Voronol Diagram Based Roadmap Motion Planning

Pratap Bhanu Solanki G Harsha Vardhan Reddy Mentor: Amitabha Mukerjee
Y9429 10271 Professor
Electrical Engineering Computer Science and Engineering Computer Science and Engineering
IIT Kanpur IIT Kanpur IIT Kanpur

Abstract—Robot Motion planning is one of the fundamental
problem in robotics. It has various applications such as in Vdre
house automations, Driverless cars, Robotic surgery etc.he path
planning problem is described as: to find a shortest or optinzed
path between start point and goal in a spatial configuration
consists of obstacles of various types. There are many fundeen-
tally different approaches suitable for different environmental
configurations. The various methods are Cell Decompositign
Sampling method, Probabilistic Roadmap methods, Generated
Voronoi diagrams etc. In this project we will be exploring for
Generalized voronoi diagrams in Robot motion planning.

|. RELATED WORK

A lot of research work is being done in the field of compu-
tation of Voronoi Diagram. Steven Fortune[1] has introdlice Fig. 1. Voronoi Diagram (Image courtesy [8])
a sweepline algorithm which can compute Voronoi Diagram
for n point sites in O(nlogn) time. This algorithm become

famous as Fortune’s algorithm. Paul Chew [2] presented e

“expanding wave” analogy for computing Voronoi Diagram ” .

based on convex distance functions. Colm [4] have extended j: ﬂ“"

this work to motion planning of disc amid polygonal obstacle o ﬂa

with an algorithm of O(nlogn) time complexity. A linear . %?

time algorithm for computation of Voronoi Diagram has also w0 %é,

been introduced[3] for point sites lying on the vertices of %0 ’T'Illlif{“

convex polygon. Howewer in our project we are using Matlab 20 zd T

function 'voronoi’ for computation of Voronoi Diagram for 10

point sites which we are using in computing Voronoi Diagram % 20 a0 % % 100

for polygonal obstacles.

Il. |NTRODUCTION TOVORONOI DIAGRAM Fig. 2. Voronoi Diagram for Triangle by considering it as séfpoint sites
Voronoi Diagrams: A Voronoi diagram of a set of sites in

the plane is a collection of regions that divide up the plane. m

Each region corresponds to one of the sites and all the points

in one region are closer to the site representing the region

than to any other site” [6] The path generated by Voronoi In our problem statement an environment configuration

diagram ensures minimum collision risk if any possible gy consisting of polygonal obstacles with Start and Goal point

1 shows voronoi diagram for point sites. Here we can see tfi@given. Our goal is to find the 'shortest’ collision-freetipa

all the points lying in the yellow region are nearest to thspo from Start point to Goal point. For example a configuration

site corresponding to yellow region. is shown in figure 3 where there are two obstacles and Start
The voronoi diagram for a line site can be generated B@int and Goal point are specified as green dot and red dot

considering line as a linear array of point sites. Similarljespectively.

Voronoi diagram of a polygonal object can be drawn by Then our goal will be to find the 'shortest’ collision free

considering the polygon as a set of line segments. Figurepath from Start to Goal as shown in color magenta in figure

shows voronoi diagram of a triangle where first it is consgder 4. The green colored path shows the Voronoi Diagram for the

as a set of three line-segments then each line-segmengiien configuration. It is to be noted that the final path is a

considered as a set of point sites. subset of Voronoi diagram.

. PROBLEM STATEMENT FORMULATION

100

an

0
80K a0 B
7H
a0 :
80
s0H] E
40
a0 :
|

30H

20 s

n 40H
0 20 4an 80 g0 100
Kl
Fig. 3. Configuration of obstacles, Start and Goal points a1
"
10H
T T T I I I T T T

100

920
80
70
60
0 Fig. 5. Environment Configuration
40

30

20

100 [e e
10 ;
0 90 £
0 20 40 60 80 100 E|
80 %
Fig. 4. Final path for obstacle configuration 70 %
60 g
T
50 fefeffl e tffoffeeeefff =
IV. METHODOLOGY ‘ ‘ ’ l LT T g
. . . . 40 =
This section explains how to go for solving the problern =8 2
using an example. First consider the obstacle configuratic Ei== §
given in figure 7. In this configuration we have six obstacle == g
of different shapes and a bounding rectangle which will als 0 == g
be considered as an obstacle. g

o b s i - - an

Now, the next step would be to divide the polygonal objects
in number of point sites and then calculate the Voronoi
Diagram for the whole set of points. The distance between Fig. 6. Voronoi Diagram with Epsilon = 1
consecutive point sites is governed by a parameter Epsilon.
The less the Epsilon the more number of vertices will be which
results in densely spacced voronoi edges. Less Epsilors gip@ints. Now our task is to remove all those edges which are
more smoother output path but computation time increasggnerated by point sites of same objects and retain the edges
as number of points are increasing. figure 6 shows Voror@i second category. The information regarding the edges
Diagram for the given obstacle configuration with Epsilon €orresponding to sites is not directly given by Matlab. We

1. We used matlab function 'voronoi()’ to compute the Vorbna!sed the function *voronoin()’ as follows:
diagram. [Voro_Vertex,Vorq Cell] = voronoin(X _Total points’

Y _Total points’);
Here Voro Vertex contains array of all voronoi vertices and
In figure 6 we can divide Voronoi edges in two categorie¥oro_Cell contains the information of edges corresponding to

first are those Edges which are generated by point sites€ch point sites. So the voronoi edges of second category can
same objects. And others are those which are generatedPgyseparated using the information in Vo@ell. Figure ??
point sites of two different objects. It is to be noted thattea shows the separated voronoi edges of second category in
of the voronoi edge corresponds to two point sites and tB&een colour . This is infact the Voronoi Diagram of the given
edge is perpendicular bisector of the line segment joinireg tobstacle configuration.

Fig. 7. Environment Configuration Fig. 8. Environment Configuration

file format in directory Obstaclé-iles where the image of
After getting the Voronoi Diagram of the obstacle configngtade conflguratlc_)n corresponding to each .mat file m/_aho
; .) ; for reference. The filename can be changed by changing the
uration. Our next task is to find the shortest possible route. . . .
. string variable FILENAME. Now using GetVoronoi.m any
from Start and Goal. It is not necessary that Start and Gag X . o
of the obstacle configuration can be loaded by specifying

lies on Voronoi Diagram. So for that we find the neare%e filename stored in string variable LOABILE_NAME
Voronoi vertex from Start and Goal and named it Start’ a y running GetVoronoi.m the Start and Goal _points 'can
: t! .

Goal respectively. The voronoi diagram can be represent be specified in the obstacle figure by two consecutive clicks

_the form Qf acyclic G“”?ph called VO“’T‘O' Graph. The We'ghtgﬂer it Voronoi diagram for the obstacle configuration vioi#
in the adjacency matrix are the euclidean distances between

the connected vertices. It is to be noted that Start’ and ,GO%Fnerated. After that, running Fin&ath.m will give the path
both are Vertices of the Voronoi Graph. Now we can find > Start to Goal.
shortest route between Start’ and Goal' using any shortest
route finding algorithm. We have used Dijkstra algorithmeod
by [7]. So using that algorithm we are able to get the final path Here in this work we are able to generate the final 'shortest-
from Start’ to Goal’. Now combining the three paths Start teollision-free-path’ using Voronoi Diagram for given oasle
Start’,Start’ to Goal’ and Goal’ to Goal we can get final pationfiguration and start and goal points as seen from figure 8.
from Start to Goal. Figure 8 shows the final path in magenfdis path is not always the shortest collision free path. In
colour from Start (green dot) to Goal(red dot). some configurations better shortest path which are catlisio
free also exists. But in average sense our method givedsesul
equivalent to shortest collision free paths.

V1. RESULTS AND CONCLUSION

V. DESCRIPTION OFMATLAB FILES REFERENCES

There are 4 Matlab files in main project dlrectory[1] Steven Fortune, “A Sweepline Algorithm for Voronoi Dia-

ObstacleDraw.m, GetVoronoi.m, FinalPath.m and dijk- grams”Algorithmica(1987) 2:153-154
stra.m. Using Obstacl®raw.m any polygonal obstacle config-2] L. Paul Chew,Robert L., Dyrsdale, IlI*Voronoi diagrarbased on convex
uration can be drawn. For drawing obstacle Obstddtaw.m distance functions“Proceeding SCG '85 Proceedings of tis¢ dinnual

. . . . symposium on Computational geometry Pages 235-244
needs to be run f|r_5t then a figure W_meW W'” come. @ Alok Aggarwal, Leonidas J. Guibas, James Saxe, Petertidt 9 linear-
draw an n-gonal object n-clicks at desired points should be time algorithm for computing the voronoi diagram of a conymtygon”

made. After n clicks return keys needs to be be pressed 1989, Volume 4, Issue 1, pp 591-604 o
hich fi the d . f that obiect. Aft . _[4] "A retraction method for plannlng the motion of a disc“pléh 'Dnlaing1,
whnich confirms the drawing O at object. er pressin Chee K Yapl, Journal of Algorithms Volume 6, Issue 1, Marci83,9

return key new object can be drawn. In ObstaBleaw.m Pages 104111

the number of object can be Changed by Changing vallpe MILO EDA, VCLAV PICH “Robot Motion Planning Using Geneliged
Voronoi Diagrams” 8th WSEAS International Conference oGISAL

of parameter NumObject. value of Epsilon can also be procESSING, COMPUTATIONAL GEOMETRY and ARTIFICIAL VI-
specified there. These configuration will be saved in .mat SION (ISCGAV08) Rhodes, Greece, August 20-22, 2008

[6] M.de Berg, M.van Kreveld, M.Overmars and O.Schwarzkdpémputa-
tional Geometry: Algorithms and Applications, SpringezeMdg, Berlin,
2000.

[7] http://www.mathworks.com/matlabcentral/fileexcgarb550-dijkstra-
shortest-path-routing

[8] http://en.wikipedia.org/wiki/Vorongidiagram

