
Artificial Intelligence Project Proposal

DYNAMIC PATIENT ADMISSION SCHEDULING PROBLEM

Students: Rohitsangu Das, Valcarcel Xavier group num.

20

I - Context and Motivations:

a) Description of the problem

The dynamic patient admission scheduling problem is about assigning

people arriving to a hospital to the good bed. Indeed, it is a very

complex problem to manage the patient in a hospital, they all have

different diseases, they needs different treatment, some of them need

emergency cares, other have to stay many days, etc... But the hospital

has only limited resources, such as rooms, beds, medical equipment,

doctors, nurses. So, this problem is about finding the best way of

assigning the best resources to the different patients arriving.

b) Motivations for resolving this problem

The motivations are very clear and important, it's very hard to manage a

hospital and all its resources, but it's necessary because a lot of lives

are engaged in this process. Indeed, sometimes a bad organization in a

hospital cans provoke indirectly the death of a lot of people in long

term. Moreover, it is a very complex problem that has to be resolve very

quickly, and it could be impossible to do it for thousands of patients

without using a good algorithm.

We can also think about big natural disaster like the 2004 tsunami, where

a lot of hospitals were destroyed, and the number of patients with big

surgery needs increased by millions. In that kind of disaster management

is the most crucial element to save thousands of lives, and having this

powerful algorithm implemented can change everything.

The reason why we want to work on this problem for our project is the

fact that actual algorithms are not really adapted. Lots of algorithms

were invented, but most of them are slow whereas solving time is an

important criterion. Furthermore, a big problem is the fact that they

take in consideration only the patients admitted the previous day.

Nevertheless, emergency cases that have to be solved in few hours are

frequent, especially for natural disaster, so that is a big issue.

Another problem is the fact that sometimes there is a big imbalance for

the affected resources. For example, with some algorithm it could happen

that one doctor has to work 90 hours a week, while another one has to

work only 10 hours. The last problem is the fact that some algorithm are

not considering all the parameters, for example sometime it's impossible

for the patient to choose the day when he want to go to the hospital.

c) Our goal

The goal of our project is to compare the different algorithms that have

been implemented, and then try to make a new one that can answer to the

problems exposed previously. In fact, we will see what are the advantages

and weakness of the different algorithms and try to see what is impacting

them. Like this, we will try to make our own algorithm, able to deal with

the different issues like the performance, the ability of considering the

patient arriving right now, or a better repartition of the use of the

resources.

Work Done

1. A work was done by Hans et al. ,wherein he proposed an algorithm which

not only assigns elective patients to operating systems,optimizes the

operating threatre utilization and minimizes the total time taken by an

operation(Though perfection is quite vital as it is a question of life

and dead.). Local and constructive heuristics are applied to solve the

problem.

2. The work was done is scheduling patients who needs to be treated by a

psychotherapist.We maintain certain data structures such as list of

psychotherapists,list of patients over a weekend.The algorithm proposed

by Oguluta ,selects a patient from the list,and schedules him/her to a

day of the week, keeping in mind the priority and duration involved for

treatment.They are scheduled in such a manner that the workload of the

physiotherapists is equally balanced. Patients’ preferences concerning

the day of the week for treatment are not taken into consideration.

Ogulata et al. solve the problem using themathematical programming tools

GAMS and MPL.

3. Another algorithm proposed by Marinagi,looks to maximise the

examination time of a patient and the maximum utilization of the

hospital's resources.The problem is solved by a combination of agents ,a

hierarchical planner which supports the decomposition of complex tests

into smaller parts and a scheduler. Subject to the different actions that

need to be executed, which is the result obtained by the planner, the

scheduler tries to assign the actions to appropriate timeslots.

4. Harper and Shahani [14] describe a simulation model in which bed

occupancy and patients’ refusals can be calculated, taking into account

different what-if scenarios.

5. Akcali et al. describe a network ?ow approach that assists in

determining he optimal bed capacity in hospitals. It takes into account

the hospital budget and the maximum number of days a patient is on the

waiting list before being admitted to the hospital.It is however assumed

that all the beds in the hospital are identical.

The Precise Description of the Problem.

-The Precise Project Description.

-Constraints,

-Method.

The Precise Description of the Project.

NOTE: This project description is taken partly from

https://cs.uwaterloo.ca/~jchampai/papers/7283770962056173435.pdf

1. Patients are denoted Pi,with i = 1,....P,with P ,the total number of

Pateints,There are F Female Pateints and M Male Patients,with P =

F+M.Pateints have the following Properties :

 - an admission date ADi,with ADi in 1,...,T-1,and a discharge date

DDi,with DDi in 2,......,T and ADi < DDi.

- an age Ai and a gender Gi.

- a treatment, which corresponds to a specialism Sl and

- a room preference RPrefw.

https://cs.uwaterloo.ca/~jchampai/papers/7283770962056173435.pdf

2. Nights are denoted Nk , with k varies from 1;...;T, with T the number

of nights in the planning period of the time horizon.

3. Departments are denoted as Dm, with m varies from 1;...;D, with D the

number of departments. Departments can support one or more specialisms Sl

, with l varies 1;...;S, with S the total number of specialisms. A

department Dm can enforce that assigned patients have a speci?c age.

4.Departments are denoted as Dm, with m ¼ 1;...;D, with D the number of

departments. Departments can support one or more specialisms Sl , with l

varies from 1;...;S, with S the total number of specialisms. A department

Dm can enforce that assigned patients have a specific age.

5.The jth room of the hospital is denoted Rj, with j varies from 1;...;R,

with Rthe number of rooms in the hospital. A room Rj can have one or more

room properties and a gender. According to the specialisms that are

supported in the department, rooms can support in some degree different

specialisms.

6.The b th bed of room Rj is denoted Bjb, with b varies from 1;...;Bj,

with Bj the number of beds in roomRj . The capacity (number of occupied

beds) of the room Rj at night Nk is denoted bjk.

7.The transfer of patient Pi from room Rj to another room on timeslot Nk

is presented as Ti jk.

The Constraints

NOTE: The constraints are taken partly from

https://cs.uwaterloo.ca/~jchampai/papers/7283770962056173435.pdf

There are some constraints we would like to satisfy at any cost so that

one could have feasible solution,these are known as Hard Constraints and

if this feasible solution satisfies many Soft Constraints ,then the

method is better.

 Hard Constraints.

 - "During the considered planning phase ,The room Rj has to remain

free,because pateints has to be assigned the bed." (Taken from

 http://satt.diegm.uniud.it/uploads/Papers/CeSc11.pdf)

 - As opposed to some algorithms ,admission date and discharge date

cannot be changed by some model,it could only be adapted by some doctor.

 - For each admission of a patient Pi the length-of-stay is

contiguous.

 - Two patients Pi1 and Pi2 (i1 not equal i2) cannot be assigned to

the same bed Bjb in the same time slot Nk.

 - Male and female pateints should be assigned different rooms and

Pateints Pi should be assigned to departments considering their Ages Ai.

 - The medical treatment of a patient Pi may require that he/she is

assigned to a room Rj with special equipment. These room properties are

mandatory for the treatment.

https://cs.uwaterloo.ca/~jchampai/papers/7283770962056173435.pdf

 - " Some patients Pi have to be assigned to a single room Rj for

medical reasons".

 Soft Constraints.

Here we are not mentioning the soft constraints,because these soft

constraints will make the algorithm better,we havn't fixed them as we

have to test many such constraints,though some of them can be found from

https://cs.uwaterloo.ca~jchampai/papers/7283770962056173435.pdf.

Method.

1. The first step is Integer Programming.The model takes into account the

most common case in which the gender of the first patient determines the

gender of the room,So,we have no scope for both gender having the same

room.But we will incorporate war situation,in which often we have to

relax certain constraints,and have to accomdate both.

2. As a matter of fact we will define a function Penalty which shall hold

the penalty incurred when a pateint j is assigned to room k.This penalty

is based on the number of times we violate the soft constraints.The

objective of the algorithm is to decrease the penalty incurred,hence we

define a objective function.

3. So if a pateint is staying,he has to have a room assigned to it and

that the number of pateints in the room should not be larger than the

number of beds.We will check all this by just keeping a variable and

compare it with the maximum eachtime a pateint is assigned to a room.

NOTE: However, the integer program did not ?nd a feasible solution

within 1 h of calculation.

Hence ,we will look into the TABU method.THis method uses neighbourhood

search method to build on a solution.

1. s = s0

2: sBest = s

3: tabuList = null

4: while (not stoppingCondition())

5: candidateList = null

6: for(sCandidate in sNeighborhood)

7: if(not containsTabuElements(sCandidate, tabuList)

8: candidateList = candidateList + sCandidate

9: end

10: end

11: sCandidate = LocateBestCandidate(candidateList)

12: if(fitness(sCandidate) > fitness(sBest))

13: tabuList = featureDifferences(sCandidate, sBest)

14: sBest = sCandidate

15: while(size(tabuList) > maxTabuListSize)

16: ExpireFeatures(tabuList)

17: end

18: end

19: end

20: return(sBest)

NOTE :This algorithm is taken from

http://en.wikipedia.org/wiki/Tabu_search

Hence ,we will look into the TABU method.THis method uses

neighbourhood search method to build on a solution.

1. s = s0

2: sBest = s

3: tabuList = null

4: while (not stoppingCondition())

5: candidateList = null

6: for(sCandidate in sNeighborhood)

7: if(not containsTabuElements(sCandidate, tabuList)

8: candidateList = candidateList + sCandidate

9: end

10: end

11: sCandidate = LocateBestCandidate(candidateList)

12: if(fitness(sCandidate) > fitness(sBest))

13: tabuList = featureDifferences(sCandidate, sBest)

14: sBest = sCandidate

15: while(size(tabuList) > maxTabuListSize)

16: ExpireFeatures(tabuList)

17: end

18: end

19: end

20: return(sBest)

http://en.wikipedia.org/wiki/Tabu_search

1. We shall find a suitable representation of the solution.

2. The neighbourhood's which describe the solutions that can be reached

from a solution by a single move.

3.The cost function measuring the quality of the solution.

The algorithm stores the store the previous moves that were made from one

solution to another.There is this problem of local optima and global

optima,we shall prevent local optima using this memory of previously

stored moves.

When a better solution is found the tabu list length is decreased, while

in the other case the tabu list in increased in order to escape from the

local minimum.

NOTE : Tabu search http://en.wikipedia.org/wiki/Tabu_search

"The Tabu Search Algorithm is extended by a token Ring Search.In a token

ring search ,neighbourhoods are switched after a certain number of

moves,when the solution doesn't get better.. When the maximum number of

non-improving moves is reached in the ?nal neighbourhood, the algorithm

applies the ?rst neighbourhood again.The algorithm introduces randomness

in the search. Small parts of the solution, in this case individual

patients are randomly selected and moved. Randomness is furthermore

inherently present in the algorithm itself. The quality of a solution may

be equal for two possible moves in the same iteration. In this case the

tabu search algorithm randomly selects one of the equal moves." (This

paragraph is taken from

http://satt.diegm.uniud.it/uploads/Papers/CeSc11.pdf)

NOTE: This is algorithm finds an optimal solution keeping in mind the

hard constraints.We may have to modify this method to include cases like

war , famine when the general working has to be modified and the general

notion of optimality is changed because of lots of people to accomodate .

The hospitals has to be ready for every kind of situations.

CODE.

Their is a code online : http://satt.diegm.uniud.it/gitweb-

public/PASU.git/blob_plain/HEAD:/PASU/validator.cc

Obviously ,this code would have to change to accomodate for our version

of Soft constraints.

DATASET.

The Dataset can be found here:

http://allserv.kahosl.be/~peter/pas/

References

1. http://www.sciencedirect.com/science/article/pii/S0933365712001169

2. http://satt.diegm.uniud.it/uploads/Papers/CeSc11.pdf

3. https://cs.uwaterloo.ca/~jchampai/papers/7283770962056173435.pdf

http://en.wikipedia.org/wiki/Tabu_search

