Articulated Human

Detection and Pose

Estimation

Anant Raj \& Triya Bhattacharya Mentor - Amitabha Mukerjee

- Introduction
- Problem Statement
- Previous related work
- Our Approach
- A brief about algorithm
- References

Introduction

- Major Challenges
-Articulated Object detection
- Human Detection and Tracking
- Pose Estimation

GOAL:

- To recover the pose of an articulated object which consist of joints and rigid parts(Human).

Previous Work

Part Representation

- Head, Torso, Arm, Leg
- Location, rotation, Scaling.

Marr \& Nishihara 1978 Pictorial Structure

- Pairwise Spring.

Problems:

- Many degrees of freedom to be estimated.
- Limbs vary greatly in appearance.
- Need more no. of training images and also complications in inference.

That's Why

- Mini Parts Model.
- It can approximate deformations.

Co-occurrence Model

- Compatibility function for part type

$$
S(t)=\sum_{i \in V} b_{i}^{t_{i}}+\sum_{i j \in E} b_{i j}^{t_{i}, t_{j}}
$$

where parameter $b_{i}^{t_{i}}$ favors particular type assignment for part i and $b_{i j}^{\mathrm{t}_{\mathrm{ij}} \mathrm{t}_{\mathrm{j}}}$ favors particular co-occurrence of part type i and j .

- $G(V, E)$ is a graph whose edges specify pair of parts having consistent relations.

Flexible Mixture of Parts.

- Total score associated with a configuration of part types and positions -
$S(I, L, M)=\sum_{i \in V} \alpha_{i}^{m_{i}} \cdot \phi\left(I, l_{i}\right)+\sum_{i j \in E} \beta_{i j}^{m_{i} m_{j}} \cdot \psi\left(l_{i}, l_{j}\right)+S(M)$
m_{i} : Mixture of part i
$\alpha_{i}^{m_{i}}$: Unary template for part i with mixture m_{i}
$\beta_{i j}^{m_{i} m_{j}}$: Pairwise springs between part i with mixture m_{i} and part j with mixture m_{j}

Inference and Learning

- Test Phase
- Maximize the total score over L and M.
-Dynamic programming starting from the leaf of graph G(V,E).
- Given: - Image (I)
- Need to compute - Part locations , part Mixture
- Algorithm

$$
-\left(L^{*}, M^{*}\right)=\arg \max (S(I, L, M))
$$

- Train Phase

- Supervised Learning.
- Given - Image and known location of the parts.
- Need to learn -
- Unary Templates
- Spatial Features
- Co-occurrence

References:

1. http://phoenix.ics.uci.edu/software/pose/
2. Yang, Yi, and Deva Ramanan. "Articulated pose estimation with flexible mixtures-ofparts." Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011.
3. Felzenszwalb, Pedro F., and Daniel P. Huttenlocher. "Pictorial structures for object recognition." International Journal of Computer Vision 61.1 (2005): 55-79.

Questions !!

Thanks.

Experimental Results (as described in the paper)

- Visualization for 14 parts and 4 local mixtures, trained on the Parse dataset

- Examples where algorithm was successful

A Deeper Look:

- Assign $p_{i}=(x, y)$ for the pixel location of part i and $t i$ for the mixture component of part I
- Compatibility function that computes local and pairwise score
- Inference corresponds to maximizing score of part i over p and t
- Local score of part i computed by collecting messages from children of i using Dynamic programming
- Once messages sent from root $(i=1)$ best score is computed
- Using supervised learning, a predictive model is generated, using scores >1 as positive examples, and <-1 as negative
- Score can be written in the form-

$$
\begin{aligned}
S(I, z)= & \sum_{i \in V} \phi_{i}\left(I, z_{i}\right)+\sum_{i j \in E} \psi_{i j}\left(z_{i}, z_{j}\right) \\
\text { where } & \phi_{i}\left(I, z_{i}\right)=w_{i}^{t_{i}} \cdot \phi\left(I, l_{i}\right)+b_{i}^{t_{i}} \\
& \psi_{i j}\left(z_{i}, z_{j}\right)=w_{i j}^{t_{i}, t_{j}} \cdot \psi\left(l_{i}-l_{j}\right)+b_{i j}^{t_{i}, t_{j}}
\end{aligned}
$$

- Compute the message part i passes to its parent j by

$$
\operatorname{score}_{i}\left(z_{i}\right)=\phi_{i}\left(I, z_{i}\right)+\sum_{k \in \operatorname{kids}(i)} m_{k}\left(z_{i}\right)
$$

$$
m_{i}\left(z_{j}\right)=\max _{z_{i}}\left[\operatorname{score}_{i}\left(z_{i}\right)+\psi_{i j}\left(z_{i}, z_{j}\right)\right]
$$

Where upper equ. Computes the local score and the lower computes possible orientation of part i and j.

- Score S can be written in linear form

$$
S(I, z)=6 \cdot \Phi(I, z) .
$$

- Learn a model like

$$
\begin{array}{ll}
\arg \min _{w, \xi_{n} \geq 0} & \frac{1}{2} \beta \cdot \beta+C \sum_{n} \xi_{n} \\
\text { s.t. } \forall n \in \operatorname{pos} & \beta \cdot \Phi\left(I_{n}, z_{n}\right) \geq 1-\xi_{n} \\
\forall n \in \operatorname{neg}, \forall z & \beta \cdot \Phi\left(I_{n}, z\right) \leq-1+\xi_{n}
\end{array}
$$

- The above constraint states that positive examples should score better than 1 (the margin), while negative examples, for all configurations of part positions and types, should score less than -1.

