TASK INFERENCE USING HIDDEN MARKOV MODEL

P. Yaswanth Kumar 10472 Jitendra Kumar 10316

Guide: Prof. Amitabha Mukerjee

• Problem Statement:

4 Tasks.

- Counting number of
 - 1. Characters 'A'
 - 2. Green bars
 - 3. Horizontal bars
 - 4. Vertical bars

Training HMM's for each task

Task inference for a new given eye trajectory

INTRODUCTION

• Yarbus Process :

Free examination of the picture

Estimate the ages of the people

Remember clothes of the people

[Yarbus 1967]

Inverse Yarbus Process

TRAINING HMMs

- For each task :
 - Get the people
 - Give them task
 - Collect eye gaze trajectories obtained

Observed sequence of states observed from the above trajectory is 9,3,4,5,6,14,15,15,9,18,22,23, 24,25,26,27,28,29,29,31,32, 33,33,35,35

Hidden Markov Model

BAUM-WELCH ALGORITHM

Constructs a HMM for each task by taking the observed sequence of states matrix obtained.

 $\lambda = (A, B, \pi)$

- A = State Transition Matrix
- B = Observation Probability Matrix
- Π = Initial State Observation Matrix

 $[\pi, A, B] = dhmm_em(data, \pi_e, A_e, B_e, 'max_iter', 5);$

FORWARD ALGORITHM

- Used For Task Inference
- For a new given observation sequence, find the likelihood of each task using their HMMs

Loglik = dhmm_logprob(data_new, π, A, B);

Task with maximum loglikehood value is the REQUIRED TASK.

• RESULTS :

For 8 test data sets loglikelihood values obtained are :

RESULT <4x8 double>								
Γ	1	2	3	4	5	6	7	8
1	-68.1936	-60.4541	-80.6011	-84.8511	-78.3745	-75.6521	-82.2972	-69.2814
2	-80.0594	-72.5376	-55.6824	-66.2969	-73.5374	-72.4116	-69.0423	-66.4744
3	-73.7965	-76.4363	-65.8082	-75.5385	-70.7605	-68.5534	-73.4736	-70.9167
4	-75.4621	-72.2702	-67.9874	-63.6914	-73.4466	-77.8487	-61.2939	-66.0169

• Conclusion :

So we are able to infer the task even in case of off-target fixations.

• Future Work :

This can also be implemented in videos or in case of moving objects.

• References:

[1] Haji-Abolhassani, A. and Clark, J.J.,
"Visual Task Inference Using Hidden Markov Models", proceedings of International Joint
Conference on Artificial Intelligence (IJCAI),
pp. 1678--1683, 2011

[Yarbus 1967] A.L. Yarbus. Eye movements during perception of complex objects. Eye movements and vision, 7:171–196, 1967.

[Narayanan,2006]http://www.cs.umd.edu/~ djacobs/CMSC828/ApplicationsHMMs.pdf

[4] Source Code: <u>http://www.cs.ubc.ca/~murphyk/Software/H</u> <u>MM/hmm.html</u>