
Peer-to-Peer Insult Detection in Online
Communities

 Priya Goyal (10535) Gaganpreet Singh Kalra (10258)

Department of Mathematics & Statistics Department of Computer Science & Engineering

 prigoyal@iitk.ac.in gpskalra@iitk.ac.in

 IIT Kanpur IIT Kanpur

Mentor: Dr. Amitabha Mukerjee

Department of Computer Science and Engineering

 amit@cse.iitk.ac.in

IIT Kanpur

April 17, 2013

Abstract

The aim of this project is to detect the comments that are considered as insulting to other participants of

blog/forum conversation. For feature selection, we use n-grams, skip grams and special words like ‘you’

to build vector model. We present two new hypotheses to construct more feature and use tools in

supervised learning like logistic regression and SVM for training and testing. Evaluation on the insult

dataset gives considerable improvement in accuracy to 86% over the best 80-82% earlier due to the

inclusion of two new features proposed.

1. Introduction

 People today around the globe are using various online forums, blogs, social networking sites,

newsgroups as source of their networking, sharing and receiving knowledge. Sometimes, some users may

make comments (like reference to handicap) that are considered as inappropriate by other users and may

hurt their feelings. Besides, it is a barrier to user participant and prevents new users from participating.

Also, sometimes you are looking for some information on some site and find insults then it leads to

frustration. Though, the Terms of Service of social networking sites like Facebook, Yahoo etc. prohibits

from posting content that is unlawful, abusive and harassing, users’ posts are only partially filtered for

some particular collection of offensive words. Also, while some sites like YouTube, some newsgroups etc.

provide flag facility to mark content as insulting/ inappropriate, they are prone to collusion and are highly

misused (marking a non- insulting comment because it wasn’t liked). Also, it is not possible to have a

human moderator to review the comments before posting because of the increasing amount of online data.

Hence, we need an automatic classifier that will detect the insulting comments.

 Our aim is to focus on comments that are insulting to other participant of the blog/ forum

conversation. However, the comments containing insults but are targeted to a non-participant of

conversation (like a celebrity etc.) are not marked as insults. Insults are of many types like: Taunts,

reference to handicaps, squalid language, slurs and racism which are aimed at attacking the other person.

However some insults are aimed at abuse or embarrassing the reader (not an attack) like crude language,

disguise provocative words, disguise, sarcasm, innuendo (indirect reference). We are aimed at detecting

comments that are intended to be obviously insulting to other participants.

mailto:prigoyal@iitk.ac.in
mailto:gpskalra@iitk.ac.in
mailto:amit@cse.iitk.ac.in

 We obtained our annotated dataset from the Kaggle website. The training dataset consists of 7000

comments in total of which nearly 3000 are marked as insulting This problem is treated as binary

classification problem and various supervised learning tools like Logistic regression, SVM have been

used. The implementations have been done using Scikit learn Toolkit which is a natural language toolkit

in Python.

 This report has been organized as: in Section 2, we present the related background work on this

problem. In Section 3, we present the methodology we have used followed by explanations of each

intermediate process following sub-sections. In section 4, we state our implementation results with

analysis. In section 5, we summarize the work done in this project and finally in Section 6, we present the

future scope of this project.

2. Related Work
Various attempts have been made to classify the insulting comments in on line forums. The work by

Ellen Spertus [1] used static dictionary approach and defined some patterns based on socio-linguistic

observation to build a feature vector for training. This work suffers from high false positive rates and low

coverage. Another work by Altaf Mahmud et. al [2] tries to differentiate between insult and factual

statements by parsing the sentences and using the semantic rules. This works doesn't distinguish between

the insults directed to non-participant and participant of conversation. Also the rules and seed words

approaches are rigid and lack generality because of flexibility of conversation. The work by Razavi et. al

[3] makes use of Insulting and Abusing language dictionary on top of bag-of words features in their

proposed three-level classification machine learning model. This works rely heavily on dictionary which

is not easily available. Another recent effort by Carolyn P. Rose et. al [4] in classifying offensive tweets

builds topical features and lexicon features using some dictionary and uses various machine learning

approach.

However, besides the limited approach of using seed words and pattern matching, these works also

do not distinguish between the insult directed towards the people participating in blog/forum conversation

and non-participants such as celebrities, public figures etc. Comments which contain profanity or racial

slurs may not necessarily be insulting to other person. We aim at building an efficient classifier that

detects peer-to-peer insults and we adopt the machine learning approach entirely.

 The various challenges involved in this process are: Grammatical mistakes e.g. “What on earth a

BIGGOT like you is doing walking on the face of earth?” , Typography: s h i t (shit) , People usually

circumvent dictionary due to flexibility of conversation e.g. @$$hole (asshole) , Wordplays e.g. kucf oyu

, Sarcasm e.g. “Sometimes I don’t know whether to laugh at you or pity you.” , Innuendo where the

indirect mention to someone has been made e.g. “Only cowards, thieves, cheats and liars hide behind

pseudonyms.”.

3. Our Methodology

Here is the basic philosophy of our work. The following sub-sections discuss each step in detail.

Normalization

Feature Extraction (vector-model)

Feature Selection

Classification

Figure1: General classification strategy

3.1 Normalization
The raw data obtained from internet can’t be used directly for learning models. Some pre-processing of

data is necessary and we need to convert it to the input format of various machine learning algorithms.

However, this pre-processing should not lead to loss of information so depending on the task; necessary

pre-processing steps should be identified.

The first step of this process involves normalization. We use various techniques for this (identified by

looking at the dataset):

3.1.1 Removal of unwanted strings:

We clean our data by removing some encoding parts like \\xa0, \\xc2, \\n, etc. and some unwanted html

tags. These put bias on the results if not removed. For example: “\\xc2 \\xa0 If you take out the fags and

booze, leaving say \\xc2, \\xa0, \\c2, \\xa3170 per week say and then recognize that they are feeding 8

people then that doesn't seem too extreme”. After cleaning the encoding parts, it looks like “If you take

out the fags and booze, leaving say 3170 per week say and then recognize that they are feeding 8 people

then that doesn’t seem too extreme.”

3.1.2 Stemming:

Stemming involves reducing the words to their root or stem form like “retarded” to “retard”,

“embarrassing” to “embarrass” etc. This is necessary because otherwise it results in unnecessary increase

in the number of features. There is a standard algorithm called Porter Stemming algorithm whose python

is easily available on the internet. However, for our project, we don’t use this algorithm because this

might result in the loss of information from dataset as it may wrongly reduce some words which effect

insult detection to their root.

3.1.3 Correcting some common words:

Due to the flexibility of conversation on the internet people prefer to write short forms of words like “ur”

for “your”, “nopes’ for “no” etc. If we can convert these types of words to their original correct form, then

it reduces the size of feature set and also improves the accuracy of models. So we manually created a

mapping for some commonly used words to their correct form and normalized the dataset using this

mapping.

Also, while writing insult words, people manipulate the dictionary like “@$$hole” for “asshole”, “!d!ot”

for “idiot” etc. These words are necessary for the insult detection and so these must be identified my

models correctly. Hence we used a dictionary of approximately 500 words containing all the possible

ways an insult word can be written and when these words are encountered we convert then to their true

form using this dictionary. Though this dictionary is not exhaustive and it is also not possible to create an

exhaustive dictionary, still using this help in improving the accuracy.

So, before normalizing, if a particular entry looks like “"\xa0you are truly an !d!ot.\xa0 the man pitched a

no hitter.\xa0 just shut up." it changes to "you are truly an idiot. the man pitched a no hitter. just shut up."

after normalization.

3.2 Feature Extraction
The strings should be converted to a numerical vector so that they can be used by machine learning

algorithms. We use the various n-grams model and skip grams to construct the feature vector. The process

occurs in following steps:

3.2.1. Tokenizing

Split the text into tokens. These tokens can be characters, 'words' or n-grams which are the sequence of n

consecutive words. We take words as tokens. We build 2, 3, 4 and 5 n-grams for the feature vector

construction.
3.2.2. Counting

Count the number of times each of these tokens occurs in each of the text strings. This way we construct a

(generally sparse) matrix of size N by V where N is the size of the training data (number of comments in

our case) and V is the size of the vocabulary (the length of feature vector constructed over the whole

training set using n-grams, skip grams and second-person rule) representing all the text strings where the

number of occurrences of each token is a feature for that text string.

3.2.3 Normalizing:

The number of occurrences of each feature may not be a good feature to be used directly. For example a

word like 'the' occurs in almost all the text strings. We might wrongly consider it as important due to the

high frequency of occurrence. So, we need to reduce its importance. This is achieved by using

vectorization for finding score which is a measure of the relevance of word.

3.2.4 Tf-idf Score:

Tf-idf stands for: “Term frequency x Inverse document Frequency” and it measures the ratio of the

number of times the token occurs in a particular text string to the fraction of the documents in which the

token occurs.

After constructing a key word set using n-grams, skip grams and special rule, using this list of features;

we find the tf-idf score of each feature. The item in the tf-idf vector corresponds to the tf-idf weight of the

feature (keyword) at the same index. A keyword’s term frequency is the number of times the word

appears in the title. Its document frequency is the number of titles the word appears over the total number

of titles. The keyword’s tf-idf weight is its term frequency divided by its document frequency. Then, the

tf-idf vector is normalized. The tf-idf vector represents the occurrence of the important keywords a user is

interested in. In this model, each document is first represented as a term-frequency vector in the term-

space:

 ()

where is the frequency of the ith term in document , n is the total number of the selected

vocabulary, and D is the total number of documents in the collection.

Next, we weight each term based on its inverse document frequency (IDF) and obtain a tf-idf vector for

each document:

 ()

3.3 Additional Features
We use additional features in an effort to increase the efficiency of our algorithms. Based on our

observation of the dataset, we found proposed the following two hypothesis which we believe will help

tin increasing the accuracy. We call these two extra features 'skip grams' and 'second person rule'.

3.3.1 Skip grams:
Apart from adding the count of each word or n-gram in a document as a feature, we also consider the long

distance words (at a particular distance) as a feature hence increasing the number of columns of our

feature matrix. We do this because co-occurrence of some words like “you fools” etc. is a good indicator

of insult. We try to capture these using skip grams to construct more features. This feature has as a

parameter the number of words you skip between 2 words. For example: Given the sentence 'You are an

idiot', using “2 skips” adds 2 new features: the count of 'you an' and the count of 'are idiot' to our set of

features. We tried to use 1, 2, 3 and 4 skip grams and the results are shown in Section 4.

3.3.2 Second person feature:
We also add as a feature the count of 'the set of words' that occur just after words like “you are”, “you're”

in a sentence. This is based on our observation that nearly 40% of the insults in our dataset had words like

“you xxx” etc. This feature is a very strong hypothesis which greatly improves the accuracy as shown in

the results section 4.

3.4 Feature Selection
The features generated are of the order of a hundred thousand features which is too big a number to be

handled efficiently by algorithms like SVM and Logistic Regression. So we need to select a few best

features out of our set of features. We apply a statistical test known as “Chi Squared Test” to our feature

matrix to select best k number of features where k is our parameter roughly equal to 3000.

3.4.1 Chi-Squared test:

This test finds if a pair of categorical variables on a data is statistically dependent or independent. In our

case, this pair of variable is: The label of the sentence: “insult or not” and the occurrence or non-

occurrence of a feature”. The features which score high in this test are the important features which we

keep while we discard the remaining features. To understand this measure better, consider the following

example.

Imagine a sample of our data that looks like this:

Text

String

Feature 1 - 'you' Feature 2 - 'the' Feature 3 – 'you are' Feature 4 -

'idiot'

Label

1 Present Present Not Present Present Insult

2 Present Present Not Present Not Present Not Insult

3 Not Present Present Not Present Present Insult

4 Present Not Present Present Not Present Insult

Had the presence of 'you' and 'being insult' been independent, the expected number of rows in which both

of these happen would be:

where N('you present', 'insult') is the number of rows which have the feature 'you' and are labeled as

'insult' and N is the total number of rows.

 ∑

where i= {'yes present', 'yes not present'} and j= {'insult', 'not insult'} This is a measure of dependency in

the two categorical variables. Higher this value, more related is the two variables. Lesser the value, more

independent are the variables.

3.5 Classification
After we have constructed the features and extracted the top features, we apply machine learning

algorithms to learn models. We use SVM and Logistic regression algorithms on our feature data. Finally,

we combine the results of both the algorithms to get the final results. The results are obtained as

probabilities which indicate the probability of a comment being an insult.

4 Evaluation and Results
 Accuracy without applying our hypothesis: 85.2381

 Accuracy with Skip Grams (2 words skipped) included: 86.5079

 Accuracy with Second-person rule included: 86.7725

 Accuracy with both Skip Grams and Second-person rule included in table:

Skips Accuracy Precision Recall

2 skips 86.84 0.765 0.72

3 skips 86.84 0.764 0.71

2, 3 skips 86.92 0.769 0.71

2, 3 and 4 skips 86.66 0.759 0.71

As we observe, the skip grams didn’t really help much in improving the accuracy. However overall we

gained 4% increase in accuracy over the previous models. We also found that the results vary over

different test sets.

5 Conclusion and Future Work
We have made an attempt to detect intended to be insulting to a participant of conversation. For this we

observed our dataset and proposed two new features: skip-grams and second person rule to test our

hypothesis. We used machine learning algorithms SVM and Logistic Regression to train models. We

tested it on a dataset and obtained a considerable gain in accuracy. However there are still false positives

like: “you republican politicians will never get it in your head”- this is the insult to a non-participant but

this was labeled as 0.92 probable insults by our model. Also, the false negative "I'm sure dumb-asses, like

you, will be trolling full force under our next President...Romney" This is an insult to a participant but our

algorithm marks it as having 23% probability of being an insult. So some more sophisticated techniques

need to be built. Also we can investigate new features like user id, length of thread following a comment,

time of comment etc. Also, some method to detect insult like sarcasm “you are the supreme boss”

innuendo “Only cowards, thieves, cheats and liars hide behind pseudonyms.” need to be devised.

6 Acknowledgement
We thank Prof. Amitabha Mukerjee for his valuable support throughout the project, guiding us from time

to time and helping us get through various roadblocks. We are thankful to "Kaggle.com" online forums as

whose discussions proved really helpful to us and open source "scikit learn" package in python.

7 REFERENCES
[1] Ellen Spertus. 1997. Smokey: Automatic recognition of hostile messages. In Proceedings of the

Ninth Conference on Innovative Applications of Artificial Intelligence, pages 1058–1065.

[2] Altaf Mahmud, Kazi Zubair Ahmed, and Mumit Khan, 2008. Detecting flames and insults in text. In

Proceedings of the Sixth International Conference on Natural Language Processing.

[3] Amir H. Razavi, Diana Inkpen, Sasha Uritsky, and Stan Matwin. 2010 Offensive language detection

using multi-level classification. In Proceedings of the 23rd Canadian Conference on Artificial
Intelligence, pages 16–27.

[4] Xiang, G., Hong, J., & Rosé, C. P. (2012). Detecting Offensive Tweets via Topical Feature

Discovery over a Large Scale Twitter Corpus, Proceedings of The 21st ACM Conference on
Information and Knowledge Management, Sheraton, Maui Hawaii, Oct. 29- Nov. 2, 2012.

[5] For badwords file:

 http://urbanoalvarez.es/blog/2008/04/04/bad-words-list/

[6] For starter code:

 www.kaggle.com/c/detecting-insults-in-social-commentary/forums

[7] For dataset:

 www.kaggle.com/c/detecting-insults-in-social-commentary/data

http://urbanoalvarez.es/blog/2008/04/04/bad-words-list/
http://www.kaggle.com/c/detecting-insults-in-social-commentary/forums
http://www.kaggle.com/c/detecting-insults-in-social-commentary/data

