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What is Arbitrage?

Kanpur New Delhi

Buy the Doll in Kanpur and sell it
In New Delhi



Reason for Arbitrage

® Market Inefficiencies - In real world
market information cannot be communicated
without a time lag. This leads to different
pricing of the same product in different
markets.



Arbitrage in Stock Market

® The stock may be mispriced
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The Project

Predicting the price of the Stock based on
historical Data.

Virtual Stock

Target Stock




Virtual Stock Method

® Create a virtual stock which mirrors the behavior
of the Target stock.

Select the Stocks which are related to the Target Stock

Target Stock — TV Today Group, Index Stocks — members of
CNX Media Index ( 15 stocks)

A 4

Create a Linear super position of the stock prices of member stocks

Linear Regression, PCA + Regression

A 4

Compare the prices of the target stock with the virtual Stock

To decide when to But or Sell
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® Using regression we calculate the coefficient
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® The index created will represent the actual
price of the Target Stock.

® If the price of the Target price is greater or
lesser than the index, then the Stock is
mispriced i.e, an Arbitrage has occurred.



Target Stock Method

® The data of the Target Stock is used to alone
to generate predictions

® Method use — Fitting using TDNN



What is TDNN?

SAAD et al.: COMPARATIVE STUDY OF STOCK TREND PREDICTION 1457
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Fig. 1. (a) Three-ncuron TDNN with FIR filters (w ;) as synaptic connections. (b) Expanded view of FIR synaptic connections of TDNN. FIR filters
build intemal memory into the network.

Source : Comparative
Study of Stock Trend
Prediction

Using Time Delay,
Recurrent and
Probabilistic Neural
Networks, 1998



Can a neural network be
used to profit from the
stock market?




Model of Neural Network

® 10 hidden layers with 10 neurons per layer.

Hidden Layer Output Layer




® The data chosen varied in length, and
because it was thought that these factors
might affect the types of patterns contained
in them and hence the performance of a
learning machine.

® The length of each segment was either 100
and 900 weeks
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Results

Function Fit for Output Element 1
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® It was thought that a longer segment might
simply provide more training data, or

® Conversely that a shorter segment might
contain patterns more relevant to the near
future movement of the stock.



Output and Target

Error

Function Fit for Qutput Element 1
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® The raw closing price data was calculated at
the end of a week. For example,for the
training phase 75% of data was used, 15% for
validation and 15% for testing.



® The trading strategy learned by the networks
was as follows: If at the end of a sequence of
50 daily closing prices, the price will go up by
2% or more over the next 20 days, buy it. This

strategy was chosen as a balance between two
opposing forces.

® On one hand, it is easier to predict the

movement of a time series a short period into
the future.



® These trends are promising, and would seem
to indicate that by training a machine on the
proper amount of data and by using the right
type of learning machine, one might be able
to beat the performance of an individual
stock, on average



Status

® Out of the 3 mentioned methods, we have

successfully implemented the method
involving TDNN.

® Beyond this we will compare the performance
of the methods on the same stock.

® Further, we will like to include “Recurrent
and Probabilistic Neural Networks”
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& Three Kinds of Samples:

] Training:
These are presented to the network during training, and the network is
adjusted accerding to its error.

a Validation:

These are used to measure network generalization, and to halt training
when generalization stops improving.

T Testing:
These have no effect on training and so provide an independent measure of
network perfermance during and after training.




