of negative
training examples by randomly sampling candidate boxes
around ground-truth windows, and retaining those windows
that have an overlap between 20% and 30% with a positive
example in terms of intersection over union.

After the initial training stage, we add hard negative ex-
amples by applying the detector on the training set. At each
hard negative mining iteration, we select the top two de-
tections per image, with less than 30% overlap with any
ground-truth window. To avoid redundancy in negative
samples, we do not allow two negative windows to have
more than 60% overlap.

Using our development dataset, described in the next
section, we observed that the detector performance signif-
icantly increases after the first hard negative mining itera-

1We use the public code from http://blosc.pytables.org.

tion, and usually stabilizes after a few iterations. Based on
this observation we fixed the number of hard negative min-
ing iterations to four in all our experiments.

To learn the classifiers from the PQ compressed data, we
use the dual coordinate descent algorithm of LibLinear [13]
which updates the classifier after accessing a single example
at a time. We modified the code to decompress examples
on-the-fly as they are accessed by the training algorithm.

3. Experimental evaluation
We conduct experiments on the PASCAL VOC datasets

of 2007 and 2010 [12]. To develop our approach and to
evaluate the different variants of the approach, we use a sub-
set of 1,000 images of the classes bus, cat, motorbike, and
sheep from the “train+val” part of the 2007 dataset. These
1,000 images are again split into equal train and test sets;
experiments on this development set do not use any images
of the “test” set of the 2007 dataset.

For SVM training, there are two important hyper-
parameters to set. The first one determines the balance be-
tween positive and negative examples, and the second one is
the weight of the regularization term. On the development
dataset, we have observed that using a fixed set of parame-
ters performed as well as cross-validating these parameters
per class. Therefore, in all experiments below, we have set
the total weight of negative examples to be 100 times larger
than the total weight of all positive examples, and set the
weight of the SVM’s `2 regularization term to 10−2.

3.1. Parameter evaluation on the development set

We evaluated different versions of our detector on the de-
velopment set, the results of which can be found in Table 1.

In our first three experiments we consider different de-
tectors that only rely on the candidate windows, and do
not make use of segmentation masks. We start with a ba-
sic detector that computes a single (power and `2 normal-
ized) Fisher vector (FV) over the SIFT descriptors in each
window , which leads to an mAP of 25.2%. When adding
a 4 × 4 SPM grid, and concatenating the 1 + 4 × 4 = 17
FVs, the detection mAP value improves to 44.2%, underlin-
ing the importance to take spatial information into account.
Next, we consider applying the `2 normalization per spatial
cell instead of on the concatenated vector. We observe a
small improvement to 45.0% mAP.

In order to evaluate the importance of descriptor normal-
ization, we removed the power normalization and test three
versions: (i) no normalization (i.e ., just summing the per-
descriptor Fisher vectors), (ii) normalize (i.e . divide) by the
number of local descriptors, (iii) using `2 normalization.
This results in 3.4%, 6.9%, and 42.7% mAP, respectively
(not shown in Table 1). Compared to the version with power
and `2 normalizations, 45.0% mAP, it is clear than both nor-
malization techniques are important for the detection task.

ha
l-0

08
73

13
4,

 v
er

si
on

 1
 - 

15
 O

ct
 2

01
3

http://blosc.pytables.org


Table 1: Performance on the development set with differ-
ent descriptors (S: SIFT, C: color), regions (W: window, G:
generating segment, M: mask), and with / without SPM.

Desc. Regions Norm. SPM bus cat mbike sheep mAP
S W object no 22.2 35.8 26.3 16.6 25.2
S W object yes 47.6 45.0 54.2 30.0 44.2
S W cell yes 48.0 47.2 53.0 32.0 45.0
S G (train on W) cell yes 35.7 46.3 43.2 17.0 35.5
S M (train on W) cell yes 41.1 47.8 52.7 19.2 40.2
S M cell yes 44.0 48.8 51.4 30.8 43.8
S W+M cell yes 48.5 49.2 54.3 33.8 46.4

S+C W cell yes 47.3 48.2 54.4 35.8 46.4
S+C W+M cell yes 48.1 51.1 55.5 40.0 48.7
S+C W+M+F cell yes 50.3 51.6 54.8 41.9 49.6

The next four experiments in Table 1 assess the perfor-
mance when using segmentation masks. First, we use for
each window the generating segment used to produce it, i.e .
the segments shown in the second column of Figure 1. In
this case we suppress all descriptors within the bounding
box that do not lie inside the segment, except for the ground-
truth object windows during training, for which there are
no generating segments. This leads to a detection mAP of
35.5%. Although this result is 10 mAP points below that
using the window itself, it is still surprisingly good consid-
ering that the generating segments often poorly capture the
object shape. Second, we repeat this experiment when using
the weighted masks (see Figure 1 third column), which im-
proves mAP by about five points to 40.2%. Third, we also
use the weighted masks on the ground-truth object windows
during training. This improves the detector to 43.8% mAP,
due to a better match between training and test data. This
is, however, slightly lower than the results obtained from the
windows. This might be due to the fact that useful contex-
tual background descriptors tend to be suppressed. Our last
experiment in this set considers combining the mask and
window descriptors, so as to benefit from both local con-
text, and crisper object-centered features. This combination
outperforms the window-only detector on all four classes
and leads to 46.4% mAP.

In the last three experiments, we examine the added
value of additional color and full-image features. For both
of these we do not apply SPM grids. First, we consider
adding color to both the window-only detector and the win-
dow+mask detector. The window-only SIFT+color detec-
tor performs very similar to the window+mask SIFT-only
detector at 46.4% mAP. When adding color to the win-
dow+mask detector performance rises to 48.7%, clearly
showing the complementarity of the mask and color fea-
tures. Finally, we add a contextual feature by means of a
FV computed over the full image, which further increases
the mAP score to 49.6%.

3.2. Evaluation and comparison to existing work

We now turn to evaluations on the full PASCAL VOC
2007 and 2010 datasets. Based on the above experiments
we use SPM, power and cell-level `2 normalization.

In Table 2 we present results obtained for various ver-
sions of our detector on the 2007 dataset. First, we con-
sider the window-only version, which obtains 34.0% mAP.
Second, we consider the combined window+mask version,
which obtains an mAP of 35.8%. In the following two
rows, we repeat the first two experiments with additional
color features, which score 35.2% and 37.6% mAP, respec-
tively. These relative performances are consistent with ob-
servations made on the development set. When we add the
full-image FV to window+mask descriptors, mAP score is
increased from 37.6% to 38.5%. To confirm the gain due to
use of masks, we also report results for (SIFT+color, win-
dow+full), which is 36.6% mAP. Thus, the gain by adding
masked features is consistently around 2 mAP points. Fi-
nally, we implement the contextual rescoring mechanism
proposed in [14], which further increases the score from
38.5% to 40.5% mAP (last row).

To gain insight in the effect of the masked features, we
present top detections in example images with our best de-
tector (SIFT+color, window+full+context) with and without
masks in Figure 2. Images in the top row illustrate cases
where the detector benefits from the masked features. Our
approximate object segmentation suppresses background
clutter, which is particularly important when the object does
not fill the bounding box (columns 1–4). The bus example
shows a case where a too small detection is suppressed since
superpixels extend over the full bus, using the mask leads
to the full bus being detected. The bottom row shows ex-
amples where the use of masks degrades the top detection,
typically the detection window is too large, since included
background features are suppressed by the masks.

In Table 3 we compare our results to those of eight rep-
resentative state-of-the-art detectors. We divide them in
two groups depending on whether they exploit inter-class
contextual features, which we refer shortly as contextual
detectors, or score windows independently. We can ob-
serve that our detector without contextual rescoring obtains
38.5% mAP, which is significantly better than the highest
mAP (34.8%) among the competing non-contextual detec-
tors, and very similar to the highest mAP (38.7%) among
the competing contextual detectors. With contextual rescor-
ing, our detector obtains 40.5% mAP, which is the highest
reported result on this dataset to the best of our knowledge.

Since we use the candidate window method of Van de
Sande et al . [34], the detectors can be directly compared. In
their work they used intersection-kernel SVM classifiers on
bag-of-word representations with a 4-level spatial pyramid,
computed over SIFT, and two color features (opponent-
SIFT, and RGB-SIFT). Our detector without contextual

ha
l-0

08
73

13
4,

 v
er

si
on

 1
 - 

15
 O

ct
 2

01
3



Table 2: Performance on VOC’07 with different descriptors (S: SIFT, C: color), regions (W: window, M: mask, F: full image).

aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv mAP
S W 46.7 48.7 14.1 19.4 15.7 45.0 54.6 36.3 11.4 36.2 37.4 24.3 37.1 52.4 25.8 14.7 35.3 30.4 47.2 48.2 34.0
S W+M 50.2 49.4 16.6 21.3 15.7 45.5 55.3 39.8 14.8 36.3 39.5 25.4 42.4 50.4 30.6 15.8 34.3 35.5 48.3 49.7 35.8

S+C W 47.7 50.1 16.5 19.2 15.9 45.1 55.1 37.2 13.0 37.3 40.8 25.5 40.7 51.8 26.4 18.2 35.5 30.6 47.7 49.6 35.2
S+C W+M 50.5 51.2 18.8 23.8 17.8 47.2 56.4 41.6 14.7 38.6 40.7 27.1 47.3 52.4 29.7 19.6 38.3 35.0 49.3 52.8 37.6
S+C W+F 49.9 51.6 16.4 21.7 16.5 45.9 55.6 38.4 15.3 42.1 42.0 25.3 41.2 52.2 26.8 18.8 36.2 35.8 48.5 51.6 36.6
S+C W+M+F 52.6 52.6 19.2 25.4 18.7 47.3 56.9 42.1 16.6 41.4 41.9 27.7 47.9 51.5 29.9 20.0 41.1 36.4 48.6 53.2 38.5
S+C W+M+F+Context 56.1 56.4 21.8 26.8 19.9 49.5 57.9 46.2 16.4 41.4 47.1 29.2 51.3 53.6 28.6 20.3 40.5 39.6 53.5 54.3 40.5

Table 3: Comparison of our detector with and without context with the state-of-the-art object detectors on VOC 2007.

aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv mAP
methods without inter-class contextual cues

SUGS’11 [34] 43.3 46.4 11.2 11.9 9.3 49.3 53.7 39.2 12.5 36.8 42.0 26.4 47.0 52.1 23.5 11.9 29.7 36.1 42.0 48.7 33.7
HMR’12 [19] 23.3 41.0 9.9 11.0 17.0 37.8 38.4 11.5 11.8 14.5 12.2 10.2 44.8 27.9 22.4 3.1 16.3 8.9 30.3 28.8 21.0
VZ’12 [36] 27.9 55.2 9.5 10.4 16.4 47.6 52.0 16.0 13.5 18.6 20.7 10.7 53.4 39.7 37.3 10.4 12.7 19.7 41.7 40.9 27.7
GFM’12 [16] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7
KAWBVL’12 [22] 34.5 61.1 11.5 19.0 22.2 46.5 58.9 24.7 21.7 25.1 27.1 13.0 59.7 51.6 44.0 19.2 24.4 33.1 48.4 49.7 34.8
SWJZ’13 [32] 35.3 60.2 16.6 29.5 53 57.1 49.9 48.5 11 23 27.7 13.1 58.9 22.4 41.4 16 22.9 28.6 37.2 42.4 34.7
Ours, without context 52.6 52.6 19.2 25.4 18.7 47.3 56.9 42.1 16.6 41.4 41.9 27.7 47.9 51.5 29.9 20.0 41.1 36.4 48.6 53.2 38.5

methods using inter-class contextual cues
GFM’12 context [16] 36.6 62.2 12.1 17.6 28.7 54.6 60.4 25.5 21.1 25.6 26.6 14.6 60.9 50.7 44.7 14.3 21.5 38.2 49.3 43.6 35.4
CDXH’13 [5] 41.0 64.3 15.1 19.5 33.0 57.9 63.2 27.8 23.2 28.2 29.1 16.9 63.7 53.8 47.1 18.3 28.1 42.2 53.1 49.3 38.7
Ours, with context 56.1 56.4 21.8 26.8 19.9 49.5 57.9 46.2 16.4 41.4 47.1 29.2 51.3 53.6 28.7 20.3 40.5 39.6 53.5 54.3 40.5

rescoring outperforms theirs on 17 of the 20 categories, as
well as on average, 38.5% vs. 33.7% mAP.

Among the methods without context best results are ob-
tained with [22], which introduces high-level color-name
features in the deformable part-based model (DPM) of [14].
Our detector mAP compares favorably to theirs on average,
38.5% vs . 34.8% mAP, as well as on 13 of the 20 classes.

Chen et al . [5] propose a technique for exploiting con-
textual information from a single-category detector output.
Although the method itself does not directly use inter-class
information, they utilize the detections given by the contex-
tual rescoring approach of [16]. Our non-contextual detec-
tor performs comparably at 38.5% mAP, and our contextual
detector performs significantly better at 40.5% mAP com-
pared to their 38.7%. In principle their method is generic,
therefore, potentially additional gains may be achieved by
applying their method on the top of our object detector.

Finally, in Table 4 we compare our performance on the
PASCAL VOC 2010 dataset to earlier results, again di-
viding existing methods based on whether or not they use
inter-class contextual features. For completeness, we also
report the non-contextual and contextual detection results
of [15], which are incomparable to the other results in the
table, since their method is based on a semantic segmenta-
tion model trained using manual segmentation annotations
for the training images of both the detection and the seg-

mentation challenges of PASCAL VOC 2010.
On the PASCAL VOC 2010 dataset, we obtain an mAP

score of 35.8% without contextual rescoring. Our non-
contextual detector outperforms all other non-contextual
detectors in terms of mAP, and performs comparable to
other contextual object detectors. When contextual rescor-
ing is used, detection performance of our method increases
to 38.4% mAP, which to the best of our knowledge is 1.6%
mAP points above the highest reported result (36.8% mAP)
on the PASCAL VOC 2010 dataset.

Compared to the results of Van de Sande et al . [34],
which are based on the same candidate windows, our non-
contextual detection results are better than theirs on 12 of
the 20 categories, as well as on average: 35.8% vs . 34.1%.

Compared to the two best previous methods, NLPR and
those of Song et al . [33], which include inter-class context,
our mAP score of 38.4% is significantly higher than their
36.8%. In a per-class comparison our system is best on 11
of the 20 categories, NLPR on 3, and Song et al . [33] on 4.

4. Conclusions
We presented an object detection approach that exploits

the powerful high dimensional Fisher vector representation.
We use a selective search strategy and data compression
to efficiently train and test our detector. We have shown
that the same superpixels that drive the selective search can

ha
l-0

08
73

13
4,

 v
er

si
on

 1
 - 

15
 O

ct
 2

01
3



Table 4: Comparison of our detector with and without context with the state-of-the-art object detectors on VOC 2010.

aero bicy bird boa bot bus car cat cha cow dtab dog hors mbik pers plnt she sofa trai tv mAP
methods without inter-class contextual cues

SUGS’11 [34] 58.2 41.9 19.2 14.0 14.3 44.8 36.7 48.8 12.9 28.1 28.7 39.4 44.1 52.5 25.8 14.1 38.8 34.2 43.1 42.6 34.1
GFM’12 [16] 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 42.5 44.5 41.3 8.7 29.0 18.7 40.0 34.5 29.6
SWJZ’13 [32] 44.6 48.5 12.9 26.3 47.5 41.6 45.3 39 10.8 21.6 23.6 22.9 40.9 30.4 37.9 9.6 17.3 11.5 25.3 31.2 29.4
Ours, without context 61.3 46.4 21.1 21.0 18.1 49.3 45.0 46.9 12.8 29.2 26.1 38.9 40.4 53.1 31.9 13.3 39.9 33.4 43.0 45.3 35.8

methods using inter-class contextual cues
NLPR 2010 ∗ 53.3 55.3 19.2 21.0 30.0 54.4 46.7 41.2 20.0 31.5 20.7 30.3 48.6 55.3 46.5 10.2 34.4 26.5 50.3 40.3 36.8
SCHHY’11 [33] 53.1 52.7 18.1 13.5 30.7 53.9 43.5 40.3 17.7 31.9 28.0 29.5 52.9 56.6 44.2 12.6 36.2 28.7 50.5 40.7 36.8
GFM’12 context [16] 48.2 52.2 14.8 13.8 28.7 53.2 44.9 26.0 18.4 24.4 13.7 23.1 45.8 50.5 43.7 9.8 31.1 21.5 44.4 35.7 32.2
Ours, with context 65.9 50.1 23.7 24.1 20.4 52.6 47.1 50.9 13.2 32.8 31.8 41.4 43.9 55.3 29.8 14.1 41.7 35.6 46.7 46.9 38.4

uncomparable methods using additional training data
FMYU’13 [15] ∗∗ 56.4 48.0 24.3 21.8 31.3 51.3 47.3 48.2 16.1 29.4 19.0 37.5 44.1 51.5 44.4 12.6 32.1 28.8 48.9 39.1 36.6
FMYU’13 context [15] ∗∗ 61.4 53.4 25.6 25.2 35.5 51.7 50.6 50.8 19.3 33.8 26.8 40.4 48.3 54.4 47.1 14.8 38.7 35.0 52.8 43.1 40.4

∗ These results do not directly correspond to papers and are taken directly from the PASCAL VOC 2010 website instead.
∗∗ Utilizes groundtruth segmentation annotations and extra training images.

be used to obtain approximate object segmentation masks,
which allow us to compute object-centric features that are
complementary to full-window features. Our detector also
exploits contextual features in the form of a full-image FV
descriptor, and an inter-category rescoring mechanism.

To the best of our knowledge, our detection results on
the PASCAL VOC 2007 and 2010 datasets are the best so
far reported on these datasets, when considering the average
performance across classes. With a gain of around 2 mAP
points, our approximate segmentation masks significantly
contribute to the success of our method.

In future work we want to explore the effectiveness of
our approximate object detection masks for tasks such as
semantic segmentation, by using them as a strongly seman-
tic and spatially detailed prior.

Acknowledgements. This work was supported by
Quaero (funded by OSEO, French State agency for innova-
tion), the European integrated project AXES, and the ERC
advanced grant ALLEGRO.

References
[1] B. Alexe, T. Deselares, and V. Ferrari. Measuring the object-

ness of image windows. PAMI, 34(11):2189–2202, 2012.
[2] F. Alted. Why modern CPUs are starving and what can

be done about it. Computing in Science & Engineering,
12(2):68–71, 2010.

[3] J. Carreira, R. Caseiroa, J. Batista, and C. Sminchisescu. Se-
mantic segmentation with second-order pooling. In ECCV,
2012.

[4] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman.
The devil is in the details: an evaluation of recent feature
encoding methods. In BMVC, 2011.

[5] G. Chen, Y. Ding, J. Xiao, and T. X. Han. Detection evo-
lution with multi-order contextual co-occurrence. In CVPR,
2013.

[6] Q. Chen, Z. Song, R. Feris, A. Datta, L. Cao, Z. Huang, and
S. Yan. Efcient maximum appearance search for large-scale
object detection. In CVPR, 2013.

[7] R. Cinbis, J. Verbeek, and C. Schmid. Image categorization
using Fisher kernels of non-iid image models. In CVPR,
2012.

[8] S. Clinchant, G. Csurka, F. Perronnin, and J.-M. Renders.
XRCE’s participation to ImagEval. In ImageEval workshop
at CVIR, 2007.

[9] Q. Dai and D. Hoiem. Learning to localize detected objects.
In CVPR, 2012.

[10] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005.

[11] I. Endres and D. Hoiem. Category independent object pro-
posals. In ECCV, 2010.

[12] M. Everingham, L. van Gool, C. Williams, J. Winn, and
A. Zisserman. The Pascal Visual Object Classes (VOC) chal-
lenge. IJCV, 88(2):303–338, June 2010.

[13] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin. LIBLINEAR: a library for large linear classification.
JMLR, 9:1871–1874, 2008.

[14] P. Felzenszwalb, R. Grishick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. PAMI, 32(9), 2010.

[15] S. Fidler, R. Mottaghi, A. Yuille, and R. Urtasun. Bottom-up
segmentation for top-down detection. In CVPR, 2013.

[16] R. Girshick, P. Felzenszwalb, and D. McAllester. Dis-
criminatively trained deformable part models, release 5.
http://people.cs.uchicago.edu/ rbg/latent-release5, 2012.

[17] C. Gu, P. Arbeláez, Y. Lin, K. Yu, and Malik. Multi-
component models for object detection. In ECCV, 2012.

[18] C. Gu, J. Lim, P. Arbeláez, and J. Malik. Recognition using
regions. In CVPR, 2009.

ha
l-0

08
73

13
4,

 v
er

si
on

 1
 - 

15
 O

ct
 2

01
3



Figure 2: Example images where the top scoring detection improves (top row) or degrades (bottom row) with inclusion of
the masked window descriptors. Correct detections are shown in yellow, incorrect ones in magenta. See text for details.

[19] B. Hariharan, J. Malik, and D. Ramanan. Discriminative
decorrelation for clustering and classification. In ECCV,
2012.

[20] H. Harzallah, F. Jurie, and C. Schmid. Combining efficient
object localization and image classification. In ICCV, 2009.

[21] H. Jégou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. PAMI, 33(1):117–128, 2011.

[22] F. Khan, R. Anwer, J. van de Weijer, A. Bagdanov, M. Van-
rell, and A. Lopez. Color attributes for object detection. In
CVPR, 2012.

[23] F. Khan, J. van de Weijer, and M. Vanrell. Top-down color
attention for object recognition. In ICCV, 2009.

[24] C. Lampert, M. Blaschko, and T. Hofmann. Efficient sub-
window search: a branch and bound framework for object
localization. PAMI, 31(12):2129–2142, 2009.

[25] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006.

[26] D. Oneata, J. Verbeek, and C. Schmid. Action and event
recognition with Fisher vectors on a compact feature set. In
ICCV, 2013.

[27] O. Parkhi, A. Vedaldi, C. Jawahar, and A. Zisserman. The
truth about cats and dogs. In ICCV, 2011.

[28] D. Ramanan. Using segmentation to verify object hypothe-
ses. In CVPR, 2007.

[29] J. Sánchez and F. Perronnin. High-dimensional signature
compression for large-scale image classification. In CVPR,
2011.

[30] J. Sánchez, F. Perronnin, and T. de Campos. Modeling the
spatial layout of images beyond spatial pyramids. Pattern
Recognition Letters, 33(16):2216–2223, 2012.

[31] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image
classification with the Fisher vector: Theory and practice.
IJCV, 105(3):222–245, 2013.

[32] X. Song, T. Wu, Y. Jia, and S.-C. Zhu. Discriminatively
trained and-or tree models for object detection. In CVPR,
2013.

[33] Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan. Contextu-
alizing object detection and classification. In CVPR, 2011.

[34] K. van de Sande, J. Uijlings, T. Gevers, and A. Smeulders.
Segmentation as selective search for object recognition. In
ICCV, 2011.

[35] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Mul-
tiple kernels for object detection. In ICCV, 2009.

[36] A. Vedaldi and A. Zisserman. Sparse kernel approximations
for efficient classification and detection. In CVPR, 2012.

[37] P. Viola and M. Jones. Robust real-time object detection.
IJCV, 57(2):137–154, 2004.

[38] L. Wang, J. Shi, G. Song, and I.-F. Shen. Object detection
combining recognition and segmentation. In ACCV, 2007.

ha
l-0

08
73

13
4,

 v
er

si
on

 1
 - 

15
 O

ct
 2

01
3


