Predicting Visual Saliency of Building using Top down Approach

Sugam Anand ,CSE Sampath Kumar,CSE Mentor : Dr. Amitabha Mukerjee Indian Institute of Technology, Kanpur

Outline

- Motivation
- Previous Work
- Our Approach
- Saliency Computation
 - Itti and Koch A saliency-based search mechanism for overt and covert shifts of visual attention, 2000
- Object Detection
 - A simple object detector with boosting- by Antonio Torralba
 - Haartraining: Detect objects using Haar-like features
- Problems Faced
- Work Done
- References

Motivation

- What landmarks (buildings) does human choose for describing a route.
- Applications in robotics.
- Less work done in top down approach of visual saliency

Previous Work

- L. Itti, C. Koch, & E. Niebur (1998)- A Model of Saliency-Based Visual Attention for Rapid Scene Analysis
 - Uses low level features
 - Not able to predict correctly where humans actually look ,upto 28.4 % [3]
- Tilke judd, Krista Ehinger , Fredo Durand, Antonia torralba(2009)-Learning to Predict where humans look
 - A learning based model
 - Uses high level features also
 - State of the art in visual saliency prediction

Our Approach

Saliency Models

- Based on neuro biologically linear filters
- Take into account low level features like intensity, contrast, illumination and color.
- Apart from these low level ,Some mid and high level features .
- All use bottom approach

Itti and Koch Model,[1998]

Figure taken from [1]

Algorithm

Taken from [6]

OrientationsCM

IntensitiesCM

Object Detection

- OpenCV Haartraining: Detect objects using Haar-like features
- Take multiple "positive" samples, i.e., objects of interest, and "negative" samples, i.e., images that do not contain objects.
- Different features are extracted from samples and distinctive features are "compressed" into the statistical model parameters.
- A classifier after training period is obtained for object detection of that class.

Haar-like Features

3. Center-surround features

(a

 Haar like feature's value is computed as the difference between the sum of the pixels within white and black rectangular regions for that feature.

$$f_{i} = \operatorname{Sum}(\mathbf{r}_{i, \text{ white}}) - \operatorname{Sum}(\mathbf{r}_{i, \text{ black}})$$

$$h_{i}(x) = \begin{cases} 1 & \text{if } f_{i} > \text{threshold} \\ -1 & \text{if } f_{i} < \text{threshold} \end{cases}$$

Adaboost Learning

$$F = sign(w_1h_1 + w_2h_2 + \dots + w_nh_n)$$

where, $h_i(x) = \begin{cases} 1 & \text{if } f_i > \theta_i \\ -1 & \text{if } f_i < \theta_i \end{cases}$

Weak classfiers (h_i (x)) with less error rate ,gets larger weight Hence ,contributes in strong classifier.

Object Detection in OpenCV

- 1. Generating the database of positive and negative samples.
- 2. Make the bounding box for the object by objectmarker.exe
- 3. Generate the vec file out of positive samples using createsamples.exe
- 4. For generating classifier run the haartraining.exe
- 5. Run haarconv.exe to convert classifier to .xml file

Where Do People Look

- Faces
- Text
- People
- Body parts
- animals

Problem faced

Unconventional buildings attract attention against low level features used by us

Contd...

• Text ,faces etc on buildings attract more attention.

Input image

Work done

• Saliency Detection completed

thresholding

After applying itti koch algo

Work done

• Our Label me[4] database consisting 150 annotated images

Resources

- Saliency Tool box
 - Contains functions for implementing visual saliency based on itti and koch model
- Cascade Classifier Training in opency
- J. Harel, A Saliency Implementation in MATLAB: http://www.klab.caltech.edu/~harel/share/gbvs. php
- Training images from Imagenet

References

- [1]Itti and Koch A saliency-based search mechanism for overt and covert shifts of visual attention, 2000
- [2] Tilke judd, Krista Ehinger, Fredo Durand, Antonia torralba(2009)-Learning to Predict where humans look
- [3]A Benchmark of Computational Models of Saliency to Predict Human Fixations by Tilke Judd, Fredo Durand and Antonio Torralba.[2012].
- [4] LabelMe: online image annotation and applications A. Torralba, B. C. Russell, J. Yuen
- [5] Paul Viola, Michael Jones[2001]. Rapid Object Detection using a Boosted Cascade of Simple Features. Conference on Computer Vision and Pattern Recognition
- [6] http://www.klab.caltech.edu/~harel/pubs/gbvs_nips_poster.pdf

Questions ???

• Architecture:

Center-surround Difference

• Achieve center-surround difference through across-scale difference

- Operated denoted by Θ : Interpolation to finer scale and point-to-point subtraction
- One pyramid for each channel: $I(\sigma), R(\sigma), G(\sigma), B(\sigma), Y(\sigma)$ where $\sigma \in [0..8]$ is the scale

- Center-surround Difference
 - Intensity Feature Maps
- $I(c, s) = | I(c) \Theta I(s) |$
- *c* ∈ {2, 3, 4}
- $s = c + \delta$ where $\delta \in \{3, 4\}$
- So $I(2, 5) = | I(2) \Theta I(5) |$ $I(2, 6) = | I(2) \Theta I(6) |$ $I(3, 6) = | I(3) \Theta I(6) |$
- \rightarrow 6 Feature Maps

• Center-surround Difference • Color Feature Maps

Red-Green and Yellow-Blue

•Center-surround Difference •Orientation Feature Maps

•
$$O(c, s, \theta) = |O(c, \theta) - O(s, \theta)|$$

Same c and s as with intensity

- Normalization Operator
- Promotes maps with few strong peaks
- Surpresses maps with many comparable peaks
 - 1. Normalization of map to range [0...M]
 - 2. Compute average *m* of all local maxima
 - 3. Find the global maximum *M*
 - 4. Multiply the map by $(M-m)^2$

Example of Operation:

Inhibition of return

- Given example images $(x_1, y_1), \ldots, (x_n, y_n)$ where $y_i = 0, 1$ for negative and positive examples respectively.
- Initialize weights $w_{1,i} = \frac{1}{2m}, \frac{1}{2l}$ for $y_i = 0, 1$ respectively, where m and l are the number of negatives and positives respectively.
- For t = 1, ..., T:
 - 1. Normalize the weights,

$$w_{t,i} \leftarrow \frac{w_{t,i}}{\sum_{j=1}^n w_{t,j}}$$

so that w_t is a probability distribution.

- 2. For each feature, j, train a classifier h_j which is restricted to using a single feature. The error is evaluated with respect to w_t , $\epsilon_j = \sum_i w_i |h_j(x_i) - y_i|$.
- 3. Choose the classifier, h_t , with the lowest error ϵ_t .
- 4. Update the weights:

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e}$$

where $e_i = 0$ if example x_i is classified correctly, $e_i = 1$ otherwise, and $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$.

• The final strong classifier is:

$$h(x) = \begin{cases} 1 & \sum_{t=1}^{T} \alpha_t h_t(x) \ge \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{otherwise} \end{cases}$$

where $\alpha_t = \log \frac{1}{\beta_t}$

AdaBoost Algorithm

Start with uniform weights on training examples

-

 $\{X_1, ..., X_n\}$

For T rounds

Evaluate
 weighted error
 for each feature,
 pick best.

Re-weight the examples:

Incorrectly classified -> more weight Correctly classified -> less weight

Final classifier is combination of the weak ones, weighted according to error they had.

Slide from K.Grauman

Acknowledgement

• The slides 22-28 are based on the tutorial from http://disp.ee.ntu.edu.tw/class/saliencymap.