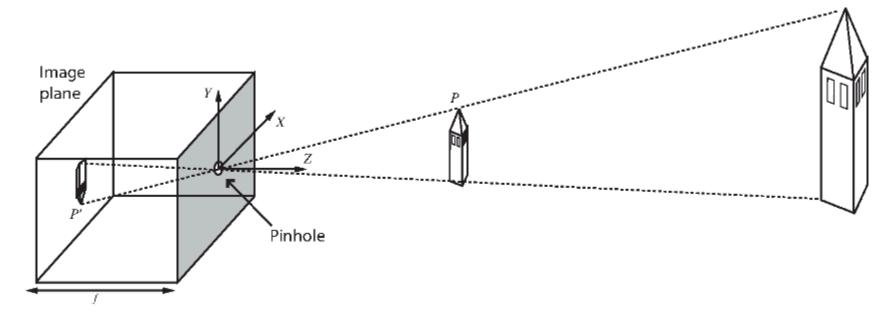
Computer Vision

Pinhole-camera model

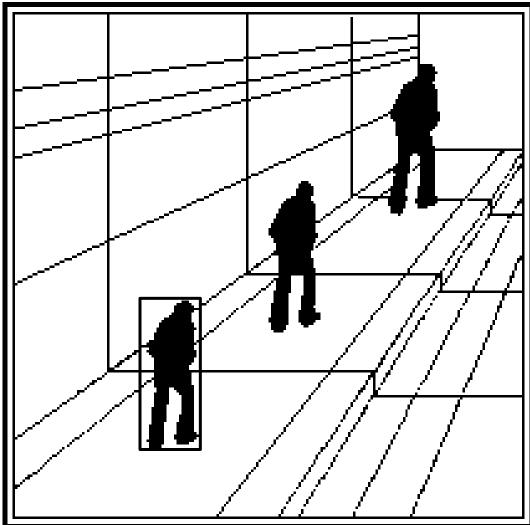


Point at λ on line through $X_0 Y_0 Z_0$ in direction U, V, W: $X_0 + \lambda U$, $Y_0 + \lambda V$, $Z_0 + \lambda W$

Image projection
$$p: \left(f \frac{X_0 + \lambda U}{Z_0 + \lambda W}, f \frac{Y_0 + \lambda V}{Z_0 + \lambda W}\right)$$

 $p \text{ at } \lambda = \infty$: (f U/W, f V/W) : vanishing point

Depth from ground-plane / horizon



Ponzo illusion

5-4-5-

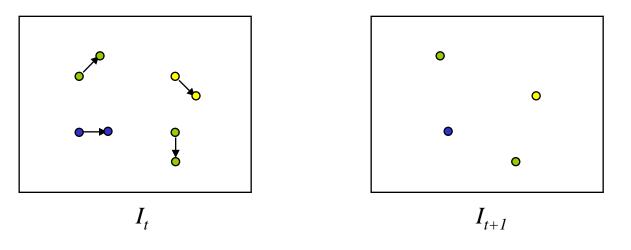
PP AT A

(and the

Shape from texture

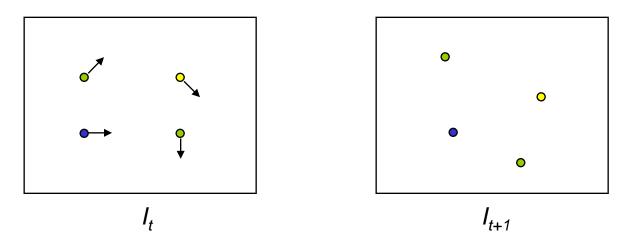
חחו **[**] П ппп п ПП 1 П 1 П E i ÷ 11 **i** E 11 I **F**-1 ГТ T *______* סםנ $\alpha \alpha$ \Box 00000 $\overline{}$ 1 \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} пг חי П пп 11 П n 11 TT. пп Γ1 ПГ 1000000000000000

Problem Definition: Optical flow



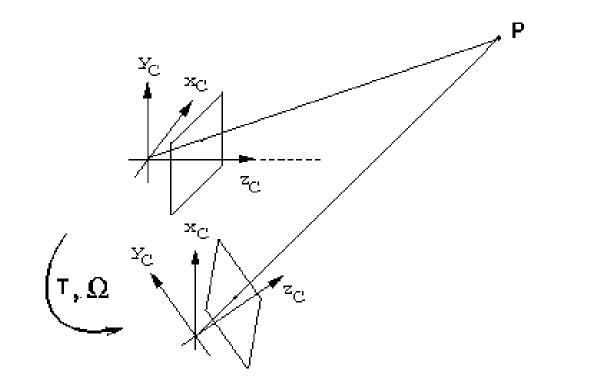
- How to estimate pixel motion from image I_t to image I_{t+1}?
 - -Solve pixel correspondence problem
 - given a pixel in I_t look for nearby pixels of same colour in I_{t+1}

Problem Definition: Optical flow



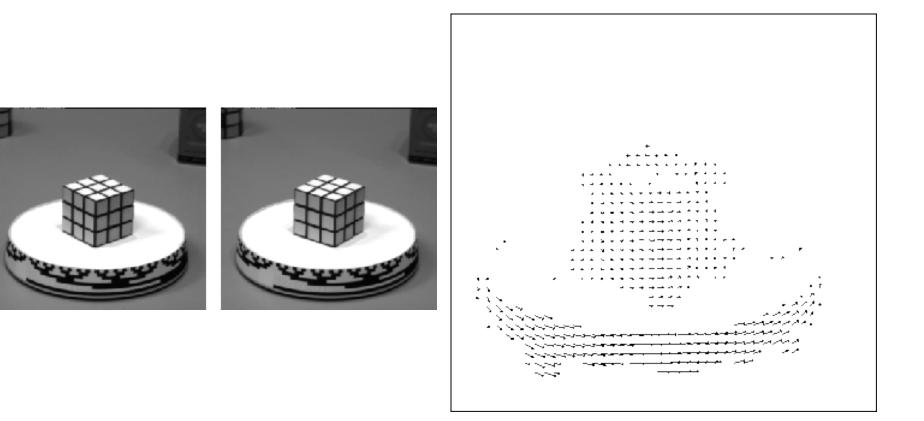
- Key assumptions
 - color constancy: pixel in I_t looks the same in I_{t+1}
 - grayscale images : *brightness constancy*
 - small motion: points do not move very far

Optical flow : Camera motion



$$egin{aligned} v_1(x,y) &= & iggl[-rac{T_1}{Z(x,y)} - \omega_2 + \omega_3 y iggr] - x iggl[-rac{T_3}{Z(x,y)} - \omega_1 y + \omega_2 x iggr] \ -rac{T_2}{Z(x,y)} + \omega_1 - \omega_3 x iggr] - y iggl[-rac{T_3}{Z(x,y)} - \omega_1 y + \omega_2 x iggr] \end{aligned}$$

Optical flow : Object motion



Measurement of motion at every pixel

Celebrity Faces in the Wild

Image Processing

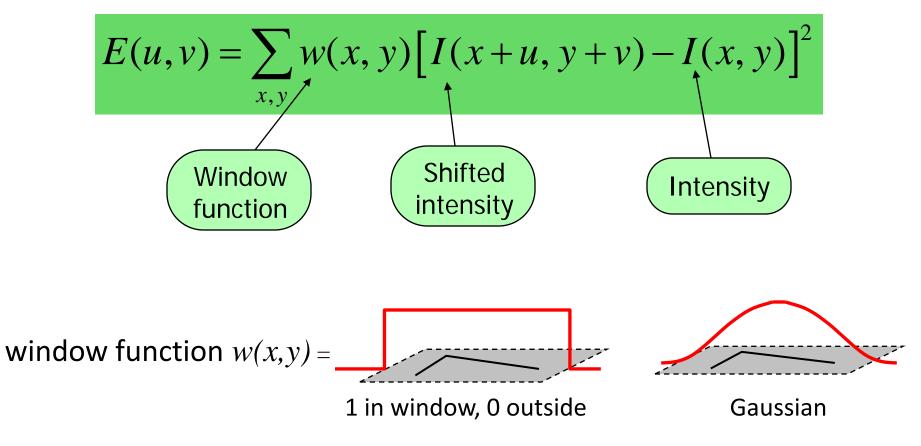
How to find correspondences?

- Regions of uniform colour are uninformative
- Edges : intensity change is max in one direction, not the other
 → uncertain along the edge
- Corners : intensity changes about equally in all directions

→ more easy to position (Harris corner detector)

Image intensity change

Change of intensity for shift [*u*,*v*]:



[slide based on [BK Gunturk]

Eigenvalue Decomposition

For small u, v:
$$E(u, v) = \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} A & C \\ C & B \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

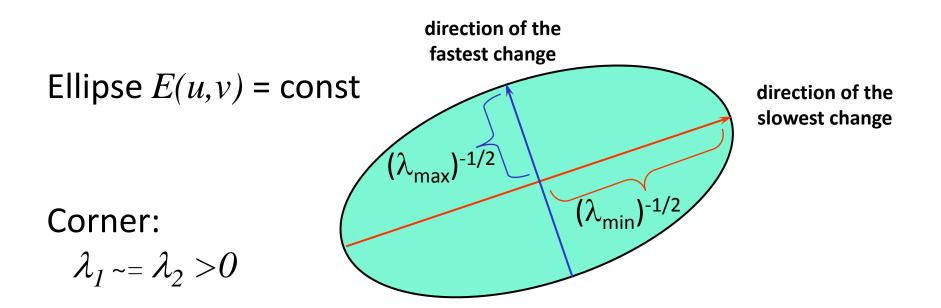
Matrix written as:
$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Eigenvalue analysis \rightarrow directions of change

Eigenvalue Decomposition

$$E(u,v) \cong \begin{bmatrix} u,v \end{bmatrix} \quad M \quad \begin{bmatrix} u\\v \end{bmatrix}$$

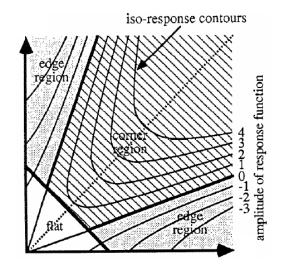
$$\lambda_1, \lambda_2$$
 : eigenvalues of M



Harris corner detector

Measure of corner response:

$$R = \det M - k \left(\operatorname{trace} M \right)^{2}$$
$$\det M = \lambda_{1} \lambda_{2}$$
$$\operatorname{trace} M = \lambda_{1} + \lambda_{2}$$



(k - empirical constant, k = 0.04-0.06)

Don't need to compute eigenvalues explicitly!

[slide based on [BK Gunturk]

Harris corner detector

1. Compute x and y derivatives of image

$$I_x = G^x_\sigma * I \quad I_y = G^y_\sigma * I$$

 Compute products of derivatives at every pixel

$$I_{x2} = I_x I_x \quad I_{y2} = I_y I_y \quad I_{xy} = I_x I_y$$

Compute the sums of the products of derivatives at each pixel

$$S_{x2} = G_{\sigma'} * I_{x2}$$
 $S_{y2} = G_{\sigma'} * I_{y2}$ $S_{xy} = G_{\sigma'} * I_{xy}$

4. Define at each pixel (x, y) the matrix

$$H(x,y) = \begin{bmatrix} S_{x2}(x,y) & S_{xy}(x,y) \\ S_{xy}(x,y) & S_{y2}(x,y) \end{bmatrix}$$

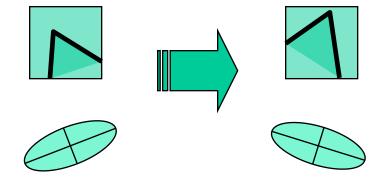
Compute the response of the detector at each pixel

$$R = Det(H) - k(Trace(H))^2$$

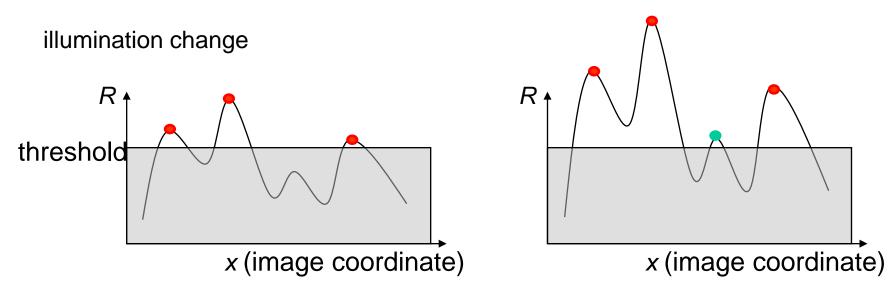
6. Threshold on value of R. Compute nonmax suppression.

Properties of Harris detector

Rotation invariance
 [eigenvalues not affected]

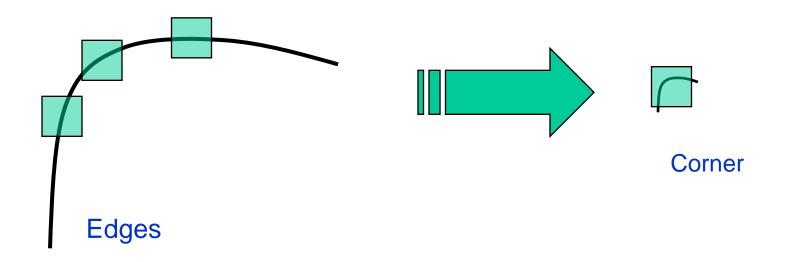


Partly invariant to affine intensity change



Harris detector : Scale?

But: non-invariant to *image scale*!

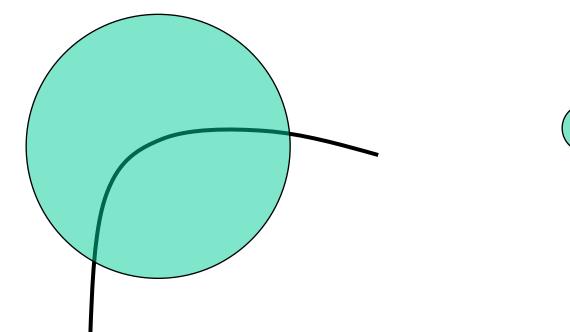


Q. Can we identify scale based on image properties?

Scale Invariance

Construct neighbourhoods of different sizes Regions of suitable scale will look same in both images

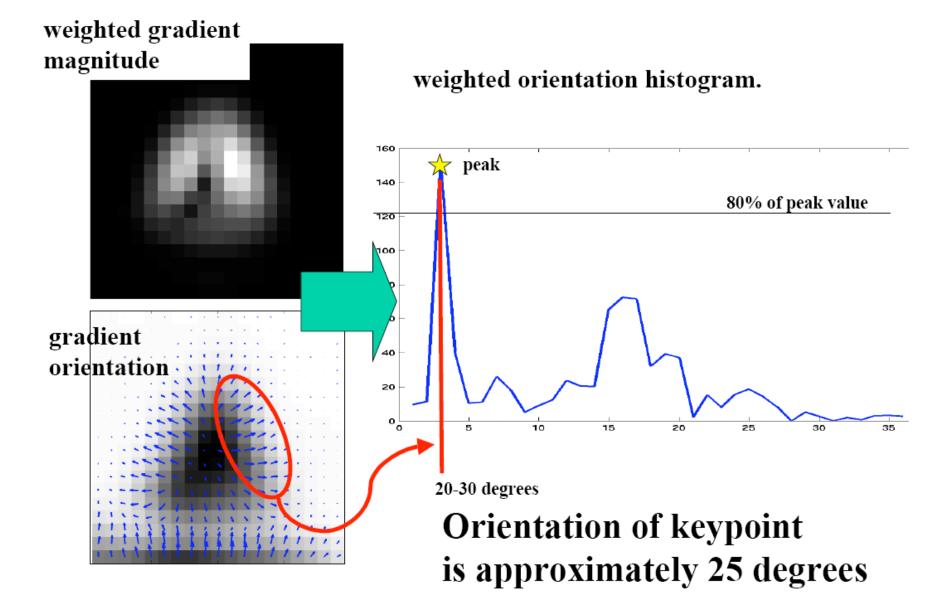
Identify scale at whiich DoG is maximal



Rotation Invariance

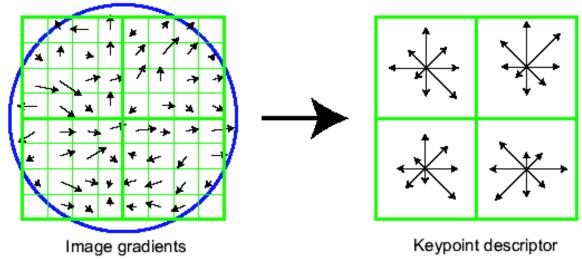
- All computations at scale with maximal DoG
- Find local gradients
- Find unique peak of orientation histogram
 - \rightarrow Describe in terms of local orientation

Rotation Invariance



SIFT: Scale-Independent Feature Transform

- 1. find "interest points" where DoG has unique maximum
- 2. use scale at which DoG is maximum as scale for SIFT
- 3. local orientation = dominant gradient direction.
- 4. Construct grid at point using this scale and orientation; \rightarrow invariant to scale and rotation.
- 5. Compute gradient orientation 8-histograms at each cell (=128-vector)

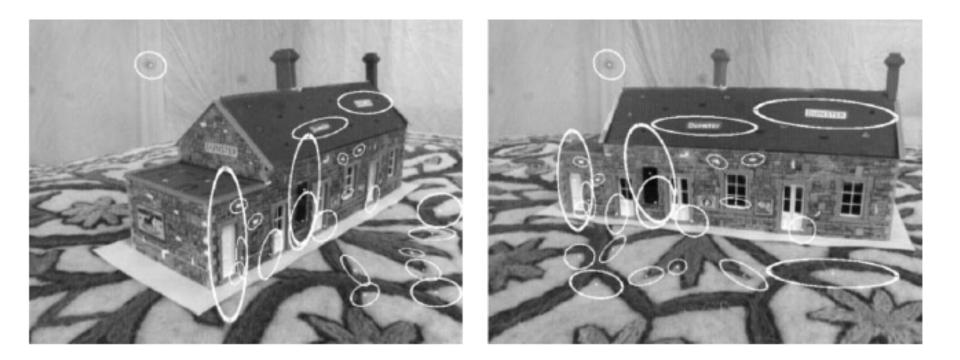


SIFT Applications: Correspondences

- Correspondence: Find matching locations in images from differing viewpoints
 - used for [stereo vision, optical flow]

Image: [Tuytelaars ECCV 06 tutorial]

Robustness



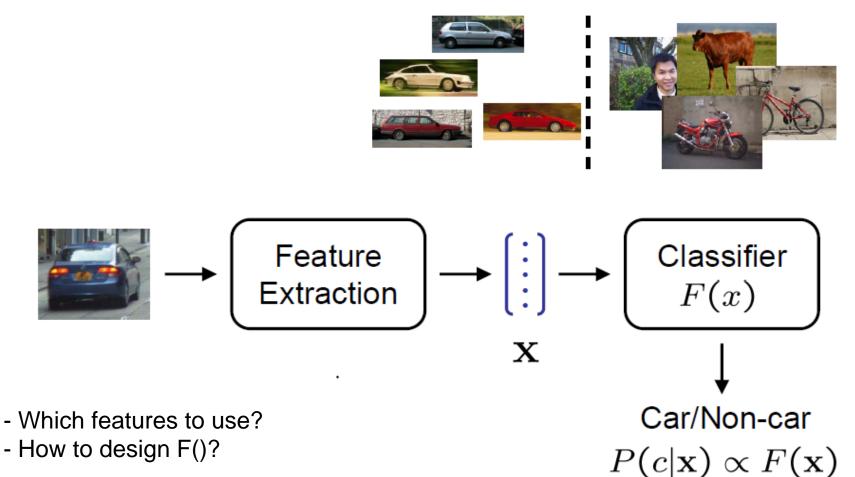
- Useful for finding correspondences
- □ Also for defining "signatures" for object categories → bag of words approach

Object Recognition

Object Recognition

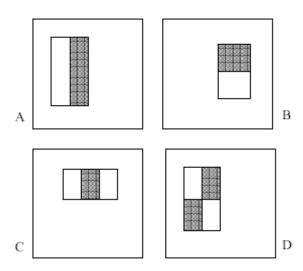
Training Classifiers

Training Data



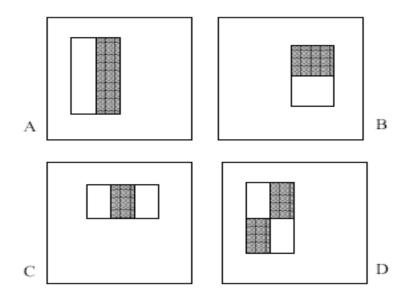
Viola-Jones Face Detection

Fast detection, very slow training5000 face images, 3 million non-facesHaar features - Four types.





Integral Image



- Haar features : can compute in four integral data
 - Compute on sliding window
 - Large feature space -180K features
- classifier F: cascade Ada Boost

Learning with many features

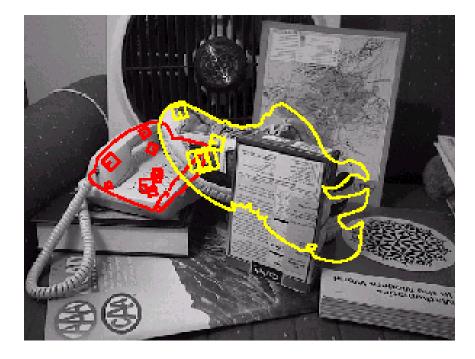
160,000 features : 5000 training data

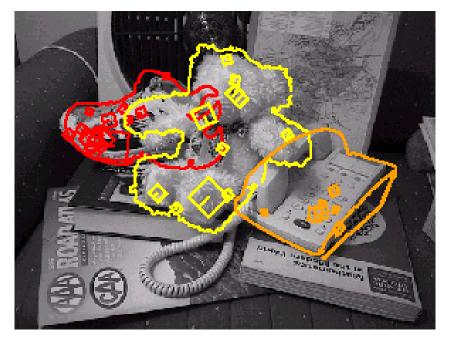
Boosting:

- Learn a single simple classifier
- Look at where it makes errors
- Reweight the data so inputs with errors get higher weight in the learning process
- Learn 2nd simple classifier on weighted data
- Combine 1st and 2nd classifier; weight the data accordingly
- Learn a kth classifier on the weighted data

Final classifier : combination of all k classifiers

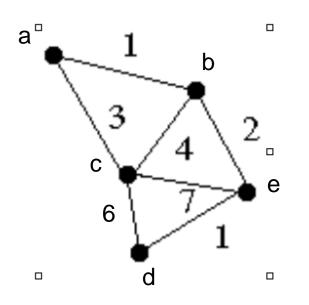
Recognition under occlusion





Segmentation

Weighted Graphs and Their Representations



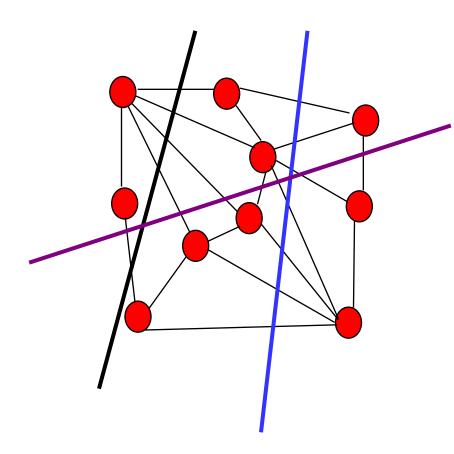
0	1	3	∞	∞
1	0	4	∞	2
3	4	0	6	7
∞	∞	6	0	1
∞	2	7	1	0

Weight Matrix: W

Superpixel Segmentation

[felzenszwalb huttenlocher 04]

Minimum Cut

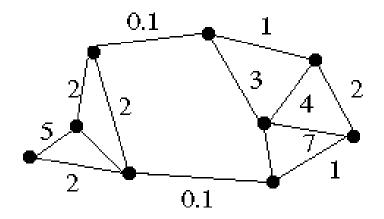


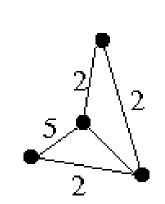
A cut of a graph *G* is the set of edges *S* such that removal of *S* from *G* disconnects *G*.

Minimum cut is the cut of minimum weight, where weight of cut <A,B> is given as

$$w(\langle A, B \rangle) = \sum_{x \in A, y \in B} w(x, y)$$

Minimum Cut and Clustering





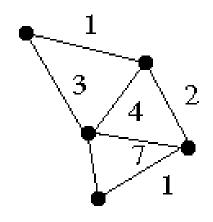
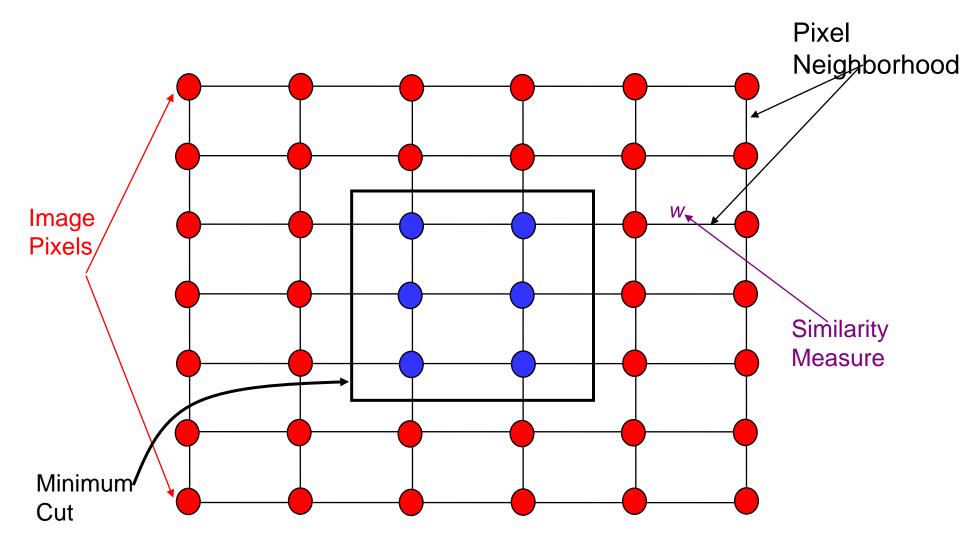
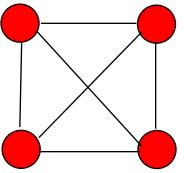


Image Segmentation & Minimum Cut



Minimum Cut

• There can be more than one minimum cut in a given graph



 All minimum cuts of a graph can be found in polynomial time¹.

¹H. Nagamochi, K. Nishimura and T. Ibaraki, "Computing all small cuts in an undirected network. SIAM J. Discrete Math. 10 (1997) 469-481.

Drawbacks of Minimum Cut

• Weight of cut is directly proportional to the number of edges in the cut.

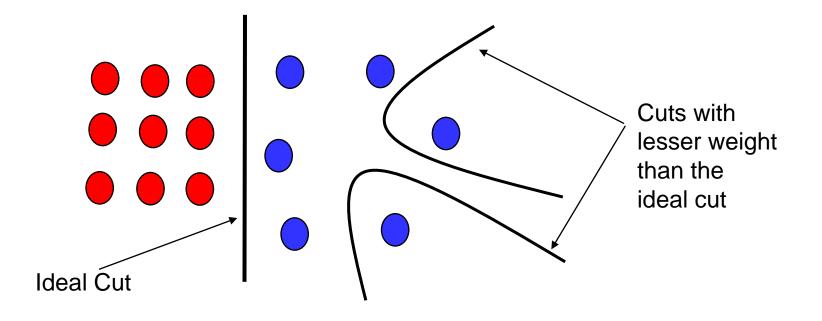
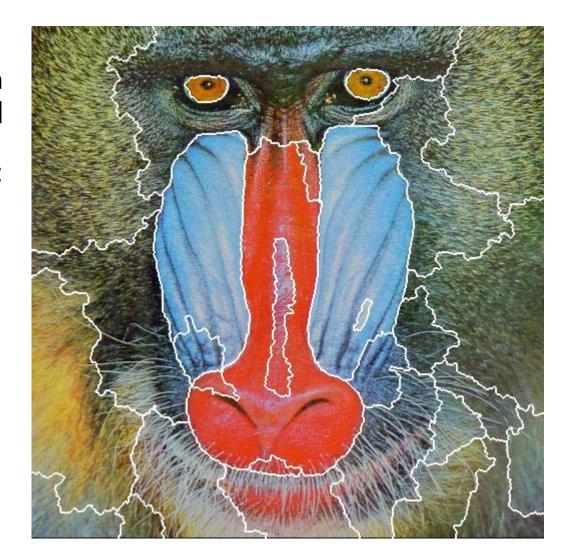


Image Segmentation



JSEG algorithm [Deng & Manjunath 01]

Source code:

Contour models

r

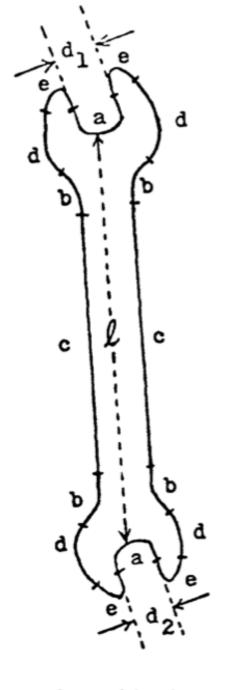
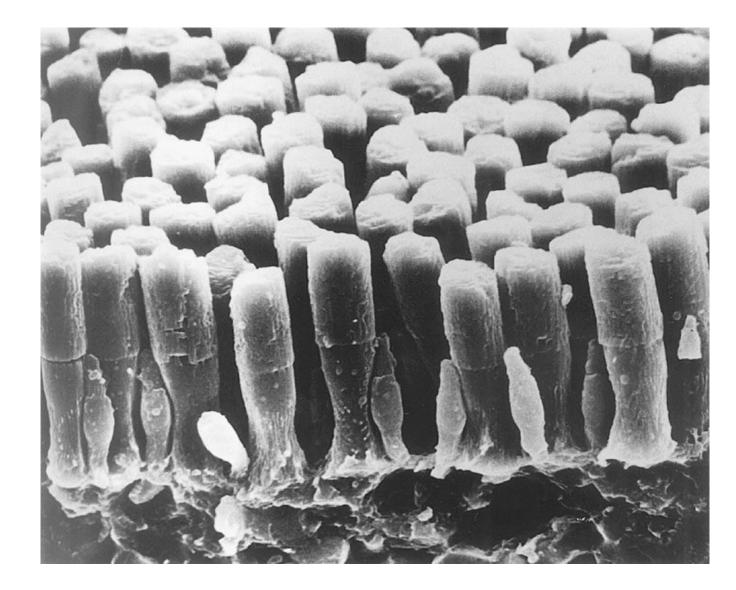


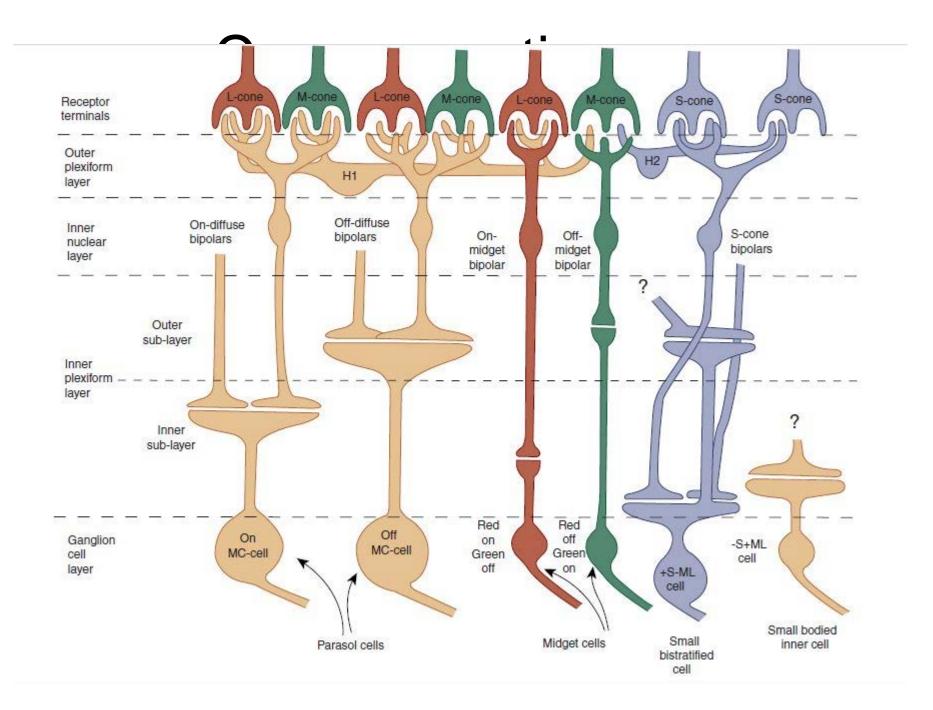
Fig. 8. I wrench and its boundary primitives.

Human Vision

Human vision



Rods and Cones (salamander)

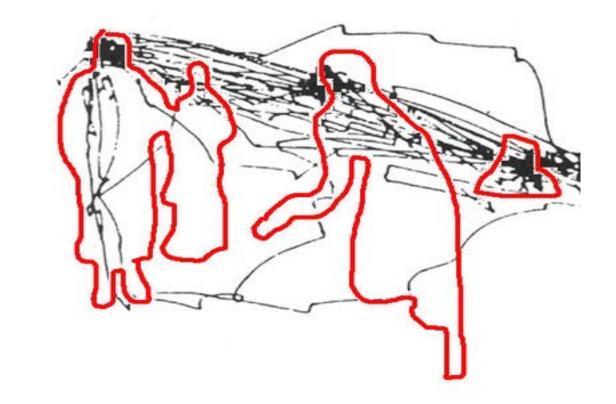


Vision and the Task

Eye movement data from [Yarbus 1967]

The unexpected visitor by Ilya Repin

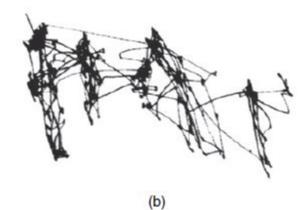
Eye Movements and Information

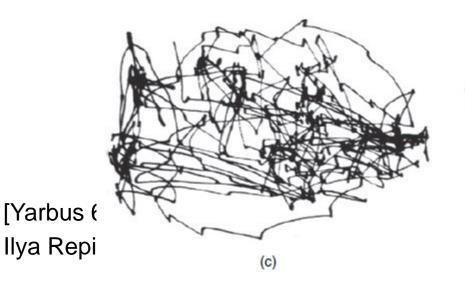


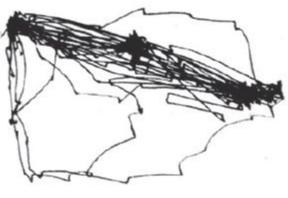
Task:

how long has the visitor been away?

Attention: Top-Down

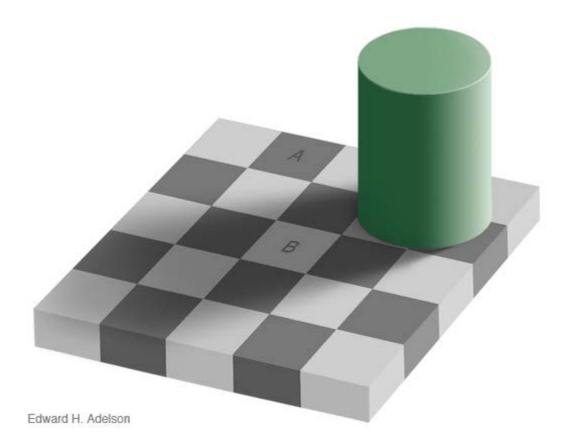




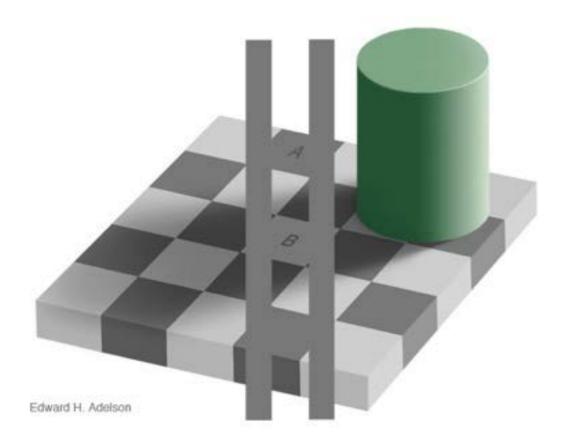


(d)

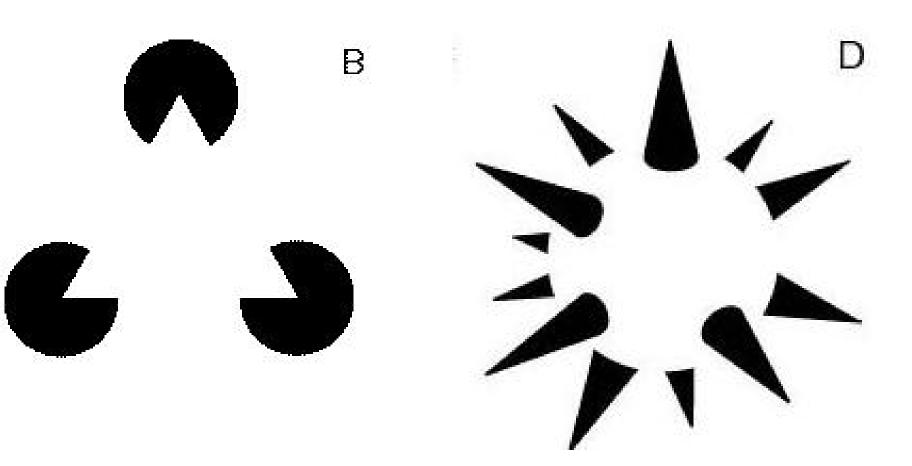
Colours



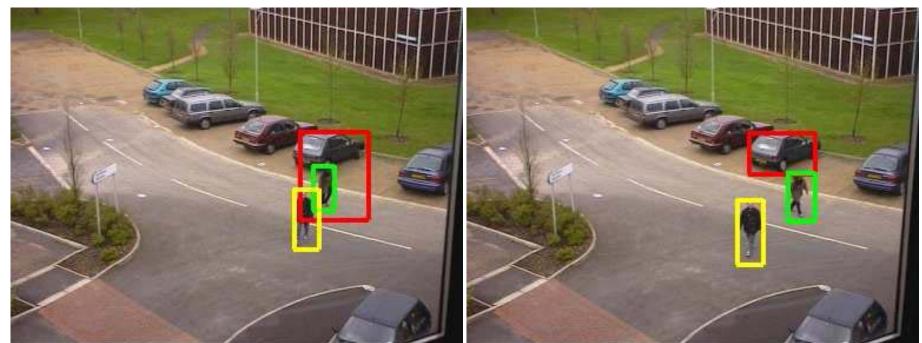
Colours

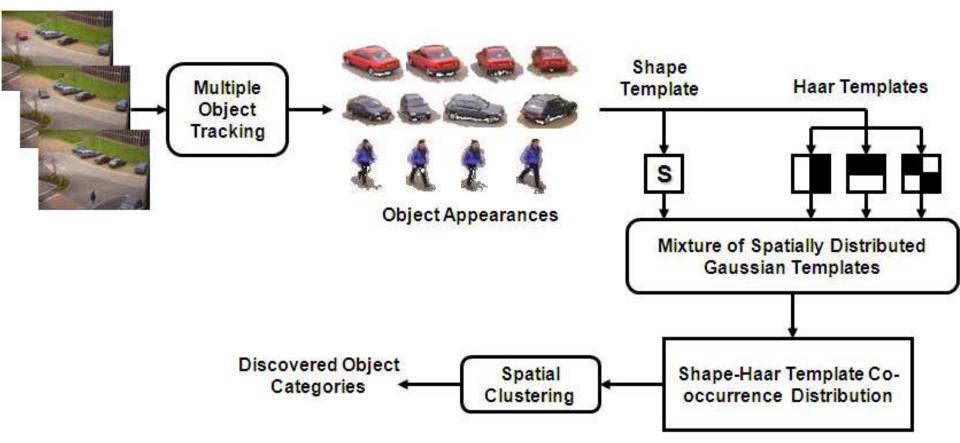


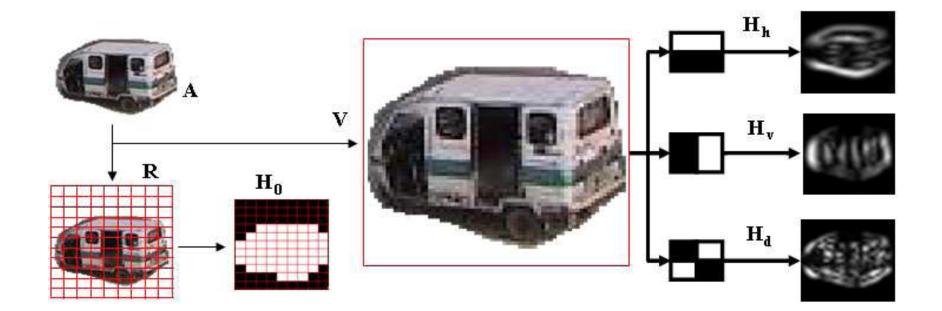
Reification



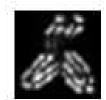
Unsupervised Modeling and Mapping to Language



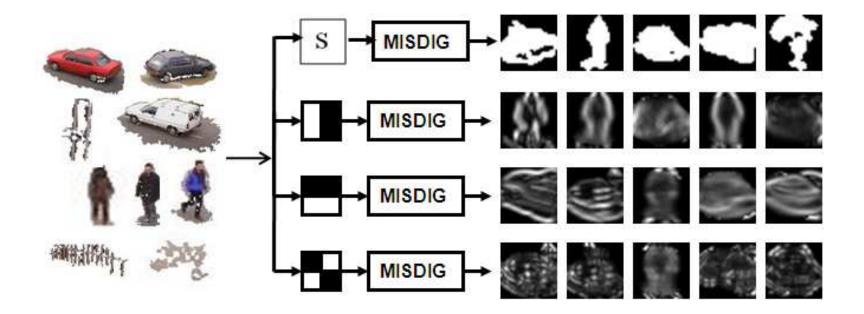


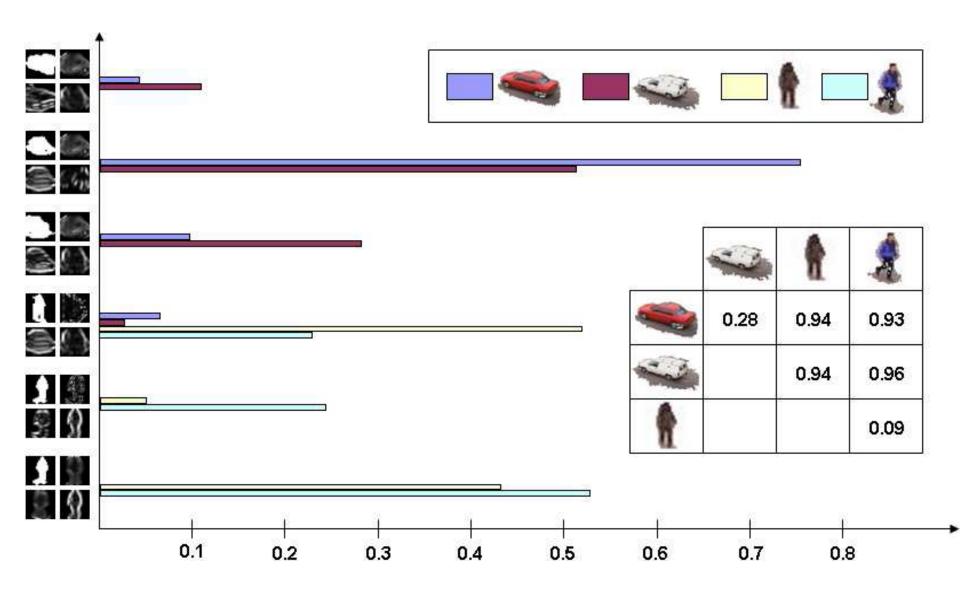


S

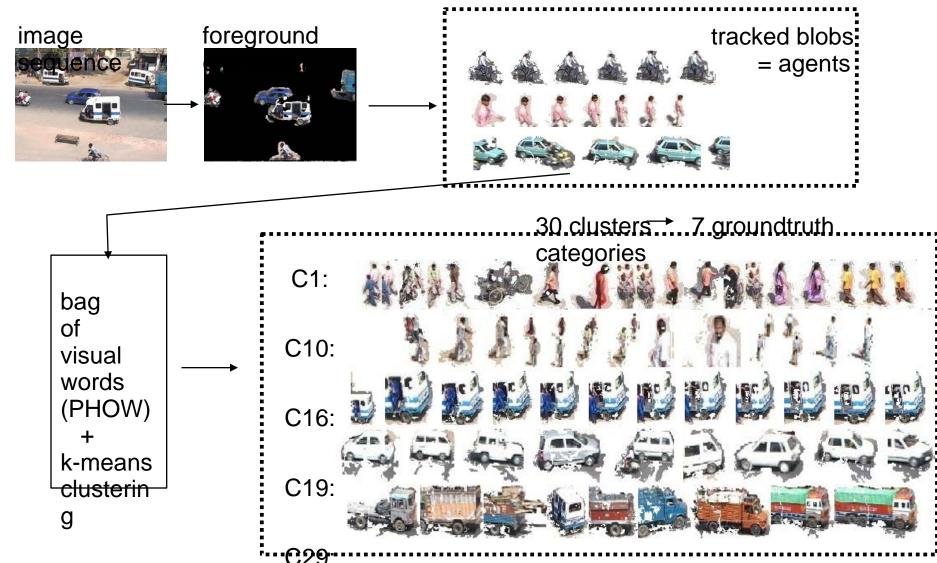


Feature Discovery





Does concept content drive language acquisition?



Test on novel video

1. original video

2. novel video A

3. novel video B

foreground blobs of 13 agents

Instructions for Narrators

- This is a traffic video.
- Watch the video for 40 seconds.
- Next you will have to describe the same 40 sec of the video.
- In Hindi, describe the objects, people, vehicles and what they are doing. [*]
- Now, you will continue to describe the full video of around 4.5 minutes.
- *: at this point, about 15% of subjects given some feedback e.g.

"focus on events on the video and not generalities"

	Sentence	Interval
S1	ek bAik gayI abhI	1158 -1224
	One bike go+past now.	
	A bike went now.	
S2	sAiD me.n sAikal rikshA pe ek ADamI caDhA	1216-1382
	Side [on] one cycle rickshaw [on] one man climb+past	
	A man climbed on a cycle rickshaw on the side (of the scene).	
S3	* sAikal bAik Aye jA rahe hai.N.	1239 - 1354
	Bicycles bikes come+pp go+pp are.	
	Bicycles, bikes are coming and going.	

Traffic video

frame

1200

frame

1300

frame 1255

frame 1350

Probability Computation

Label-concept joint probability

$$J(l,c) = \frac{1}{T * |S|} * \sum_{t=1}^{T} \sum_{s \in S} P(c|s,t) * P(l|s,t)$$
$$= \frac{1}{T} * \sum_{t=1}^{T} P(c|t) * P(l|t)$$

Marginalized probabilities - label ; concept

$$P(c) = \frac{1}{T * |S|} * \sum_{t=1}^{T} \sum_{s \in S} P(c|s, t)$$
$$P(l) = \frac{f(l)}{\sum_{l} f(l)}$$

Association measures

Conditional probability

$$P(l|c) = J(l,c)/P(c)$$

Mutual Information

$$MI(l,c) = J(l,c) * \log(\frac{J(l,c)}{P(c) * P(l)})$$

Dominance-Weighted Joint probability

$$DJ(l,c) = w_s(l,c) * J(l,c)$$
$$w(l,c) = \frac{1}{|C|-1} \sum_{x \neq c} (NJ(l,c) - NJ(l,x))$$
$$w_s(l,c) = \frac{w(l,c) - \min_x \{w(l,x)\}}{\max_x \{w(l,x)\} - \min_x \{w(l,x)\}}$$

Results

With word boundary knowledge

(<i>P_w</i> , CP / MI , T+, G+, A+, obj, ALL)					
	CP		MI		
Concept (c)	1	M(I, c)	1	M(l,c)	
	Tempo	4.46	kAr	7.41	
TEMPO	kAr	4.33	bAik	7.34	
	pe	4.25	Tempo	6.54	
	sAikal	1.95	sAikal	1.34	
BICYCLE	ek sAikal	1.14	ek sAikal	0.96	
	moTarsAikal	0.79	gais silinDar	0.53	
	pe	8.60	ре	12.88	
MOTORCYCLE	bAik	7.12	bAik	11.64	
	Tempo	6.56	skUTar	8.99	
	Trak	17.29	Trak	15.01	
TRUCK	ek Trak	10.67	ek Trak	9.91	
	pe	3.24	tln sAikalwAle	2.37	
	saD.ak	7.50	saD.ak	27.90	
HUMAN	krOs	6.68	krOs	20.76	
	roD	6.54	roD	18.19	
	kAr	7.76	kAr	9.30	
CAR	ek kAr	4.89	ek kAr	6.61	
	gADI	3.99	gADI	4.38	

Top3 word (k = 1 to 4)

Without word boundary knowledge (syllable concatenation)

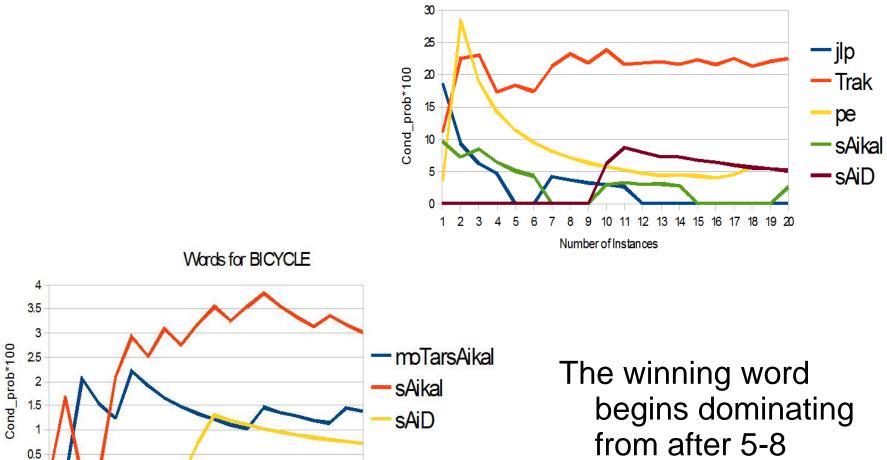
(<i>P_s</i> , CP / MI, T+, G+, A+, obj, ALL)					
	С	P	MI		
Concept (c)	1	M(I, c)	1	M(I, c)	
	ik	12.23	ik	29.68	
TEMPO	jAr	9.23	jAr	21.35	
	kal	8.76	kal	19.70	
	sAikal	2.90	sAikal	2.81	
BICYCLE	jAr	1.62	eksAi	1.60	
	eksAi	1.30	ksAik	1.60	
	ik	19.09	ik	39.35	
MOTORCYCLE	D	15.08	D	28.61	
	jAr	13.43	Tar	26.42	
	Trak	19.23	Trak	22.55	
TRUCK	ekTrak	11.83	ekTrak	14.70	
	jAr	10.20	jAr	9.42	
	hAhai	14.37	hAhai	62.35	
HUMAN	D	13.85	D	53.54	
	jAr	10.86	wAlA	46.14	
	ekkAr	5.15	ekkAr	9.38	
CAR	jAr	4.51	gADI	6.12	
	rahlhai	4.33	rahlhai	5.05	

Top3 word (k = 1 to 4)

Top words (1000) removed

(W, M*, T+, G+, A+, obj, ALL)						
	DJ		CP		MI	
Concept (c)	1	M(I, c)	1	M(I, c)	1	M(l,c)
	bAik	0.42	Tempo	4.46	mArutl	2.24
TEMPO	kAr	0.40	kAr	4.33	bAik	1.92
	piilii	0.36	pe	4.25	kAr	1.72
	sAikal	0.02	sAikal	1.95	silinDar	0.16
BICYCLE	uspar	0.02	moTarsAikal	0.79	I.njin	0.14
	l.njin	0.02	pe	0.63	Dilaks	0.14
	skUTar	0.76	pe	8.60	bAik	4.65
MOTORCYCLE	bAik	0.70	bAik	7.12	pe	4.43
	a.ndar	0.54	Tempo	6.56	skUTar	4.30
	Trak	0.41	Trak	17.29	Trak	6.22
TRUCK	Ta.Nkar	0.21	pe	3.24	peTrol	1.47
	peTrol	0.16	sAikal	2.84	Ta.Nkar	1.13
	saD.ak	2.74	saD.ak	7.50	saD.ak	12.51
HUMAN	biThAke	2.12	krOs	6.68	krOs	7.06
	rikshAwAlA	1.84	roD	6.54	biThAke	5.81
	kAr	0.40	kAr	7.76	kAr	3.61
CAR	camcamAtl	0.23	gADI	3.99	gADI	1.46
	mahAshay	0.22	nikalii	2.81	nikalii	1.33

Confidence gain



12 13 14 15 16 17 18 19 20

10

Number of Instances

1 2 3 4 5 6

linguistic narrative exposures

30 clusters (no merging)

Cluster	1	CP	1	MI
	kAr	4.98	bAik	2.4
C0 (T)	bAik	4.96	moTarsAikal	2.13
	Tempo	4.5	kAr	2.01
	bAik	14.22	skUTar	4.57
C8 (M)	skUTar	12.66	bAik	3.7
	ре	12.53	pe	2.27
	sAikalwAle	8.82	sAikal	3.64
C15 (B)	sAikal	7.12	sAikalwAle	3.63
	dAe.N	6.85	dAe.N	1.67
	kAr	8.27	kAr	3.78
C19 (C)	gADI	4.05	gADI	1.4
	nikalii	2.85	nikalii	1.27
	roD	6.82	roD	0.41
C22 (M)	ре	2.68	khAll	0.3
	skUTar	1.92	laDkl	0.29
	Tempo	18.33	Tempo	5.62
C25 (T)	ре	11.75	mUD	3.05
	sAikal	6.87	pe	2.75
	Tempo	12.36	Tempo	3.02
C28 (B)	sAikal	8.48	sAikalwAle	3.01
	sAikalwAle	6.27	mUD	1.83
	Trak	26.4	Trak	4.83
C29 (L)	ре	8.02	sAmAn	1.51
	sAmAn	5.95	Ore.nj	1.25