Motion analysis using OCS-1 4 transitions

Abhishek Maheshwari (10028)
Ashudeep Singh (10162)

Occlusions

- Images-a projection of the 3D scene on a 2D plane.
- Occlusion - the concept that two objects that are spatially separated in the 3D world interfere with each other in the projected 2D image plane.

Occlusions

- Occlusions carry information about relative depth ordering which is important for:
- Multi-object tracking
- Activity modelling
- In human cognition, occlusion is crucial in forming concepts such as object persistence, containment and support, amongst infants. (Baillargeon et al. 2002)
- So, in spatial reasoning literature, there have been formal analyses to study occlusions. E.g. LOS-14, ROC-20, OCC-8 etc.

Previous Work

, LOS-14 [2]

${ }^{\circ} \mathrm{OCC}-8$

[3]

- ROC-20

Drawbacks

- Ignore crucial criteria such as:
- Whether visible parts are connected or not
- Whether occluder is moving or static
- Some aspects of spatial reasoning (like precise tangency situations) are less relevant in vision, since they can't be easily detected.
- All these formalizations are based on relational algebra.
So, OCS-14 considers state algebra based formalization of occlusion states.

OCS-14

- State algebra- maintains just the states of each object

- Compact representation
- Considers 3 characteristics-
- nature of occluder
- visibility
- isolation/grouping
- It can be shown that these states are representationally complete.
[1]-Guha, Mukerjee, Venkatesh:2011

OCS-14 Transitions

- Only a limited number of transitions out of 14×13 are possible in real world situations.
- There is a need to formalize a transition graph amongst these states.
- This will make OCS-14 formalization more robust and applicable to real world motion analysis problems.

OCS-14 Transitions

, For example

- Here the person(object) moves from state ocl to ocSO through transitions oc $1 \rightarrow 0$ oSP and ocSP \rightarrow ocS0.
- Direct transition from ocl \rightarrow ocS0 is not possible in real world scenes.

Example: IITK Traffic Video Dataset

A vehicle overtaking another vehicle

Object	State 1	State 2
1	ocDGP	oc1
2	ocG1	oc1
3	ocSP	ocl

Interval Logic Model

"We treat the system of such relations in a way that is analogous to the treatment of temporal intervals by (Allen 1984) and (Freksa 1992a), and of spatial regions by (Randell, Cui \circlearrowleft Cohn 1992)."
[LOS-14]

[Mukerjee, A., \& Joe, G.: 1990]

OCS-14 Transitions

References

[1] Prithwijit Guha, Amitabha Mukerjee, and K. S. Venkatesh. OCS-14: you can get occluded in fourteen ways. Proceedings of the Twenty-Second international joint conference on Artificial Intelligence-Volume Volume Two. AAAI Press, 2011.
[2] Galton, Antony. Lines of sight. AI and Cognitive science 94 (1994).
[3] Köhler, Christian. The occlusion calculus. Cognitive Vision Workshop. 2002.
[4] Randell, David, Mark Witkowski, and Murray Shanahan. From images to bodies: Modelling and exploiting spatial occlusion and motion parallax. International Joint Conference on Artificial Intelligence. Vol. 17, 2001.
[5] Mukerjee, A., \& Joe, G. A qualitative model for space. Texas A \& M University, Computer Science Department, 1990.
[6] Westphal, Matthias, et al. Guiding the generation of manipulation plans by qualitative spatial reasoning. Spatial Cognition \& Computation 11.1 (2011)

Thank You!!!

Questions?
 Suggestions!

Binary relations corresponding to OCS-14 states

	ocG1	ocDGP	ocDGF	ocDG0
ocG1	JC	PH, JF, F	PH	H, JH, EH
ocDGP	PHi, JFi, Fi	MuOccPO	MuOccPO	\times
ocDGF	PHi	MuOccPO	MuOccPO	\times
ocDG0	$\mathrm{Hi}, \mathrm{JHi}, \mathrm{EHi}$	\times	\times	\times

OCC-8 Neighborhood Graph

