
CS365-Artificial Intelligence

Human Arm Imitation by a 7-DOF
Serial Manipulator

Ayush Varshney, Ritesh Gautam, Dr. Amitabha Mukerjee

Indian Institute of Technology, Kanpur
CS365-Artificial Intelligence, April-2013

Abstract

This document is a report of the project done in partial fulfillment of the course of Artificial Intelligent
(Spring-2013). It contains all the details of the algorithms and methods used in the project, as well as
description of the robot used for experiments. It also contains some useful information on solving inverse
kinematics problems. The project aims at developing a system for training industrial manipulator robots
through a human controller. The imitation of the human arm by the robot arm can help remove the
physical limitations of human working capability. Microsoft Kinect Sensor is used in the project, along
with OpenNI and Nite libraries that provide the necessary functions to get 3D (x,y,z) coordinates of each
human joint (20 in total). Amtec PowerCube Robot serves as the 7-DOF manipulator. The code was
implemented using Microsoft Visual Studio and communication to the bot through Serial Communication
using a RS232 Serial Cable. Satisfactory imitation was achieved which was mainly limited due to the
speed limitations of the robot manipulator.

I. INTRODUCTION

Robotic arms are mechanically controlled de-
vices designed to replicate the movement of
a human arm. The devices are used for lift-
ing heavy objects and carrying out tasks that
require extreme environment and expert accu-
racy. The robotic arm most often is used for
industrial and nonindustrial purposes. The
imitation of the human arm by the robot arm
can help remove the physical limitations of our
working capability. We would just have to do
as we want our robot to do and it would im-
itate our motion. Imitation is mainly useful
when the robot has various different types of
tasks which it has no prior experience with. It
could be taught to perform those tasks by im-
itation and learning it once,then it can repeat
the task any number of times. For example
if we have to relocate a heavy object then we
just need to imitate picking up the object in the
air the arm would do the same. In this case
when we only had to move one object making
the robot imitate would be better than coding
the arm to identify the object and then pick it
up through some complicated path planning

algorithm which would be preferred in multi-
ple same type of tasks. So if we have a variety
of task at our hands then we could use imita-
tion which would complete our task with less
overhead, with just a little loss in accuracy due
to human error. The objective of this project
was to make the Amtec PowerCube Manipula-
tor imitate the human arm which is been pro-
cessed through Microsoft Kinect. Our model
can be further evolved to imitation learning.
Here, a new approach has been employed to
train robots where in our robot is made to learn
how to perform a particular task by making
it imitate a human arm. The Microsoft Kinect
Sensor gives us data of four coordinates on
the human arm - the shoulder joint, the elbow
joint, the beginning of the palm, and the ap-
proximate center of it. Using the known DH
Parameters of a human arm, we calculate the
joint angles and transfer the angles through se-
rial communication to the manipulator which
then causes each of its motors to rotate to the
required angle. Thus the human controls the
robotic arm and uses it to perform the particu-
lar task.

1



CS365-Artificial Intelligence

Figure 1: The Amtec powercube robot

All the moves made by the arm from its
initial position up to the completion are stored
and can now be used to perform the task again
any number of times. Thus we enable our
robot to perform the repetitive task without
using any actual sensory or path-planning sys-
tem and the errors involved with it. Also when
the task changes - we don’t have to change the
system but only train the robot once again.

II. THEORY

Inverse Kinematics

Figure 2: Our problem[1]

The inverse kinematics problem (IKP) for a
robotic manipulator involves obtaining the re-
quired manipulator joint values for a given
desired end-point position and orientation. It
is usually complex due to lack of a unique solu-
tion and closed-form direct expression for the
inverse kinematics mapping. [1]

Denavit-Hartenberg(DH)Parameters

Figure 3: The relation between consecutive coordi-
nates[2]

The Denavit-Hartenberg parameters (also
called DH parameters) are the four parameters
used to show the relation between consecutive
links of a robot manipulator.Each link is given
four values to describe its relation with the
next link,these parameters are link offset(di),
joint angle(θi), link length(ai), link twist(αi).

Figure 4: [2]

2



CS365-Artificial Intelligence

Frame qi di ai αi
1 q1 0 0 π/2
2 q2 + π/2 0 0 π/2
3 q3 0 0 −π/2
4 q4 0 L4 π/2
5 q5 0 L5 −π/2
6 q6 − π/2 0 0 −π/2
7 q7 0 0 −π/2

Table-I:Values of DH parameters of human
arm [2]

Link ai di αi θi
1 0 d1 -90 θ1
2 0 0 90 θ2
3 0 d3 -90 θ3
4 0 0 90 θ4
5 0 d5 -90 θ5
6 0 0 90 θ6
7 0 0 d7 θ7

Table-II:Values of DH parameters of Amtec
powercube robot [3]

III. SOLVING THE IK PROBLEM

The transformation matrices of the human arm
are:

A1 =


c1 −s1 0 0
0 0 −1 0
s1 c1 0 0
0 0 0 1

 A2 =


c2 −s2 0 0
0 0 −1 0
s2 c2 0 0
0 0 0 1



A3 =


c3 −s3 0 0
0 0 1 0
−s3 −c3 0 0

0 0 0 1

 A4 =


c4 −s4 0 l4
0 0 −1 0
s4 c4 0 0
0 0 0 1



A5 =


c5 −s5 0 l5
0 0 1 0
−s5 −c5 0 0

0 0 0 1

 A6 =


c6 −s6 0 0
0 0 −1 0

s6 c6 0 0
0 0 0 1



A7 =


c7 −s7 0 0
0 0 1 0
−s7 −c7 0 0

0 0 0 1


Here ci stands for cosθi and si stands for sinθi.
Now we calculate the joint angles:
tg =

√
(dx2 + dy2 + dz2)

and tg = l2
4 + l2

5 − 2l4l5cosθ4
So,
θ4 = cos−1 tg2−l2

4+l2
5

2l4l5
−dx = s1(l5c4s3 + l4s3) + c1(l5c4c3s2 + l5c2s4 +

l4c3s2)
dz = c1(l5c4s3 + l4s3)− s1(l5c4c3s2 + l5c2s4 + l4c3s2)
Let k1 = l5c4s3 + l4s3
k2 = l5c4c3s2 + l5c2s4 + l4c3s2
Let rcosφ = k1
rsinφ = k2
Now,
r(sinθ1cosφ + cosθ1sinφ = −dx)
r(cosθ1cosφ + sinθ1sinφ = −dz)
rsin(θ1 + φ) = −dx
cos(θ1 + φ) = dz
tan(θ1 + φ) = −dx

dz

θ1 =

{
tan−1(−dx

dz )− φ if dz 6= 0
−pi/2− φ if z = 0

r = −dx
sin(θ1+φ)

l5cosθ4sinθ3 + l4sin3 = rcoosφ

θ3 = sin−1 rcosφ
l5cosθ4+l4

s2(l5c4c3 + l4c3) + c2(l5s4) = k2
−c2(l5c4c3 + l4c3) + s2(l5s4) = dy
Let k3 = l5c4c3 + l4c3
k4 = l5s4
s2k2 + c2k4 = k2
−c2k3 + s2k4 = dy
Solving the above equations using matrix inversion
we let sinθ2 = k5
cosθ2 = k6

θ2 =

{
tan−1 −k5

k6
if k6 6= 0

−pi/2 if k6 = 0
We now find θ5, θ6, θ7

A5 ∗ A6 ∗ A7 =

r11 r12 r13
r21 r22 r23
r31 r32 r33


Using the DH parameters,we get equations for ri j
sinθ6 = r22
θ6 = sin−1r22
r13 = c5 ∗ c6
r33 = −c6 ∗ s5
tanθ5 = − r33

r13

θ5 =

{
tan−1 − r33

r13
if r13 6= 0

pi/2 if r13 = 0
−c6 ∗ c7 = r21
c6 ∗ s7 = r22

θ7 =

{
tan−1 − r22

r21
if r21 6= 0

pi/2 if r21 = 0
Now we have all the θ′s in the term of one variable φ

p(θ) = pd

where, pd->target position in space
p(θ)->calculated position as function of joint space

R(θ) = Rd

3



CS365-Artificial Intelligence

where, Rd->target orientation in space
R(θ)->Calculated orientation
The error function can be defined as

e(θ) =
{

pd − p(θ) (positional)
a(Rd ∗ R(θ)T) orientational

RT = Rd ∗ R(θ)T(q) =

r11 r12 r13
r21 r22 r23
r31 r32 r33


We can now get the value of φ by solving the follow-
ing equation:

e(θ) = 0

Now we can use the value of φ to get the values of
θ1, θ2, θ3, θ4, θ5, θ6, θ7.[2]

IV. TESTING THE ALGORITHM

Figure 5: Robot imitating the human

Sending Control to the Robot

We have used serial input to send data to the
robot arm. There is no level control avail-
able for the robot. But thanks to the previous
work done on the robot, we were able to find
a cpp library for operating the manipulator.
To operate the code from inside a c++ program.

Include RealCube.h and PCube.cpp [4]
//create a robot object
RealCube P(0);
//home the robot - bring to initial position
P.check_move_home();
//Send the joint angles
P.MovePosition(vTh); // vTh is an array of
the joint angles

V. PERFORMANCE ANALYSIS

1. The robot lags as it cannot keep up with the
speed of the human it is imitating because of
the joint speed constraints.
2. The complete algorithm could not be tested
because of some mechanical constraints but
the sample outputs of joint angles show a good
estimate.
3. The Kinect Sensor works only in the range
1.2m to 3.5m when reading the arm joints -
which puts some constraint on the setup.
4. Some errors occur due to error in data from
Kinect especially when the joints align in a
straight line perpendicular to the kinect field
of view.
5. One major problem in the current implemen-
tation is that we are not taking any feedback
from the robot with regards to it’s current po-
sition and thus are continuously sending data
to the robot - which leads to a lot of vibrations
and also some fast gestures are missed.

VI. CONCLUSION

Good imitation of the human arm by the
robotic arm can be achieved only when we
control the speed being sent to the robot and
not just the final position, otherwise, it is a
forced imitation. The inverse kinematics model
presented here tries to solve the joint angle
problem analytically but the solutions to the
non-linear equation (invloving φ), sometimes
cause problem due to singularities. Also in an
IK problem the solution may not exist, thus
in such a situation especial workarounds need
to be defined to achieve good imitation. The
Skeleton mapping causes a little problem espe-
cially due to the 3-DOF shoulder joint of the
human arm. Thus, to achieve a good imitation,
we not only need the current position feedback
but also the velocity feedback from each motor.
Also calculating the required speed to perform
a gesture is a difficult task - a 2nd Order IK
Problem.

4



CS365-Artificial Intelligence

VII. SUGGESTIONS FOR FURTHER
RESEARCH

Figure 6: Local Optimization Problem

Our implementation can be futher used to train
industrial robots using human trainers. As the
human trainers could do some redundant task
which is not needed for the completion of the
final task to be performed by the robot. We
have an idea of local optimization in which the
redundant states of the robot can be removed
to perform "local optimization" of the complete
motion. For this, we can take the states of the
robot after a time quantum to be a node, so our
problem now reduces to finding the shortest
path, such that we are given one of the paths.

We could try to generate some more paths us-
ing the given nodes and then find the shortest
path. The problem in this could be that the
robot might now go through an obstacle, to
avoid this we could mark some key nodes in
our graph which should not be removed while
optimizing.

VIII. REFERENCES

[1] From http://www.microsoft-careers.com
/content/rebrand/hardware/ hardware-story-
kinect/ [2013]

[2] From Human Arm Inverse Kinematic
Solution Based Geometric Relations and Op-
timization Algorithm-Mohammed Z. Al-Faiz,
Abduladhem A.Ali & Abbas H.Miry [2011]
[3] From Visual motor control of a 7DOF redun-
dant manipulator using redundancy preserv-
ing learning network Swagat Kumar, Premku-
mar P., Ashish Dutta and Laxmidhar Behera
- Robotica / Volume 28 / Issue 06 / October
2010, pp 795 810
[4] From home.iitk.ac.in/ vayush/cs365/project/
codes [2013]
[5] From http://mathematica.stackexchange.com
/questions/4084/finding-a-not-shortest-path-
between-two-vertices [2013]

5


	INTRODUCTION
	THEORY
	SOLVING THE IK PROBLEM
	TESTING THE ALGORITHM
	PERFORMANCE ANALYSIS
	CONCLUSION
	SUGGESTIONS FOR FURTHER RESEARCH
	REFERENCES

