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Abstract In this paper we propose a generic framework to
incorporate unobserved auxiliary information for classifying
objects and actions. This framework allows us to automat-
ically select a bounding box and its quadrants from which
best to extract features. These spatial subdivisions are learnt
as latent variables. The paper is an extended version of our
earlier work Bilen et al. (Proceedings of The British Machine
Vision Conference, 2011), complemented with additional
ideas, experiments and analysis. We approach the classi-
fication problem in a discriminative setting, as learning a
max-margin classifier that infers the class label along with
the latent variables. Through this paper we make the follow-
ing contributions: (a) we provide a method for incorporat-
ing latent variables into object and action classification; (b)
these variables determine the relative focus on foreground
versus background information that is taken account of; (c)
we design an objective function to more effectively learn
in unbalanced data sets; (d) we learn a better classifier by
iterative expansion of the latent parameter space. We demon-
strate the performance of our approach through experimental
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evaluation on a number of standard object and action recog-
nition data sets.
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1 Introduction

In object detection, which includes the localization of
object classes, people have trained their systems by giv-
ing bounding boxes around exemplars of a given class
label. Here we show that the classification of object classes,
i.e. the flagging of their presence without their localiza-
tion, also benefits from the estimation of bounding boxes,
even when these are not supplied as part of the training.
The approach can also be interpreted as exploiting non-
uniform pyramidal schemes. As a matter of fact, we demon-
strate that similar schemes are also helpful for action class
recognition.

In this paper we address the classification of objects
(e.g. person or car) and actions (e.g. hugging or eating)
(Pinz 2005) in the sense of PASCAL VOC (Everingham
et al. 2007), i.e. indicating their presence but not their spa-
tial/temporal localization (the latter is referred to as detec-
tion in VOC parlance). The more successful methods are
based on a uniform pyramidal representation built on a visual
word vocabulary (Boureau et al. 2010; Lazebnik et al. 2006;
Wang et al. 2010). The focus then is often on the best fea-
tures to use. In this paper, we augment the classification
through an orthogonal idea, i.e. by adding more flexible
spatial information. This will be formulated more gener-
ally as inferring additional unobserved or ‘latent’ dependent
parameters. In particular, we focus on two such types of
parameters:

123



Int J Comput Vis

– The first type specifies a cropping operation. This deter-
mines a bounding box in the image. This box serves
to eliminate non-representative object parts and back-
ground.

– The second type specifies a splitting operation. It cor-
responds to a non-uniform image decomposition into
4 quadrants or temporal decomposition of a spatio-
temporal volume into 2 video sub-sequences.

Apart from using these operations separately, we also
study the effect of applying and jointly learning both these
types of latent parameters, resulting in a bounding box which
is also split. In any case, uniform grid subdivisions are
replaced by more flexible operations.

At the time of our initial work (Bilen et al. 2011), there was
earlier work using latent variables, but typically for object
detection and not classification (Blaschko et al. 2010; Felzen-
szwalb et al. 2010; Vedaldi and Zisserman 2009). A notable
exception is a contribution by Nguyen et al. (2009). They
proposed a method for joint localization (only cropping) and
classification. We believe that our learning approach is more
principled however, and we go beyond cropping by also offer-
ing splits and crop + split combinations. This comes with
improved results. Moreover, we propose iterative learning
for these non-convex optimization problems, thereby more
successfully avoiding local minima, as well as an objective
function that can better deal with unbalanced data sets. In the
meantime, the use of latent variables has gained traction in
the area of classification( Bilen et al. 2012; Shapovalova et
al. 2012; Sharma et al. 2012).

While it is possible to learn our latent variables by using a
separate routine (Satkin and Hebert 2010), we adopt a prin-
cipled max-margin method that jointly infers latent variables
and class label. This we solve using a latent structural support
vector machine (LSVM) (Yu and Joachims 2009). Self-paced
learning has recently been proposed as a further extension for
the improved learning of latent SVMs (Kumar et al. 2010),
but was not used here. Instead, we explore an extension of
the LSVM by initially limiting the latent variable parameter
space and iteratively growing it. Moreover, we design a new
objective function in the LSVM formulation to more effec-
tively learn in the case of unbalanced data sets, e.g. when
having a significantly higher number of negative images than
positive ones. Those measures were observed to improve the
classification results.

Our work can be seen as complementary to several alter-
native refinements to the bag-of-words principle. As a matter
of fact, it could be combined with such work. For instance,
improvements have also been obtained by considering multi-
ple kernels of different features (Gehler and Nowozin 2009;
Vedaldi et al. 2009). Another refinement has been based
on varying the pyramidal representation step by considering

maximal pooling over sparse continuous features (Boureau
et al. 2010; Wang et al. 2010).

At a meta-level, recent progress in object classification
has mainly been driven by the selection of more (sophis-
ticated) features (Perronnin et al. 2010; Zhou et al. 2010).
This has brought a couple of percentage points in terms of
performance (Chatfield et al. 2011). Our improvements can
actually be combined with those, and are shown here to bring
similar improvements on their own. Yet, our approach does
this at a lower computational cost.

As to action classification, this has mainly followed a bag
of words approach as well. Early work towards classification
of actions using space-time interest points (STIP) (Laptev
and Lindeberg 2003) was proposed by Schüldt et al. (2004).
A detailed evaluation of various features has been carried out
lately by Wang et al. (2009).

In summary, the main contributions of this paper are (a) the
introduction of latent variables for enhanced classification,
(b) a principled technique for estimating them in the case of
object and action classification, (c) adapted optimization to
improve learning in the case of imbalanced data sets, and (d)
the avoidance of local optima through an iteratively widened
parameter space.

The remainder of the paper is structured as follows. Sec-
tion 2 describes the latent parameter operations and how they
are included in the overall classification framework. Section 3
explains the inference and learning procedures. Section 4
shows how the LSVM framework is adapted for imbalanced
data sets. Section 5 introduces an iterative learning approach
for these latent variables. Section 6 describes the results
on standard object and action classification benchmarks and
analyzes the statistical significance of the improved results.
Section 7 concludes the paper.

2 Latent Operations

We explore how far information resulting from cropped or
splitted regions can serve classification. In order to see what
is meant by those crop and split operations, one can turn to
Figs. 1 and 2 for the cases of single images (object classifica-
tion) and videos (action classification), resp. Representative
classification examples from the Graz-02 data set are shown
in Figs. 3, 4, 5 and 6. We now discuss the two basic operations
represented by our latent variables, cropping and splitting, in
turn.

2.1 Crop

Our first latent operation builds on the motivation that includ-
ing class related content and discarding irrelevant and con-
fusing content should provide a better discriminant function
for classification. For the sake of simplicity, we use a rec-
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Fig. 1 Illustrative figure for latent operations, crop, split, crop-uniform
split and crop–split on images. The crop–split operations have the most
degree of freedom with six coordinates

Fig. 2 Illustrative figure for latent operations, crop, split, crop-uniform
split and crop–split on videos. Differently from spatial operations in
images, the latent operations are performed only in temporal domain.

tangular bounding box to separate the two parts. The bound-
ing box is represented by two points for both spatial and
temporal cropping. We denote the latent parameter set with
hcrop = {x1, y1, x2, y2} and hcrop = {t1, t2} for images and
video sequences resp. Illustrations for cropping were shown
in Figs. 1a and 2a.

For the Graz-02 3-class person-car-bike examples in
Fig. 3, we illustrate the derived cropping operations with

Fig. 3 Crop examples for different object categories from the Graz-02
data set : (a) shows the eliminated non-representative object parts, (b)
shows cropped region in the presence of same class multiple objects,
(c–f) depict included background context in the bounding boxes. While
the ‘road’ contains the context information for ‘car’, it is ‘road’ and
‘building’ for the ‘person’

blue drawn bounding boxes. Differently from object detec-
tion methods, our classification method is not required to
localize objects accurately. Instead it can exploit bounding
boxes to discard object parts that are not helpful in its particu-
lar classification task, while keeping the helpful ones in. The
latter can very well include parts of the background (e.g. road
for the car in Fig. 3c–d, building for the person in Fig. 3e,
f). On the other hand, parts with too much variation in their
appearance or with a high uncertainty of being picked up
by the selected features, can be left out of the box. Also a
bounding box is allowed to include more than one object of
the same class (Fig. 3b).

2.2 Split

It is known that using pyramidal subdivisions of images
or videos improves the classification of objects and actions
(Laptev et al. 2008; Lazebnik et al. 2006). Therefore, it stands
to reason to also consider a pyramid-type subdivision, but
with added flexibility. Rather than splitting an image uni-
formly into equal quadrants, we consider splitting opera-
tions that divide into unequal quadrants. In the same vein, we
allow a video fragment to be temporally split into two sub-
sequences, which are not halves. In contradistinction with
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cropping where all further analysis is confined to the selected
bounding box, we will use all splitted portions as well as the
entire image or video, i.e. a total of five portions for images
and three for videos.

Note that in this paper we only consider a single layer
of subdivision of the pyramid, the extension to multi-layer
pyramids is not covered yet. Hence, our splits are fully char-
acterized by one point. We denote the latent variable set with
hsplit = {x0, y0} (Fig. 1b) and hsplit = {t0} (Fig. 2b) for
images and videos, resp.

We show splitting samples for the bike, car and per-
son classes with green crossing lines in Fig. 4. We observe
that bikes are often located in the left and right bottom
cells, while cars and people are usually splitted into four
‘quadrants’.

Fig. 4 Representative split examples for the bike, car and person
classes from the Graz-02 data set. The wheels of bikes in the shown
images (a) and (b) are contained in the bottomle f t or right subdivi-
sions. Splitting aligns the whole scene between (c) and (d) examples.
The upper quadrants contain buildings and windows of cars, while the
lower ones contain road and wheels of cars. Since the split operation
can only split whole image into four divisions, it cannot exclude non-
representative parts of images. In case of multiple objects, splitting point
can move to the visually dominant one (person) as in (e) or to between
two similar size objects (people) as in (f).

2.3 Crop - Uniform Split

Our crop-uniform split operation learns a cropped region,
which is then subdivided further into equal parts, in order to
enrich the representation in pyramid-style. The latent para-
meter set is that of cropping. The combined operation is illus-
trated in Figs. 1c and Fig. 2c. We illustrate crop-uniform
splitting examples with blue cropping boxes and green uni-
form splits in Fig. 5. Figure 5 heralds more effective model
learning than through uniform splitting only. The richer rep-
resentation of cropping and uniform splitting will in section 6
be seen to outperform pure cropping.

2.4 Crop–Split

The combined crop–split operation comes with the highest-
dimensional latent parameter set of all four cases stud-

Fig. 5 Representative crop-uniform split examples from the Graz-02
data set. (a) and (b) show coarse localization of ‘bike’ images with uni-
form splitting. (c) and (d) examples include ‘cars’ and ‘road’ in the upper
and bottom subdivisions respectively. Differently from the strict bound-
ing box concept in object detection tasks, the inferred image windows
contain additional context information. Crop-uniform split achieves a
coarse localization of ‘person’ in different (outdoor and indoor) envi-
ronments in (e) and (f) respectively
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Fig. 6 Representative crop–split examples from the Graz-02 data set.
The crop–split is the most flexible operation and it can localize objects
and align object parts better than the crop-uniform operation. The advan-
tage of the crop–split over the crop-uni-split can be observed by com-
paring (a) to Fig. 5a. The crop–split achieves better elimination of the
background in the image (a). In case of multiple objects, it picks the
bigger person over the small ones in background in (e). The image win-
dow in (f) contains two people that have similar sizes and are close to
each other

ied here. It learns both a cropping box and a non-uniform
subdivision thereof. Its latent parameter set is a combina-
tion of the Cropping and Splitting operations, hcrop+split =
{x0, y0, x1, y1, x2, y2} for images and hcrop+split = {t0, t1, t2}.
The effect is illustrated in Figs. 1d and 2d resp. We illus-
trate crop-split examples with blue cropping boxes and green
splits in Fig. 6. This figure already suggests that the crop-split
model is able to roughly locate objects, although we do not
use any ground truth bounding box locations in training.

3 Inference and Learning

3.1 Inference

In the sequel, we closely follow the notation proposed by Yu
and Joachims (2009). The inference problem corresponds to

finding a prediction rule that infers a class label y and a set of
latent parameters h for a previously unseen image. Formally
speaking, the prediction rule gw(x) maximizes a function
fw(x, y, h) over y and h given the parameter vector w and
the image x , where fw(x, y, h) is the discriminant function
that measures the matching quality between input, output and
latent parameters:

fw(x, y, h) = w · ψ(x, y, h) (1)

where ψ(x, y, h) is a joint feature vector. We use different
ψ vectors for multi-class and binary classification tasks. The
feature vector for multi-class setting is

ψmulti(x, y, h) = ( 0D . . . 0D ϕ(x, h) 0D . . . 0D )T (2)

where y ∈ {1, . . . , k} and ϕ(x, h) ∈ RD is a histogram of
quantized features, given a latent parameter set, e.g. hcrop or
hsplit. 0D denotes D-dimensional zero row vector. ϕ(x, h) is
stacked into position y × D.

The feature vector for binary-class setting is

ψbin(x, y, h) =
{
φ(x, h) = (ϕ(x, h)0D)T , if y = 1
−φ(x) = (0D − ϕ(x))T , if y = −1

(3)

where y ∈ {−1, 1} (y = 1 meaning the class is present in the
image and y = −1 it is not) and ϕ(x) is the feature represen-
tation for whole image. While ψmulti is K × D dimensional
(K denotes the number of classes), ψbin is 2 × D. Differ-
ently from the multi-class case, we learn to localize only in
positive images and fix the image window to whole image to
represent negative images for the binary case. However, this
is not the only possible representation, one can also local-
ize in negative images similarly to positive images or set all
the elements of feature vector of negative images to zero as
in Zhu et al. (2010).

The prediction rule gw can be obtained by maximizing the
discriminant function over label and latent space:

gw(x) = arg max
ŷ∈Y,ĥ∈H

fw(x, ŷ, ĥ). (4)

3.2 Learning

Suppose we are given a set of training samples X =
{x1, . . . , xn} and their labels Y = {y1, . . . , yn} and we want
to learn a SVM modelw to predict the class label of an unseen
example. We also use latent parameters H = {h1, . . . , hn} to
select the cropping and/or splitting operations that add spa-
tial information to the classifier, as introduced in Sect. 2. In
cases where the set of spatial parameters hi is also specified
in the training set (as with training for detection), the stan-
dard structural SVM (Tsochantaridis et al. 2004) solves the
following optimization problem:
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min
w

1

2
‖w‖2 + C

n∑
i=1

[
max
ŷi ,ĥi

[
w · ψ(xi , ŷi , ĥi )

+�(yi , ŷi , hi , ĥi )
] − w · ψ(xi , yi , hi )

]
(5)

where C is the penalty parameter and�(yi , ŷi , hi , ĥi ) is the
loss function. Note that when hi is given for training set, one
can use a single symbol (si ) to represent both (yi , hi ).

For the case of classification, the latent variables will typ-
ically not come with the training samples however, and need
to be treated as latent parameters. To solve the optimization
problem in (5) without the labeled windows, we follow the
latent SVM formulation of Yu and Joachims (2009):

min
w

1

2
‖w‖2 + C

n∑
i=1

[
max
ŷi ,ĥi

[
w · ψ(xi , ŷi , ĥi )

+�(yi , ŷi , ĥi )
] − max

ĥi

[
w · ψ(xi , yi , ĥi )

] ]
(6)

Note that we remove hi from � since it is not given. In the
multi-class classification task, we use the 0-1 loss which is
�(yi , ŷi , ĥi ) = 1 if ŷi �= yi , and else 0. We will explain
the loss function that is designed for binary classification in
Sect. 4.

The latent SVM formulation can be rewritten as the dif-
ference of two convex functions:

min
w

[
1

2
‖w‖2 + C

n∑
i=1

max
ŷi ,ĥi

w · ψ(xi , ŷi , ĥi )+�(yi , ŷi , ĥi )

︸ ︷︷ ︸
p(w)

]

−
[

C
n∑

i=1

max
ĥi

[
w · ψ(xi , yi , ĥi )

]
︸ ︷︷ ︸

q(w)

]
(7)

The difference of those two functions, p(w) − q(w) can
be solved by using the Concave–Convex Procedure (CCCP)
(Yuille and Rangarajan 2003), where p and q are convex.
The generic CCCP algorithm is guaranteed to decrease the
objective function (7) at each iteration t and to converge to a
local minimum and or a saddle point. In Sect. 5 we suggest
an iterative method for avoiding an undesired local minimum
and saddle point in the first iterations. The CCCP algorithm
to minimize the difference of two convex functions works as
follows:

3.3 Algorithm

Initialize t = 0 and w0.
Iterate:

1. Compute hyperplane vt such that −q(w) ≤ −q(wt ) +
(w − wt ) · vt for all w.

2. Solve wt+1 = arg minw p(w)+ w · vt

We iterate until the stopping condition [p(wt ) − q(wt )] −
[p(wt−1)−q(wt−1)] < ε. Note that t is typically small (10–
100). The first step involves the latent parameter inference
problem

h∗
i = arg max

ĥi ∈H
wt · ψ(xi , yi , ĥi ). (8)

Computing the newwt+1 in the second line involves solving
the standard Structural SVM problem (Tsochantaridis et al.
2004) with the inferred latent variables h∗

i :

min
w

1

2
‖w‖2+C

n∑
i=1

max
ŷi ,ĥi

[
w · ψ(xi , ŷi , ĥi )+�(yi , ŷi , ĥi )

]

−C
n∑

i=1

[
w · ψ(xi , yi , h∗

i )
]

(9)

Solving the formula (9) requires to compute the constraint

{y∗
i , h∗

i } = arg max
ŷi ,ĥi

[
w · ψ(xi , ŷi , ĥi )+�(yi , ŷi , ĥi )

]
(10)

for each sample. This term is called most violated constraint
in Tsochantaridis et al. (2004) or loss augmented inference
in Taskar et al. (2005). It corresponds to the most confusing
response from another than the actual class or another latent
parameter than the inferred one.

4 Optimizing AUC

Multi-class classification performances are typically mea-
sured in terms of accuracy, e.g. correctly classified images
over total number of images. While this evaluation criterion is
informative in the multi-class setting, it can be misleading in
binary classification, as the number of positive and negative
images are unbalanced. This imbalance increases a lot more
in the case of latent window parameters as we deal with more
negative samples (all other bounding boxes in an image are
considered negative). The area under the ROC curve (AUC),
average precision (AP) and precision at fixed recall give a
more intuitive and sensitive evaluation in this case.

We evaluate our proposed classifiers in Sect. 6 on var-
ious benchmarks including the PASCAL VOC 2007 data
set (Everingham et al. 2007) which uses the AP to judge
the classification performances. While it is possible to train
our classifiers on the basis of accuracy loss and then report
testing performance using the AP, Joachims (2005) shows
that such difference may result in a suboptimal performance.
To the best of our knowledge, there is no prior work which
optimizes a structural SVM with latent parameters based on
the exact AP measure. However, it is shown that it is pos-
sible to optimize a classifier based on the approximated AP
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with the Structural SVM (Yue et al. 2007) or to factorize the
optimization problem based on dual decomposition (Ran-
jbar et al. 2012), optimizing both the classifier and the latent
parameters with a Structural SVM proved difficult. There-
fore, we will train our classifiers using the AUC criterion,
which optimizes for a ranking between positive and negative
samples similar to the AP and helps to improve performance
even when testing on AP. The proposed learning algorithm
does not require any extra parameter to weight negative sam-
ples, does not worsen computational complexity compared
to training on the basis of accuracy loss, and does improve the
classification performance. We report our results on the PAS-
CAL VOC 2007 data set and compare the AUC optimized
classifiers to the accuracy based baselines in Sect. 6.

The area under the ROC curve can be computed from the
number of positive and negative pairs which are ranked in
the wrong order, i.e.:

AUC = 1 − |Swapped Pairs|
n+ · n− (11)

where n+ and n− are the number of positive and nega-

tive samples respectively and Swapped Pairs =
{
(i, j) :

yi > y j ∧ r(xi ) < r(x j )
}

with a ranking function

(r(x)). We design the ranking function (r(x)) based on the
binary representation in (3) as the maximum response for
ψbin(x, 1, h)− ψbin(x,−1, h):

r(x) = max
ĥ
w · (φ(x, ĥ)+ φ(x)) (12)

Using the ranking function (12), we can rewrite the swapped
pairs that are used to compute the AUC as

Swapped Pairs =
{
(i, j) : yi = 1, y j = −1 and

max
ĥi j

w · [φ(xi , ĥi j )+ φ(xi )] <

max
ĥi j

w · [φ(x j , ĥi j )+ φ(x j )]
}
. (13)

where ĥi j denotes the best latent parameter for image xi on
the left hand side and for image x j on the right hand side
respectively.

In order to incorporate the ranking to the latent structural
SVM problem, we design the feature vectorψ by substituting
individual samples x with positive–negative pairs x̃ :

ψ(x̃i j , ỹi j , h̃i j ) =
{
φ(xi , h̃i j )− φ(x j ), if ỹi j = 1

φ(x j , h̃i j )− φ(xi ), if ỹi j = −1
(14)

where x̃i j = (xi , x j ) and ỹi j =
{

1, if yi = 1, y j = −1

−1, if yi = −1, y j = 1
.

Given the label pair ỹi j , h̃i j denotes a latent parameter for
image xi when (ỹi j = 1) or for image x j when (ỹi j = −1)
respectively. Please note that we discard positive–positive

and negative–negative pairs in our training, since the AUC
is only related to the ranking between positive and negative
samples.

The error between the ground truth label set Ỹ =
{1, · · · , 1} and the prediction ˆ̃Y = { ˆ̃yi j } is proportional to
(1 − AUC) of the original X and Y where X = {x1, · · · , xn}
and Y = {y1, · · · , yn}.

�AUC(Ỹ ,
ˆ̃Y ) =

n+∑
i=1

n−∑
j=1

1

2
(1 − ˆ̃yi j ) (15)

Since the loss function in (15) decomposes linearly over the
pairwise relationship (yi , y j ), the most violated constraint
(ỹ∗

i j , h̃∗
i j ) can be computed for each pair individually:

n+∑
i=1

n−∑
j=1

arg max
ˆ̃yi j ,ĥi j

w · ψ(x̃i j , ˆ̃yi j
ˆ̃hi j )+ 1

2
(1 − ˆ̃yi j ). (16)

The most violated constraint computation for a given image
pair x̃i j = (xi , x j ) and corresponding label yi j = 1 requires
to check the inequality:

max
ĥi j

w ·
[
φ(xi , ĥi j )+ φ(xi )

]
<

max
ĥi j

w ·
[
φ(x j , ĥi j )+ φ(x j )

]
+ 1 (17)

On the other hand, using the accuracy (0-1) loss and the
feature representation in (3) leads to the following constraint
computation which only considers responses from individual
samples:

max
ĥi

w · φ(xi , ĥi ) < −w · φ(xi )+ 1, if yi = 1

−w · φ(xi ) < max
ĥi

w · φ(xi , ĥi )+ 1, if yi = −1. (18)

In practice, computing (17) for each pair does not add any
significant computation load since maxĥi

(w · φ(xi , ĥi )) and
(w · φ(xi )) can be precomputed for each sample (xi ) indi-
vidually.

We can now write the latent SVM formulation in (7) for the
AUC optimization. To do so, we define the convex functions
p(w) and q(w) for brevity, and their difference can be used
to compute the complete formulation. p(w) is written as sum
of a regularization term and (16):

p(w) = 1

2
‖w‖2 + C

[ n+∑
i=1

n−∑
j=1

max
ˆ̃yi j ,ĥi j

w · ψ(x̃i j , ˆ̃yi j ,
ˆ̃hi j )

+ 1

2
(1 − ˆ̃yi j )

]
.

(19)

In contrast to p(w), the second convex function q(w) can
be computed linearly in terms of individual samples (x) by
using the feature representation (14):
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q(w) = C

[
n− ∑

i,
yi =1

max
ĥi

w · φ(xi , ĥi )− n+ ∑
j,

y j =−1

w · φ(x j )

]
.

(20)

So far, we have detailed the learning procedure that makes
use of positive–negative image pairs (xi , x j ) and penalizes
ranking violations between those pairs. In parallel to the
learning procedure, the prediction rule ranks images by using
(12). The inference for an unseen image is rewritten as

gAUC(x) =
{

y∗ = 1, if maxĥ w · (φ(x, ĥ)+ φ(x)) > 0

y∗ = −1, else.

(21)

5 Iterative Learning of Latent Parameters

Learning the parameters of an LSVM model often requires
solving a non-convex optimization problem. Like every such
problem, LSVM is also prone to getting stuck in local min-
ima. Recent work (Bengio et al. 2009) proposes an iterative
approach to find better local minima within shorter conver-
gence times for non-convex optimization problems. It sug-
gests to first train the learning algorithm with easy examples
and to then gradually feed in more complex examples. This
procedure is called curriculum learning. The main challenge
of curriculum learning is to find a good measure to quantify
the difficulty of samples.

In this paper, we take the size of the parameter space as
an indication of the complexity of the learning problem. Ini-
tially, we run the learning algorithm with a limited latent
subspace and then gradually increase the latent parameter
space. Figure 7 illustrates such iterative learning for the split-
ting operation. The nodes located in the corners of the grid
indicate the possible splitting points, i.e. the latent parameter
set for the splitting operation. The green nodes indicate, from
left to right, the growing number of splitting points that the
algorithm can choose from during subsequent iterations.

6 Experiments

We evaluate our system on four publicly available computer
vision benchmarks, the Graz-02 (Opelt et al. 2006), the PAS-
CAL VOC 2007 (Everingham et al. 2007) and the Caltech
101 (Fei-Fei et al. 2004) data sets for object classification,
and the activities of daily living life data set (Messing et al.
2009) for action classification.

For the object classification experiments, we extract dense
SIFT features (Lowe 1999) by using the vl_phow func-
tion from the VLFeat toolbox (Vedaldi and Fulkerson 2008).
For the action classification experiments, we use the HoF
descriptors (Laptev et al. 2008) to describe detected Har-
ris3D interest points (Laptev and Lindeberg 2003). We apply
K-means to the randomly sampled 200,000 descriptors from
the training images/videos to form the visual codebook.
The computed visual words are then used to encode the
descriptors with the LLC method (Wang et al. 2010). For
the LLC encoding, we set the number of nearest neighbors
and the regularization parameter to 5 and 10−4 respectively.
The codebook sizes are 1024, 8192, 2048 and 1000 for
the Graz-02, VOC-07, Caltech-101 and the Activities data
sets respectively (often following the sizes used by others,
in order to allow for a fair comparison in the subsequent
experiments).

We compare the performance of the proposed latent oper-
ations, ‘crop’, ‘split’, ‘crop-uni-split’, ‘crop–split’ to the
standard bag-of-features (BoF) and one level spatial pyra-
mid (SP) (Lazebnik et al. 2006). The BoF represents an
image/video with a histogram of quantized local features and
thus discards the spatial/temporal layout of the image/video
structure. The SP is a more extensive representation which
incorporates spatial information into the features by using
a pyramidal representation. In our experiments, we use a
one level SP (1 × 1 for the top layer and 2 × 2 for the
base) for images, and a similar SP for videos, where the
base is only temporally divided. The performance criterion is
the mean multi-class classification accuracy for the Graz-02,

(a) (b) (c)

Fig. 7 Illustration of the splitting operation in iterative learning. The
green and gray nodes show the points where splitting is considered. At
iter 0 the image can only be splitted with hori zontal and vertical

lines through the image center, while at the next iteration iter1, the
image can be splitted with one of the 9 green nodes. At the last iteration
iter2, all splitting nodes are eligible (Color figure online)
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Caltech-101 and the Activities data sets and mean AP (mAP)
for the VOC-07. Similarly, the feature representation of the
‘split’, ‘crop-uni-split’ and ‘crop–split’ operations are equal
with the SP.

Our latent learning implementation builds on the publicly
available code of Yu and Joachims (2009). The regularizing
parameter C of the LSVM is tuned for each latent opera-
tion (crop, split, etc.) on each data set (Graz, VOC-07, etc.)
by using cross-validation (the interval [102, 107] is sampled
logarithmically). The other free parameter ε, the stopping
criterion for the CCCP algorithm, is set to 10−1 and 10−3 for
the multi-class and binary classification experiments, respec-
tively.

The running time of the LSVM experiments is dominated
by computing the ‘most violated constraint’ which was intro-
duced in Sect. 4. We need to compute the response of each
classifier by scanning the latent parameter space (e.g. all
possible boxes for the cropping operation), to find the vio-
lated constraints. It would therefore have been possible to
improve the running time by using the branch and bound
algorithm (Lampert et al. 2008). For the cropping, split-
ting, crop-uniform-splitting, and crop-splitting operations
the training of each class-specific classifier in the VOC 2007
experiments took 1 h, 5 min, 30 min and 3 h on a 16 CPU
machine, resp. Training for the other data sets went faster,
and in the same relative orders of magnitude for the different
operations.

6.1 Graz-02 Dataset

The Graz-02 data set contains 1096 natural real-world images
with three object classes: bikes, cars and people. This data-
base includes a considerable amount of intra-class varia-
tion, varying illumination, occlusion, and clutter. We form 10
training and testing sets by randomly sampling 150 images
from each object class for training and use the rest for testing.
We report the mean and standard deviation of the classifica-
tion accuracy for the 10 corresponding experiments, each
time also averaging over the 3 classes.

Table 1 shows the multi-class classification results. The
crop operation improves the classification performance over
the BoF and the SP representation by around 1.45 and 0.35 %,
respectively. The non-uniform split operation also achieves
better classification performance than the uniform split (SP).
The crop-split operation has more degrees of freedom than
the crop-uni-split model and outperforms the crop-uni-split:
where the latter improves the baseline SP method by 2.4
%, the former improves it by 2.6 %. The crop-split oper-
ation thereby also gives the best result of all four oper-
ations. Adding splits systematically improved results over
pure crops. This may not come as a surprise, as our imple-
mentation of splitting leads to substantially larger feature
spaces (as SP does compared to BoF).

For cropping and splitting, we only consider points that
lie on a regular grid. We now analyze the influence of the size
of this grid on the classification accuracy. Figure 8 plots the
mean classification accuracy of the four proposed operations
for the Graz-02 data set, and this for different grid sizes, i.e.
4 × 4, 8 × 8, 12 × 12, and 16 × 16. The results show that
the performance of the classifiers increases with finer grids
up to size 12, after which it slightly drops at 16. Hence, the
optimal grid size on the Graz-02 data set is 12. Note that
an increased grid size implies a significant, about quadratic,
increase in computation time. We therefore report results for
all other data sets with a grid size of 8.

6.2 PASCAL VOC 2007

The PASCAL VOC 2007 data set (Everingham et al. 2007)
(VOC-07) contains 9,963 images which are split into train-
ing, validation and testing sets. The images are labeled
with twenty classes, also allowing multiple classes to be
present in the same image. We learn a one-vs-rest classi-
fier for each class and report the mean average precision
(mAP) which is the mean of AP values from each of the
classifiers.

Table 1 depicts the classification results for the proposed
operations. It should be noted that we use the AUC-loss based
optimized classifiers for both the baseline and proposed latent

Table 1 The classification results on the Graz-02, PASCAL VOC 2007, Caltech-101 and the activities of daily living data set

Dataset Baseline Our work

BoF SP Crop Split Crop-uni-split Crop–split

Graz-02 86.95 ± 1.35 88.05 ± 1.39 88.40 ± 1.05 88.58 ± 1.31 90.38 ± 1.85 90.62 ± 1.75

VOC-07 49.86 54.74 51.82 55.32 56.26 57.05

Caltech 101 61.25 ± 0.88 72.68 ± 1.21 62.16 ± 0.96 73.33 ± 0.98 75.31 ± 0.68 74.93 ± 0.86

Activities 79.33 88.00 72.00 88.00 90.67 88.67

The performance of the crop, split, crop-uniform split and crop–split operations are compared to the baselines: BoF and SP. All the classifiers are
learnt with the iterative LSVM. We use the AUC based optimization to train the baseline and proposed classifiers for the VOC-07 data set
Bold values indicate the best result among all the methods
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Fig. 8 The mean classification accuracy on the Graz-02 data set with
varying grid size. The grid size of 12 gives the best score for the crop,
split, crop-uni-split and crop–split operations.

operations to present a fair comparison. The ‘crop’ operation
yields an improvement of around 2 % over the baseline BoF
method to which it is similar in terms of feature space dimen-
sion. The ‘split’ operation improves the result over the SP
method by 0.6 %. The latent operations of ‘crop-uni-split’
and ‘crop–split’ provide further improvements over the SP
and BoF baselines. Compared to SP, the ‘crop-uni-split’ oper-
ation yields an improvement of 1.5 % and ‘crop–split’ one
of 2.3 %.

Table 2 shows the results for each object class individually
for the crop-split operation. As can be observed from the
results, we are able to improve the classification accuracy
for 17 out 20 classes. In particular, the crop-split achieves
substantial improvement in ‘bus’ (5.1 %), ‘sofa’ (5.0 %),
‘bicycle’ (4.5 %), ‘motorbike’ (4.3 %) and ‘tv monitor’ (4
%) categories. The method is not able to improve the accuracy
for classes that are hard to localize because of their relatively
size and cluttered background around them, such as ‘bottle’
and ‘potted plant’.

6.3 Caltech-101 Dataset

The Caltech-101 data set (Fei-Fei et al. 2004) contains images
of 101 object classes and an additional background class, i.e.
102 classes in total. The number of images per class varies
from 31 to 800. We use 30 images for training from each class
and use the rest of the images—as usual with a maximum
number of 50—for testing. We run ten experiments on ten
random divisions between training and testing images and
report the mean accuracy and standard deviation for these
runs.

Table 1 depicts the classification results for the Caltech
101 data set. The crop and split operations improve over the
BoF and SP baselines respectively as in the previous data sets.
For this data set, where objects are always centered, the crop-
uni-split operation achieves the highest performance among
the proposed methods and improves the SP method by around
2.6 %.

6.4 The Activities of Daily Living Dataset

The Activities data set (Messing et al. 2009) contains
ten different types of complex actions like answering a
phone, writing a phone number on a white-board and eat-
ing food with silverware. These activities are performed
three times by five people with different heights, gen-
ders, and ethnicities. Videos are taken at high resolution
(1280 × 720 pixels). A leave-one-out strategy is used for
all subjects and the results are averaged as in Messing et al.
(2009).

Table 1 shows the results for action classification on this
data set. For this method, we obtain an improvement of 2.6
% over SP method using the ‘crop-uni-split’ method. This
is similar to the performance for classification of objects
and indicates that the method is applicable to the classifi-
cation of actions as well. The decrease in results for the
‘crop’ operation over the BoF method is mainly due to
the fact that the HOF descriptors are not densely com-
puted and some temporal cells of the grid have very few
descriptors.

Table 2 The classification results in terms of AP for each class of PASCAL VOC 2007

Method mAP Plane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow

SP 54.74 69.95 59.62 45.42 64.39 24.81 60.43 75.31 57.45 53.48 42.87

Crop–split 57.05 72.76 64.15 46.10 66.49 24.22 65.57 78.64 60.55 55.02 44.23

Table Dog Horse mbike Person Plant Sheep Sofa Train TV

SP 46.90 41.23 71.38 62.70 82.44 22.46 43.54 49.58 70.92 49.99

Crop–split 48.70 41.01 73.33 67.05 83.93 21.38 46.28 54.56 72.91 54.06

Both the SP and crop–split classifiers are trained with the iterative learning and AUC loss. The crop-split operation out-performs the SP in 17 out
of 20 classes and the average improvement is 2.3 % mAP
Bold values indicate the best result among all the methods
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Fig. 9 Cropping operation on a ‘person’ labeled image for various iter-
ations during training. The first and second rows show the result of the
ordinary and iterative learning respectively. The first learning algorithm
misses the ‘person’ in the first iteration and later converges to some part

of background. The same local minimum is avoided in the second learn-
ing algorithm by restricting the possible image windows set to the full
image in the first iteration and gradually relaxing the restriction

Table 3 Comparison of the LSVM and Iterative LSVM in terms of the multi-class classification accuracy for the proposed latent operations on the
Graz-02 data set

Crop Split Crop-uni-split Crop–split

LSVM 89.91 ± 1.69 88.91 ± 1.37 90.37 ± 1.21 90.32 ± 1.69

Iter. LSVM 90.02 ± 1.37 88.86 ± 1.05 90.68 ± 1.24 91.18 ± 1.38

Bold values indicate the best result among all the methods

6.5 Iterative Learning

We show results for the iterative learning of latent opera-
tions on the Graz-02, VOC-07 and Caltech-101 data sets.
The grid size used for the Graz-02 data set is 12 × 12 and
8 × 8 for the VOC-07 and Caltech-101 data sets. For the
split operation we initially constrain the latent search space
to the center of the images and expand it along the x and
y directions by a fixed step size, a quarter of the number
of rows and columns in the grid, e.g. 12/4 = 3 on the
12×12 grid, at each iteration. For the crop, crop-uni-split, and
crop-split operations, we initially fix the image window, e.g.
{x1, y1, x2, y2}, as the full image. At each iteration, we relax
the minimum width and height of the image window with a
fixed step size, i.e. 0.5×grid size. Once the CCCP algorithm
converges within the given latent space in an iteration, we
expand the latent search space again at the start of the next.
The algorithm terminates when the entire search space is
covered.

Figure 9 visualizes key iterations of the training for the
cropping operation of a ‘person’ image for the LSVM and
iterative LSVM. In the iterative scheme, we initially fix the
latent cropping box to be the full image size at the iter 0
(Fig. 9a). We then relax the constraint by allowing a smaller
minimum size of the cropping box, i.e. half of the minimum
size from the previous iteration. The ordinary LSVM method
does not have any such constraint on the latent parameter
search. At the end of iter 0, the LSVM converges to a
wrong region and the error propagates to the next iterations.
The LSVM mis-classifies this training image as ‘bike’. The
iterative LSVM gradually learns to localize the person better
and correctly classifies the image.

Table 3 depicts the quantitative result of the iterative oper-
ations on the Graz-02 data set. The table indicates that the
iterative method for LSVM generally improves the classifi-
cation accuracy over the original formulation of the LSVM.
The crop-split benefits most from the iterative method, since
it has more degrees of freedom and thus a stronger tendency
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Table 4 Comparison of the LSVM and iterative LSVM on different
data sets for the crop–split operation

Graz-02 VOC-07 Caltech101

LSVM 90.32 ± 1.69 56.00 75.04 ± 0.76

iter. LSVM 91.18 ± 1.38 57.05 74.93 ± 0.86

Iterative LSVM performs better in both the Graz-02 and VOC-07 data
sets. The Caltech-101 data set does not benefit from the iterative method,
since the images in this data set do not contain significant background
clutter. Therefore, image windows are not less likely to converge to
non-representative image parts in this data set
Bold values indicate the best result among all the methods

Fig. 10 Classification results (mAP) with the AUC optimized crop–
split on the VOC-07 over iterations for LSVM and iter LSVM algo-
rithms. The minimum image windows size is limited to whole image
size and half of it during the first and second iterations of the iterative
learning respectively. The iterative learning starts with higher classifica-
tion mAP on testing and takes fewer iterations to converge. The LSVM
and iter LSVM converge to 56 and 57.05 % mAP respectively.

to converge to a local minimum. The performance of iterative
learning for the split operation worsens slightly.

Table 4 shows quantitative comparison of iterative learn-
ing for the crop-split operation on the Graz-02, VOC-07
and Caltech-101 data sets. The iterative learning improves
the classification performance for the Graz-02 and VOC-07
around 1 %. However, we observe a slight drop in the clas-
sification accuracy on the Caltech-101. In the Caltech-101
data set objects are well centered, objects do not vary signifi-
cantly in their sizes and the images are quite clean of clutter.
Therefore, this data set does not benefit from the proposed
learning method.

Figure 10 plots the classification performance of the
LSVM and iter LSVM for the crop-split operation on the
VOC-07 data set over iterations. The CCCP algorithm, as
described in Sect. 3.3, at beginning of each iteration, infers
the latent variables. Having the latent parameters fixed, it

Table 5 Comparison between the accuracy loss (ACC), normalized
accuracy loss (N-ACC) and area under the roc curve loss (AUC) on the
VOC-07 data set in mAP

Loss SP (mAP) Crop–split (mAP)

ACC 53.46 54.37

N-ACC 54.18 56.98

AUC 54.57 57.05

Bold values indicate the best result among all the methods

optimizes the minimization problem 9 during that iteration.
We limit the minimum image window size for the iter LSVM
to whole and half image size during the first and second iter-
ations respectively. We observe that the iter LSVM already
has 48 % mAP at the end of the first iteration and converges
fast to 57.05 % mAP. However, the LSVM takes 7 iterations
to converge to 56 % mAP.

6.6 AUC Optimization

In Sect. 4, we described the use of an AUC based objective
function to learn the classification with latent variables. This
is useful in the case of binary classification, e.g. the VOC
2007 object classification task. For this task, we compare the
proposed AUC loss against two baselines (ACC and N-ACC)
in Table 5. ACC denotes the 0-1 or accuracy loss. N-ACC
is normalized accuracy loss for the number of positives and
negatives, e.g. it penalizes false negatives more in presence
of more negative images. We evaluate their performances for
the standard SP and latent crop–split operation. While the
ACC loss performs worst in all three data sets, normalizing
the loss (N-ACC) for positives and negatives with the number
of positives and negatives respectively improves the mAP in
both SP and crop–split. The AUC loss gives the best results
and empirically shows that the AUC loss provide a better
approximation of the AP on the VOC-07 data set than the
ACC and N-ACC baselines.

6.7 Statistical Significance of Results

In this section, we further analyze whether the difference in
performance between the proposed latent operations and the
baselines is statistically significant. There is little work in the
literature that studies statistical evaluation of multiple clas-
sifiers on multiple data sets. We analyze our results by fol-
lowing two different evaluation tests which is recommended
by the authors of Demšar (2006).

In the first analysis, we group the methods in terms of
their feature dimension to have fair comparison. We explore
whether the ‘crop’ operation produce statistically signifi-
cant difference over the ‘control’ or baseline classifier BoF.
We also compare the ‘split’, ’crop-uni-split’ and ‘crop–split’
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(a) (b) (c)

Fig. 11 Significance analysis of the classification results on the VOC-
07 data set. (a) Shows a comparison of the BoF against the crop oper-
ation with the Bonferroni–Dunn test. The crop operation is outside the
marked red interval is significantly different (p < 0.05) from the con-
trol classifier BoF. (b) Shows comparison of the SPM against the split,
crop-uni-split and crop–split operations with the Bonferroni–Dunn test.

While the crop-uni-split and crop–split operations are outside of the red
marked range, therefore they are significantly better (p < 0.05) than
SP. (c) Shows comparison of all the proposed latent operations against
each other with the Nemenyi test. Groups of classifiers that are not sig-
nificantly different (at p < 0.05) are connected (Color figure online)

(a) (b) (c)

Fig. 12 Significance analysis of the classification results on the
Caltech-101 data set. (a) Shows a comparison of the BoF to the crop
operation with the Bonferroni–Dunn test. The crop operation is inside
the red marked interval is not significantly different (p < 0.05) from
the control classifier BoF. (b) Shows comparison of the SPM to the split,
crop-uni-split and crop–split operations with the Bonferroni–Dunn test.

While the crop-uni-split and crop–split operations are outside of the red
marked range, therefore they are significantly better (p < 0.05) than SP.
(c) Shows comparison of all the proposed latent operations to each other
with the Nemenyi test. Groups of classifiers that are not significantly
different (at p < 0.05) are connected (Color figure online)

operations to the SP. More specifically, we followed the two
step approach of the Friedman test (Friedman 1937) with
the Bonferroni–Dunn post-hoc analysis (Dunn 1961). This
approach ranks the classifiers in terms of their classification
results (highest classification accuracy is ranked 1, 2nd one
is ranked 2) and therefore it does not require any assumptions
about the distribution of the accuracy or AP to be fulfilled.
In our experiments, we consider each class as a separate test
and rank each class among different methods. We test the
hypothesis that it could be possible to improve on the control
classifiers (BoF, SP) by using the latent operations. The null
hypothesis which states that all the algorithms are equiva-
lent is tested by the Friedman test. After the null hypothesis
is rejected, we use the Bonferroni–Dunn test which gives a
“critical difference” (CD) to measure the difference in the
mean rank of the control and proposed classifiers.

Figures11a, b and 12a, b depict the results of the first
analysis for the VOC-07 and Caltech-101 data sets respec-
tively. This diagram is proposed by (Demšar 2006). The top
line in the diagrams is the axis which indicates the mean
ranks of methods in an ascending order from the lowest
(best) to the highest (worst) rank. We mark the interval of

CD to the left and right of the mean rank of the control algo-
rithm (BoF and SP) in Figs.11a, b and 12a, b. The algorithms
with the mean rank outside this range are significantly dif-
ferent from the control. Figure11a, b depict that the crop per-
forms significantly better than the BoF; crop-uni-split and
crop-split are significantly better than the SP on the VOC-
07. Figure12a, b show that the crop is not significantly bet-
ter than the BoF, the crop-uni-split and crop–split are still
significantly better than the SP on the Caltech-101. While
the VOC-07 data set images include cluttered background
and small objects embedded in challenging backgrounds, the
Caltech-101 images are cleaner. Therefore, only ‘crop’ oper-
ation cannot perform significantly better than BoF in the latter
data set. The ‘split’ operation has enough degree of freedom
to improve over the SP in neither of the data sets.

In the second analysis, we compare the performance of the
latent operations to each other. We follow the same testing
strategy with the authors of Everingham et al. 2010 to ana-
lyze the significance of the results. We have used the Fried-
man test with a different post hoc test, known as Nemenyi
test (Nemenyi 1963). While Bonferroni–Dunn test is more
suitable to compare the proposed algorithms with a control
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classifier, Nemenyi test is more powerful to compare all clas-
sifiers to each other. This test also computes a CD to check
whether the difference in mean rank of two classifiers is big-
ger than this value. We show results of the second analy-
sis for the VOC-07 and Caltech-101 data sets in Figs.11c
and 12c respectively. Figure11c shows that the ‘crop’ and
‘split’ are not significantly different from each other in terms
of their classification performance, however, their combi-
nation ‘crop-split’ is significantly better than both ‘crop’
and ‘split’. This shows that these two operations are differ-
ent approaches to learn and complementary to each other.
In both Figs.11c and 12c the ‘crop-uni-split’ and ‘crop–
split’ are not significantly different from each other. This is
because splitting can only marginally improve the histograms
by redistributing features and this results in an improve-
ment, but not a statistically significant improvement of the
result.

7 Conclusion and Future Work

We have developed a method for classifying objects and
actions with latent window parameters. We have specifi-
cally shown that learning latent variables for flexible spa-
tial operations like ‘crop’ and ‘split’ are useful for inferring
the class label. We have adopted the latent SVM method
to jointly learn the latent variables and the class label. The
evaluation of our principled approach yielded consistently
good results on several standard object and action classifi-
cation data sets. We have further improved the latent SVM
by iteratively growing the latent parameter space to avoid
local optima. We also realized a better learning algorithm for
unbalanced data by using an AUC based objective function.
In the future, we are interested in extending the approach for
weakly supervised object detection and improved large scale
classification.
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