Human Arm Imitation

The Inverse Kinematics Problem

Robot Joint Angles

References

- [1] From http://www.microsoft-careers.com/content/rebrand/hardware/hardware-story-kinect/ [2013]
- [2] From Human Arm Inverse Kinematic Solution Based Geometric Relations and Optimization Algorithm-Mohammed Z. Al-Faiz, Abduladhem A.Ali & Abbas H.Miry [2011] [3] From http://www.digitaltrends.com/gaming/next-generation-kinect-will-reportedly-read-lips-rely-on-non-usb-data-transfers/ [2013]
- [5] From http://www.machineryautomation.com.au/how-can-industrial-robots-benefit-your-business-machinery-automation-and-robotics-investigates/ [2012]
- [6] From http://mathematica.stackexchange.com/questions/4084/finding-a-not-shortest-path-between-two-vertices [2013]

FIGURE 1. The relation between two consecutive coordinates

Human Arm

TABLE	1 Numeric	value for	D-H Para	ameters
Frame	qi(rad)	d _i (cm)	a _i (cm)	α _i (rad)
(joint)				
1	q1	0	0	π/2
2	q ₂ + π/2	0	0	π/2
3	Q ₃	0	0	-π/2
4	q₄	0	L4	π/2
5	q ₅	0	L5	-π/2
6	q ₆ - π/2	0	0	-π/2
7	q 7	0	0	-π/2

Link	a_i	d_i	α_i	θ_i
1	0	d_1	-90°	θ_1
2	0	0	90°	θ_2
3	0	d_3	-90°	θ_3
4	0	0	90°	θ_4
5	0	d_5	-90°	θ_5
6	0	0	90°	θ_{ϵ}
7	0	d_7	0°	θ_{1}

imitation to some extent Slight Lag in the imitation limits of the Manipulator

Future Work

Local Optimization – Store Configurations as nodes in a graph and find the shortest path to complete the task.

[4] From Visual motor control of a 7DOF redundant manipulator using redundancy preserving learning network Swagat Kumar, Premkumar P., Ashish Dutta and Laxmidhar Behera - Robotica / Volume 28 / Issue 06 / October 2010, pp 795 810

[2]

Robot Arm

Kinect

Industrial Robots can now be trained and controlled easily

Amtec PowerCube Manipulator

Serial Manipulator (8-DOF) – interfaced using RS232 (SERIAL) Cable

Use of D-H Parameters to calculate joint angles

Ayush Varshney Ritesh Gautam