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Abstract—Robot Motion planning is one of the fundamental
problem in robotics. It has various applications such as in Ware
house automations, Driverless cars, Robotic surgery etc. The path
planning problem is described as: to find a shortest or optimized
path between start point and goal in a spatial configuration
consists of obstacles of various types. There are many fundamen-
tally different approaches suitable for different environmental
configurations. The various methods are Cell Decomposition,
Sampling method, Probabilistic Roadmap methods, Generalized
Voronoi diagrams etc. In this project we will be exploring for
Generalized voronoi diagrams in Robot motion planning.

I. RELATED WORK

A lot of research work is being done in the field of compu-
tation of Voronoi Diagram. Steven Fortune[1] has introduced
a sweepline algorithm which can compute Voronoi Diagram
for n point sites in O(nlogn) time. This algorithm become
famous as Fortune’s algorithm. Paul Chew [2] presented
“expanding wave” analogy for computing Voronoi Diagram
based on convex distance functions. Colm [4] have extended
this work to motion planning of disc amid polygonal obstacles
with an algorithm of O(nlogn) time complexity. A linear
time algorithm for computation of Voronoi Diagram has also
been introduced[3] for point sites lying on the vertices of
convex polygon. Howewer in our project we are using Matlab
function ’voronoi’ for computation of Voronoi Diagram for
point sites which we are using in computing Voronoi Diagram
for polygonal obstacles.

II. I NTRODUCTION TOVORONOI DIAGRAM

Voronoi Diagrams: “A Voronoi diagram of a set of sites in
the plane is a collection of regions that divide up the plane.
Each region corresponds to one of the sites and all the points
in one region are closer to the site representing the region
than to any other site.” [6] The path generated by Voronoi
diagram ensures minimum collision risk if any possible. Figure
1 shows voronoi diagram for point sites. Here we can see that
all the points lying in the yellow region are nearest to the point
site corresponding to yellow region.

The voronoi diagram for a line site can be generated by
considering line as a linear array of point sites. Similarly
Voronoi diagram of a polygonal object can be drawn by
considering the polygon as a set of line segments. Figure 2
shows voronoi diagram of a triangle where first it is considered
as a set of three line-segments then each line-segment is
considered as a set of point sites.

Fig. 1. Voronoi Diagram (Image courtesy [8])
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Fig. 2. Voronoi Diagram for Triangle by considering it as setof point sites

III. PROBLEM STATEMENT FORMULATION

In our problem statement an environment configuration
consisting of polygonal obstacles with Start and Goal points
is given. Our goal is to find the ’shortest’ collision-free path
from Start point to Goal point. For example a configuration
is shown in figure 3 where there are two obstacles and Start
point and Goal point are specified as green dot and red dot
respectively.

Then our goal will be to find the ’shortest’ collision free
path from Start to Goal as shown in color magenta in figure
4. The green colored path shows the Voronoi Diagram for the
given configuration. It is to be noted that the final path is a
subset of Voronoi diagram.



Fig. 3. Configuration of obstacles, Start and Goal points
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Fig. 4. Final path for obstacle configuration

IV. M ETHODOLOGY

This section explains how to go for solving the problem
using an example. First consider the obstacle configuration
given in figure 7. In this configuration we have six obstacles
of different shapes and a bounding rectangle which will also
be considered as an obstacle.

Now, the next step would be to divide the polygonal objects
in number of point sites and then calculate the Voronoi
Diagram for the whole set of points. The distance between
consecutive point sites is governed by a parameter Epsilon.
The less the Epsilon the more number of vertices will be which
results in densely spacced voronoi edges. Less Epsilon gives
more smoother output path but computation time increases
as number of points are increasing. figure 6 shows Voronoi
Diagram for the given obstacle configuration with Epsilon =
1. We used matlab function ’voronoi()’ to compute the Voronoi
diagram.

In figure 6 we can divide Voronoi edges in two categories:
first are those Edges which are generated by point sites of
same objects. And others are those which are generated by
point sites of two different objects. It is to be noted that each
of the voronoi edge corresponds to two point sites and the
edge is perpendicular bisector of the line segment joining the
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Fig. 5. Environment Configuration
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Fig. 6. Voronoi Diagram with Epsilon = 1

points. Now our task is to remove all those edges which are
generated by point sites of same objects and retain the edges
of second category. The information regarding the edges
corresponding to sites is not directly given by Matlab. We
used the function ’voronoin()’ as follows:
[Voro Vertex,Voro Cell] = voronoin([X Total points’
Y Total points’]);
Here Voro Vertex contains array of all voronoi vertices and
Voro Cell contains the information of edges corresponding to
each point sites. So the voronoi edges of second category can
be separated using the information in VoroCell. Figure ??
shows the separated voronoi edges of second category in
green colour . This is infact the Voronoi Diagram of the given
obstacle configuration.
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Fig. 7. Environment Configuration

After getting the Voronoi Diagram of the obstacle config-
uration. Our next task is to find the shortest possible route
from Start and Goal. It is not necessary that Start and Goal
lies on Voronoi Diagram. So for that we find the nearest
Voronoi vertex from Start and Goal and named it Start’ and
Goal’ respectively. The voronoi diagram can be represent in
the form of acyclic Graph called Voronoi Graph. The weights
in the adjacency matrix are the euclidean distances between
the connected vertices. It is to be noted that Start’ and Goal’
both are Vertices of the Voronoi Graph. Now we can find
shortest route between Start’ and Goal’ using any shortest
route finding algorithm. We have used Dijkstra algorithm code
by [7]. So using that algorithm we are able to get the final path
from Start’ to Goal’. Now combining the three paths Start to
Start’,Start’ to Goal’ and Goal’ to Goal we can get final path
from Start to Goal. Figure 8 shows the final path in magenta
colour from Start (green dot) to Goal(red dot).

V. DESCRIPTION OFMATLAB FILES

There are 4 Matlab files in main project directory:
ObstacleDraw.m, GetVoronoi.m, Final Path.m and dijk-
stra.m. Using ObstacleDraw.m any polygonal obstacle config-
uration can be drawn. For drawing obstacle ObstacleDraw.m
needs to be run first then a figure window will come. to
draw an n-gonal object n-clicks at desired points should be
made. After n clicks return keys needs to be be pressed
which confirms the drawing of that object. After pressing
return key new object can be drawn. In ObstacleDraw.m
the number of object can be changed by changing value
of parameter NumObject. value of Epsilon can also be
specified there. These configuration will be saved in .mat
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Fig. 8. Environment Configuration

file format in directory ObstacleFiles where the image of
obstacle configuration corresponding to each .mat file is shown
for reference. The filename can be changed by changing the
string variable FILENAME. Now using GetVoronoi.m any
of the obstacle configuration can be loaded by specifying
the filename stored in string variable LOADFILE NAME.
By running GetVoronoi.m the Start and Goal points can
be specified in the obstacle figure by two consecutive clicks
after it Voronoi diagram for the obstacle configuration willbe
generated. After that, running FinalPath.m will give the path
from Start to Goal.

VI. RESULTS AND CONCLUSION

Here in this work we are able to generate the final ’shortest-
collision-free-path’ using Voronoi Diagram for given obstacle
configuration and start and goal points as seen from figure 8.
This path is not always the shortest collision free path. In
some configurations better shortest path which are collision
free also exists. But in average sense our method gives results
equivalent to shortest collision free paths.
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