
 Unsupervised Labelling OF Emails

 Vishal Kumawat(10818)

 Dibya Ranjan Sahoo(10243)

 Advisor: Dr. Amitabh Mukhrjee

 Dept. Of Computer Science And Engineering

 April 17,2013

Introduction:
Emails have become the basic part of most of our lives. Our communications,

information networks etc. are heavily based on emails now a days. We

receive a lot of emails per day, as a result the managing these mails becomes

quite a daunting task. What we do normally is we classify these emails using the

header position of emails like sender, receiver , date . So same receiver ,

sender ,date come in same folder and we can label these folder. What we want to do is

classify these emails according to their semantics . we want to group them according

to their content. Mails which have similar kind of information should be in same

folder.

 In this report we will see how given big data of emails how to

classify them according to their content.

Related Work:
Many work have been done related to this problem. Topic Modelling is key of our

project. It has lot of application in Text Mining.

 Real Time Topic modelling of

Microblogs . the challenge is that in real time we have to extract topics from the stream

of blogs which are coming in twitter. The processing of this algorithm is good on large

data. So we can extract topics from this blogs and can tell which topics are people

discussing on this application.

Another more similar work is topic modelling on Sarah Palin Emails. In Which there

are lot of emails in txt file and we have to get topics from these emails using Topic

modelling algorithm.

Algorithm :
In this project we are using two main algorithms . First one is topic modelling

algorithm and another one is K-mean clustering

 Topic Modelling : It is probabilistic model Which is based on LDA.

First it randomly assign each word in each document to a topic . so for each

document we have a distribution of topics. Now we iterate to improve over

topics to find best topic for a given word. Which is done by considering the

probalility of p(topic|document)*p(word|topic) .

 Topic modelling finally gives us

topics . and Each topic have word in it. Which have some kind of hidden pattern.

We are free to choose for number of topics. This gives distriburtion of topic for

each document.

 K-mean Clustering: It is one of the simplest unsupervised learning

algorithm. It classifies data set into k –clusters. The idea for this algorithm is

that it defines k centroids and the better choice is place them as far as possible

After defining centroid we take each point belonging to given data set. We

associate it to nearest point.

Implementation :
First we want to make a data set of emails in which I have separated the content of

emails and header of emails. We applied topic modelling on the content of emails .

Topic modelling gives us different topic and words in them. Some topics are more

frequent and logical. We choose those topics as features for our k-mean clustering.

Number of cluster depend on our data. And we label these cluster according to the

most prominent topic on these cluster.

Dataset:
We are using 800 emails for our project in which 400 emails are created by us using

our personal email box and 400 are taken from online email data set whose link is

given below . and we mixed these mails as our new data set.

Results :
I did topic modelling using 25 topic . because 10 topic is giving many repetition of

words in different topics. And high topic no. take more time for topic modelling and

k-mean clustering and not much significant improvement in groups. The result of 25

topic is shown below and you can see more detail of result in code section. You can

see result of low and high topic number also there.

Topics

Sample of a Document in dat how it distributes on topics:

Now we have to choose these topics as feature . we can choose all topics as our feature

but these does not give us good result . the result of these is given in code section . I

am showing here the result of after choosing logical groups as features.

Some major topics used as feature:

Label 2 &3

iitk/hostel/student related : students ac iitk pm april kanpur dear iit hall lists rs lecture

details prize venue india iit dr talk organizing

label-4

project/research related: research project list applications institute subject tei

information experience interest university http workshop papers conference uk research ac

org call

label-6

coding /programming/software related: code programming language software gmail

human computer don poetry jun information learning online students education media

games hastac www technology

Label-4

Confrence/workshop/ university related: conference de workshops digital proposals

workshop subject org university art university http workshop papers conference uk

research ac org call

Label-5

Humanist emails: humanist org digitalhumanities www http php lists listmember

humanities interface digital humanities subject work difference jul texts text making gmail

subject reply joyent woodward people question find humanist make point

file:///F:/newresult/2/output_html/Topics/Topic16.html
file:///F:/newresult/2/output_html/Topics/Topic3.html
file:///F:/newresult/2/output_html/Topics/Topic3.html
file:///F:/newresult/2/output_html/Topics/Topic8.html
file:///F:/newresult/2/output_html/Topics/Topic8.html
file:///F:/newresult/2/output_html/Topics/Topic10.html
file:///F:/newresult/2/output_html/Topics/Topic10.html
file:///F:/newresult/2/output_html/Topics/Topic17.html
file:///F:/newresult/2/output_html/Topics/Topic17.html
file:///F:/newresult/2/output_html/Topics/Topic19.html
file:///F:/newresult/2/output_html/Topics/Topic19.html
file:///F:/newresult/2/output_html/Topics/Topic11.html
file:///F:/newresult/2/output_html/Topics/Topic11.html
file:///F:/newresult/2/output_html/Topics/Topic10.html
file:///F:/newresult/2/output_html/Topics/Topic10.html
file:///F:/newresult/2/output_html/Topics/Topic23.html
file:///F:/newresult/2/output_html/Topics/Topic23.html
file:///F:/newresult/2/output_html/Topics/Topic6.html
file:///F:/newresult/2/output_html/Topics/Topic9.html

Some example of email which have same labels by our clustering:

Coding/programming/software related

I need to weigh in because, as I suspected, there appears to be a kind of figure-ground problem in the discussion

between Elijah and Jim, one we see often in these sorts of discussions.

Jim's point was that *code* cannot be ambiguous or fuzzy to work (with some very minor exceptions around the

edges--"standoff markup" and the like, things rarely used in practice though sometimes dicussed in theory). I will

soften his thesis even more: programming code tends strongly toward unambiguous structures and statements, because

for the most part it must be interpreted or compiled and then run, and the interpreters and compilers will not accept

code that is ambiguous.
Elijah appears to be talking about *software* that can function in/handle ambiguous input and actions. I do not believe

Jim was doubting that this exists; on the contrary, nearly every software program has "emergent properties," "strange

behaviors" and so on, and most applications must be able to handle ambiguity of input (to some extent) if it's going to

interact with human beings.
Let me, then, reframe Jim's question: the challenge is to provide a significant snippet of code, say, a JavaScript

function or isolated object from Java or C++ or so on, in which the operating part of the code is
ambiguous (the compiler could produce multiple correct interpretations) or fuzzy (the compiler can produce no clearly

correct interpretation), but the software can be compiled and run. Furthermore, because I am interested in tendencies

and not so much in absolutes, the challenge is to provide examples of such code that are regularly used in everyday

applications.
Personally, I do not know of compilers that can actually handle statements that are ambiguous at the level of the

program--that is exactly one of the kinds of statements on which a compilers and interpreters are supposed to choke,

and it would also violate the definition of the Turing machine out of which all computers are built (for which

unambiguous *operations* -- not input -- are required)--but I am eager to learn.
David

I was specific. I pointed out NetHack, which is a 22-year old game, with freely available source code for perusal and

is as strange, random and complex as any high gothic novel (You can check it out oWikipedia, though the synopsis

will only hint at the strangeness andsubtlety of the gameplay). Games are analogous to fiction in writing,
whereas operating systems, spreadsheets and metadata collationsoftware is analogous to technical writing. So

ifyou're looking forinteresting coding, you should look to the right genre. I'm sure
there are some great turns of phrase to be found in the corpus oflawnmower assembly manuals, but I don't think

they're a goodindication of the state of Western literature.Granted, most modern, big budget games are as

interesting as bigbudget movies and books, but there's a real wealth of quirky,strangely programmed and functioning

games out there. The art ofwriting a game, most especially the older and smaller games, withtheir connection to

random numbers to represent chance, is clearlysimilar to the creation of prose and poetry. There are entiresections

of code in some of these games that never get performedexcept under the most esoteric of circumstances, and there

are interesting emergent properties of the interacting game world that capture the imagination of players and coders,

regardless of user input. And yes, you can dip your feet into it with only a knowledge of XML or Perl. The game

modification community has grown so large and the modification of games has grown so pervasive that many

companies create specific entry points into modifying game content through creation of XML files or writing simple

scripts.
I'm not sure how you mean the question, "why would anyone use this except for personal projects?" though. What is

the "use" of poetry or literature? How is a collection of the poetry of Emily Dickinson more useful than the

aforementioned lawnmower manual? It's drudge work writing a lawnmower manual, or an academic paper, but we

don't claim that therefore people shouldn't learn to write. If, however, one feels that the writing of literature is of

value and its structures should be analyzed (And therefore understood to some meaningful extent) then it would

seem the same would apply to creative software and there would be an incumbent need to be literate enough to

analyze and understand it. You wouldn't blame a software engineer for not liking poetry, but you'd likely think him

an idiot if he claimed poetry did not have the ability to pass along complex truths in the way that software does and

therefore that he didn't need to learn how to read.
This is a rather long and scattered response, but it's no longer clear to me your exact criticism. Is it that you think

that low-level programming languages don't allow for the creation of nuanced, complex
thought, or is it that you feel that code is goal-oriented and utilitarian or is it simply that software is inherently

boring? I believe I've addressed the first two and, as for the third, I think that the all-pervasive nature of software

militates against treating it as an ignorable subject. We have a basic expectation of literacy
due to the pervasive nature of writing, and I think that we should have an equal expectation of software literacy. So,

whereas Dr. McCarty's originally framed the question of software literacy (A term I've used without defining, but

which I assume involves a working knowledge of creating software) in terms of fear, I feel it's more
related to underestimating the scope and value of software as
metaphor, creative work and tool.

NEW JOURNAL COVERS HIGHER ED INFORMATION LITERACY

The NORDIC JOURNAL OF INFORMATION LITERACY IN HIGHER EDUCATION,
published by the University of Bergen, is a peer-reviewed, open-access
journal created to encourage "research-based development of information
literacy teaching within the educational programmes of universities and
higher education colleges" and to establish "a forum for the
investigation and discussion of connections between information
literacy and general learning processes within subject-specific
contexts."

Papers in the inaugural issue include:

"A New Conception of Information Literacy for the Digital Environment
in Higher Education" by Sharon Markless

To provide an information literacy (IL) framework for a virtual
learning environment, the author considered the "relevant principles of
learning, the place of student reflection when learning to be
information literate, what IL in higher education (HE) should
encompass, the importance of context in developing IL, and the
influence of the digital environment, especially Web 2.0."

"Google Scholar compared to Web of Science. A Literature Review" by
Susanne Mikki

According to the author, "Google Scholar is popular among faculty staff

Improvements and Conclusion:
We can use the header information like subject and whether the email was sent to single or multiple

receiver.In our project we have classified the emails based on balance between email header information

and email semantics information. We have also found a parameter which give priority to email header or

email semantics.

References:

Ozcaglar, Cagri(2008)

Topic Modelling theory-

http://clc.yale.edu/2011/10/07/how-to-do-your-own-topic-modeling/
http://www.fredgibbs.net/clio3workspace/blog/topic-modeling/
http://miriamposner.com/blog/?p=1335
http://blog.echen.me/2011/06/27/topic-modeling-the-sarah-palin-emails/

Topic Modelling Tool-
http://nlp.stanford.edu/software/tmt/tmt-0.4/

Dataset-
http://dhhumanist.org/Archives/Current/

