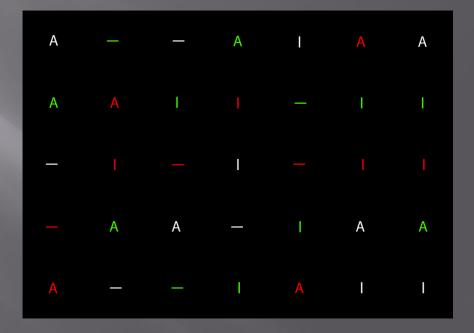
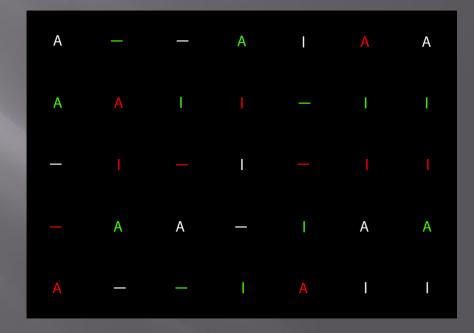
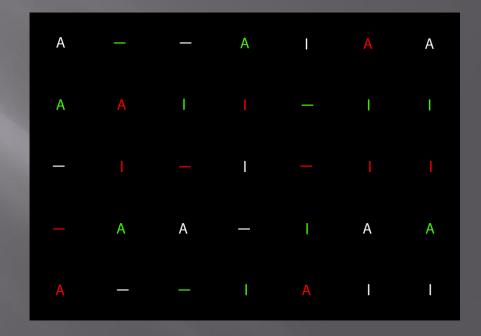
HIDDEN MARKOV MODEL FOR TASK INFERENCE


P.Yaswanth Kumar 10472

Jitendra Kumar 10316

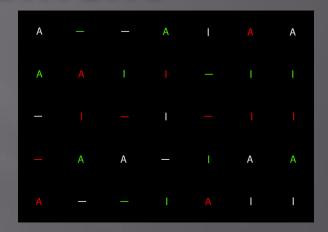

Mentor:

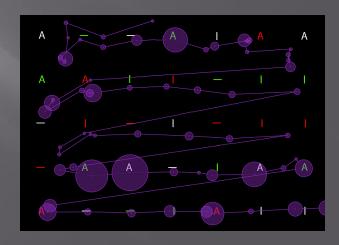
Prof.Amitbha Mukerjee amit@cse.iitk.ac.in


• 4 tasks

- 4 tasks
- Counting number of
 - 1) characters 'A'
 - 2) green bars
 - 3) horizontal bars
 - 4) vertical bars

- 4 tasks
- Counting number of
 - 1) characters 'A'
 - 2) green bars
 - 3) horizontal bars
 - 4) vertical bars

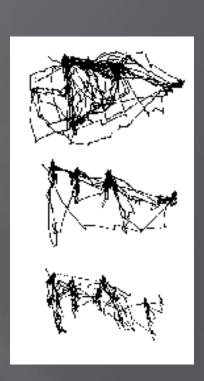



Training HMM's for each task

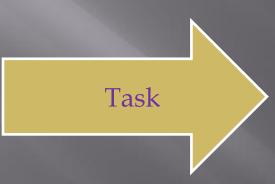
- 4 tasks
- Counting number of
 - 1) characters 'A'
 - 2) green bars
 - 3) horizontal bars
 - 4) vertical bars

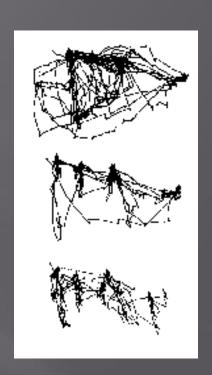
Training HMM's for each task

Task inference for a new given Eye gaze trajectory



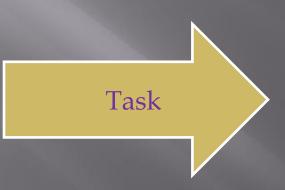
Yarbus Process

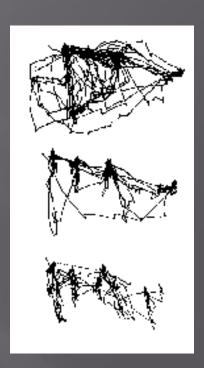

Task



[2]

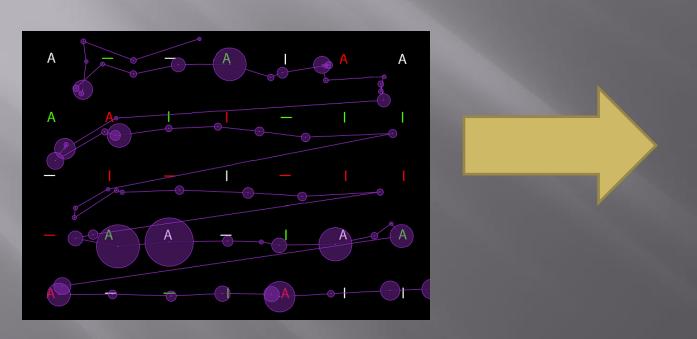
Yarbus Process




[2]

Many methods exist for Yarbus Process.

Yarbus Process



[2]

Many methods exist for Yarbus Process.

Inverse Yarbus Process?

Inverse Yarbus Process :

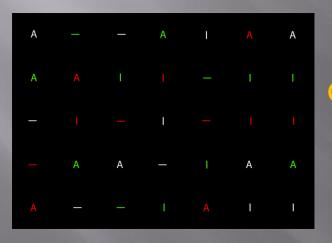
TASK?

■ For each task :

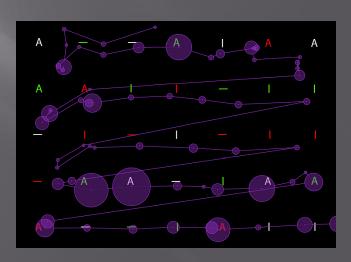
Get the people

Give them task

Collect Eye Gaze Trajectory obtained.



■ For each task:


Get the people

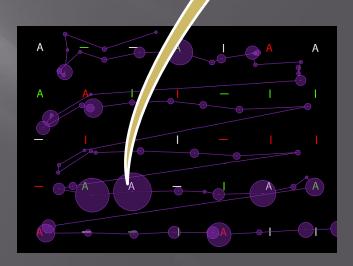
Give them task

Collect Eye Gaze Trajectory obtained.

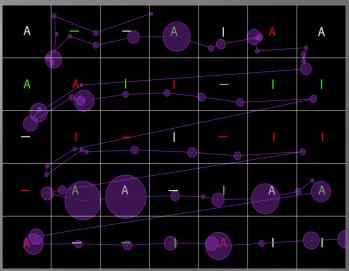
Count no of A's



■ For each task:


Get the people

Give them task


Collect Eye Gaze Trajectory obtained.

Count no of A's

Fixation points

Observed Sequence of states obtained from the above trajectory is

9,3,4,5,6,14,15,15,9,18,22,23,24,25,26,27,28,29,29,31,32,33,3 3,35,35

BAUM-WELCH ALGORITHM:

Constructs a HMM for each task by taking the observed sequence of states matrix obtained.

$$\lambda = (A,B,\pi)$$

A = State Transition Matrix

B = Observation Probability Matrix

 Π = Initial State Observation Matrix

 $[\pi, A, B] = dhmm_em(data, \pi_e, A_e, B_e, 'max_iter', 5);$

TASK INFERENCE

■ FORWARD ALGORITHM:

For a new given observation sequence, find the likelihood of each task using their HMMs

Loglik = dhmm_logprob(data_new, π , A, B);

Task with maximum loglikehood value is the REQUIRED TASK.

RESULTS

For 8 test data sets loglikelihood values obtained are:

RESULT <4x8 double>								
	1	2	3	4	5	6	7	8
1	-68.1936	-60.4541	-80.6011	-84.8511	-78.3745	-75.6521	-82.2972	-69.2814
2	-80.0594	-72.5376	-55.6824	-66.2969	-73.5374	-72.4116	-69.0423	-66.4744
3	-73.7965	-76.4363	-65.8082	-75.5385	-70.7605	-68.5534	-73.4736	-70.9167
4	-75.4621	-72.2702	-67.9874	-63.6914	-73.4466	-77.8487	-61.2939	-66.0169

REFERENCES

[1] **Haji-Abolhassani**, **A.** and Clark, J.J., "Visual Task Inference Using Hidden Markov Models", proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 1678--1683, 2011

[2] A.L. Yarbus. Eye movements during perception of complex objects. Eye movements and vision, 7:171–196, 1967.

[3] Source Code: http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html

THANK YOU!!

QUESTIONS?