

Motion Analysis using OCS-14 transitions Abhishek Maheshwari, Ashudeep Singh Guide: Prof. Amitabha Mukerjee

- Occlusion interference of projections of spatially separated objects in 3-d space on a 2-d image plane.
- Occlusions carry information about relative depth ordering of objects, that are important for: Multi-Object Tracking, Activity Modelling and studying concepts like object persistence and support amongst infants in human cognition.
- In Spatial Reasoning literature, there have been formal analyses to study occlusions- LOS 14, ROC 20, OCC 8 etc.
- These formalizations had major drawbacks due to which they were not widely used in computer vision applications.
- OCS-14, a state-algebra based formalization, addresses these drawbacks

DRAWBACKS

- Ignore crucial criteria-
 - 1. Whether visible parts are connected or fragmented
 - 2. Whether occluder is dynamic or static
- Many unnecessary states, which can't be easily distinguished nor they can be easily detected. e.g. precise tangency situations.
- Based on relational algebra. Relations have to be maintained for each pair of objects under consideration. So, quite expensive.

OCS-14

- State Algebra based formalization- We need to maintain just the states of each object in a scene.
- Compact Representation
- Considers three characteristics-
 - Nature of Occluder Static or Dynamic
 - Visibility of Object Visible, Partial, Fragmented, Invisible
- Isolation/Grouping of Objects
- These three characteristics make OCS-14 representationally complete.

State Transitions

- Limited transitions out of 14 x 13 possible transitions valid in real world scenes.
- Need to formalize a transition graph for these states.
- A transition diagram will make OCS-14 formalization more robust and make it applicable to real world motion analysis problems.

Prior Work

{abhimw, ashudeep} @iitk.ac.in

Transition Diagram

Fig 1. Transitions states (with no assumptions)

Fig 2. Transitions states (with assumptions)

amit@cse.iitk.ac.in

- The left half (4 states) of the state diagram contains states in which occluders are static i.e. parts of the static background.
- The right half (10 states) of the diagram shows the states in which the object is occluded by both static and dynamic occluders.
- Figure 1 shows transitions that take place which requires one or more (dynamic) objects to move without any constraint
- Figure 2 shows the transitions when certain special movements like shrinking (moving far), expanding (moving close) and special simultaneous motions are required.
- Transitions of figure-2 have a very low probability of occurrence in real world visual scenes.
- ---- Objects are allowed to shrink (move far), expand (move close) and also the two fragmented portions disappear together.
- ---- Objects are allowed to shrink (move far), expand (move close) while allowing another dynamic object to come in contact with it in the projection (grouping).
- — These transitions occur under the assumption that object move simultaneously so as to reach another state from one state.

OCSF

OCDGP

OCDGF

The event of "An Auto Rickshaw overtaking another one is accompalished by a transition from $ocDGP \rightarrow oc1$ for the overtaking auto rickshaw and from $ocG1 \rightarrow oc1$ for the auto rickshaw overtaken.

[1] Prithwijit Guha, Amitabha Mukerjee, and K. S. Venkatesh. OCS-14: you can get occluded in fourteen ways. Proceedings of the Twenty-Second international joint conference on Artificial Intelligence-Volume Volume Two. AAAI Press, 2011.

[2] Galton, Antony. Lines of sight. AI and Cognitive science 94 (1994).

2002.

[4] Randell, David, Mark Witkowski, and Murray Shanahan. From images to bodies: Modelling and exploiting spatial occlusion and motion parallax. International Joint Conference on Artificial Intelligence. Vol. 17, 2001.

[5] Mukerjee, A., & Joe, G. A qualitative model for space. Texas A & M University, Computer Science Department, 1990.

(2011)

We thank:

• Video Dataset- IITK Traffic Video (web.cse.iitk.ac.in/vision)

OCS-14 Transitions as Signatures

• Occlusion Transitions are important visual signatures of interaction between objects.

• Through OCS 14 formulation, it is possible to mine out transitions from a scene and hence gain useful abstraction and object behavior.

References

[3] Köhler, Christian. The occlusion calculus. Cognitive Vision Workshop.

[6] Westphal, Matthias, et al. Guiding the generation of manipulation plans by qualitative spatial reasoning. Spatial Cognition & Computation 11.1

Acknowledgements

• Prof. Amitabha Mukerjee, Computer Science and Engineering

Department, IIT Kanpur.

• Prof. Prithwijit Guha, EEE Dept. IIT Guwahati.

for their valuable guidance and ideas throughout the project period.