
Neural Networks and

Deep Learning

Example Learning Problem

Example Learning Problem

Celebrity Faces in the Wild

Machine Learning Pipeline

Features
• critical for accuracy
• traditionally hand-crafted

Instead of designing features, try to design feature

detectors

Raw data
Feature

extract.

Feature

comput-

ation

Inference:

prediction,

recognition

Machine Learning Pipeline

Raw data
Feature

discovery.

Feature

compos-

ition

Inference:

prediction,

recognition

Low level features Mid-level features Face-like features

Logistic Regression unit

h(x; w,b)

= 1/ e-(wTx + b)

w1
w2

w3

b

Objective:

determine parameters w,b

Training a neural network

Given training set (x1, t1), (x2, t2), (x3, t3), ….

minimize error = h (xi; w,b) – ti by adjusting parameters (w,b)

over all nodes

Use gradient descent : “Backpropagation”:  local optima

MLP with Back-propagation

input vector

hidden

layers

outputs

Back-propagate

error to get gradient

for parameter

updating

Compare outputs with

correct answer to get

error vector

 [Hinton 09] DBN tutorial

Why “Deep”?

• Brains are very deep

• Humans organize their ideas hierarchically,
through composition of simpler ideas

• Insufficiently deep architectures can be
exponentially inefficient

• functions computable with a polynomial-
size circuit of depth k may require
exponential size at depth k-1 [Hastad 86].

• Deep architectures help share features

Why learn features??

• In the brain, very few filters are hard-coded

• irreversible damage produced in kittens by
early visual deprivation [Hubel Wiesel 63]

• Avoids different feature extraction schemes
for different kinds of input data

• Hypothesis :

 Good Reconstruction  Good Recognition

Drawbacks of Back-propagation

• Purely discriminative

Get all the information from the labels

And the labels don’t give so much of information

Need a substantial amount of labeled data

• Gradient descent with random

initialization leads to poor local minima

Deep Belief Networks

• Pre-train network from input-data

alone (generative step)

• Use weights of pre-trained network

as the initial point for traditional back-

propagation

• Leads to quicker convergence

• Pre-training is fast; fine-tuning can be

slow

Deep Autoencoder

2
-l

a
y
e

r
 A

u
to

-
E

n
c
o
d
e
rs

 (

c
o
a
rs

e
)

A
u
to

-E
n
c
o
d
e
rs



s
ta

c
k

Pre-Training: Maximum likelihood

learning





jiji

ij

hvhv
w

vp 0)(log

Start with a training vector on the visible units.

Then alternate between updating all the hidden units in

parallel and updating all the visible units in parallel.

0 jihv
 jihv

i

j

i

j

i

j

i

j

t = 0 t = 1 t = 2 t = infinity

 [Hinton 09] DBN tutorial

)(10  jijiij hvhvw 

For each training vector

Update all hidden units in

parallel

Update the all the visible units

in parallel to get a

“reconstruction”.

Update the hidden units again.

0 jihv 1 jihv

i

j

i

j

t = 0 t = 1
reconstruction data

Pre-Training: Maximum likelihood

learning

 [Hinton 09] DBN tutorial

Deep Belief Networks

Random

Initial position

Pre-trained

weights

Good

Solution

Input-based

pre-training

Slow

Fine-tuning

Very slow

Back-propagation

[MS Ram]

Deep Belief Networks

• Pre-train network from input-data

alone (generative step)

• Use weights of pre-trained network

as the initial point for traditional back-

propagation

• Leads to quicker convergence

• Pre-training is fast; fine-tuning can be

slow

Searching in parameter space

One layer :1000 input + 1000 hidden

 ≈ 1 million weights

 million-dimensional optimization

need to find global (or at least good)

optimum from random initialization)

Impossibly slow for Gradient descent

Deep Belief Networks

Random

Initial position

Good

Solution

Very slow

Back-propagation

million-dimensional space

Searching in parameter space

One layer :1000 input + 1000 hidden

 ≈ 1 million weights

 million-dimensional optimization

Impossibly slow for Gradient descent to find

global optimum from random initialization

• Added complications:

• gradient magnitude vanishingly small in lower

parts of network

• deep networks tend to have more local minima

than shallow networks

 In practice : MLP vs DBN (MNIST)

MLP (1 Hidden Layer)

1 hour: 2.18%

14 hours: 1.65%

DBN

1 hour: 1.65%

14 hours: 1.10%

21 hours: 0.97%

Intel QuadCore 2.83GHz, 4GB RAM

[MS Ram]

Deep network architecture (MNIST)

…

…

…

0.02 mn

…

…

1 mn

0.25 mn

0.4 mn

Output: 10

Input: 784

500

500

2000

P
re

-t
ra

in
in

g

F
in

e
-t

u
n
in

g

weights
nodes

Designing DBNs

Relative importance of
Depth of network :

Seems quite important

Layer-wise pre-training
Counter-example: MNIST: 6-layer MLP: 784-2500-2000-

1500-1000-500-10 (on GPU, w elastic distortions)

 Error Rate: 0.35% [Ciresan et al 2010]

“No fashionable unsupervised pre-training is necessary! “
 - Jürgen Schmidhuber

Amount of labeled training data
Affine and Elastic distortions

Main benefit: DBNs work w less training data

http://www.idsia.ch/~juergen
http://www.idsia.ch/~juergen
http://www.idsia.ch/~juergen

Kernel Methods

Bishop, Ch.6

R & N ch 18.6

Parametric: Discriminative :

Parametric: Generative

image from [Herbrich 2002]

Parametric vs Memory models

• Parametric models:

– learn model for data: parameter vector w /

posterior distribution p(w | t
1
..t

N
)

– discard training set t

– e.g. linear classifiers (perceptron)

• Non-Parametric :

– models on data e.g. k-NN

– memory-based: some or all of the training

data is saved

– SVM: save a set of “support vectors”

MNIST dataset

0

1

image from [Herbrich 2002]

k-NN

Test 5 Nearest neighbours

Kernel methods

• feature space mapping φ(x):

k(x, x') = φ(x)Tφ(x')

• symmetric: k(x, x') = k(x', x)

• linear kernel: φ(x) = x

• stationary kernel: k(x, x') = k(x − x') [stationary

under translation]

• homogeneous kernel:

k(x, x') = k(|x − x'|) (e.g. RBF)

Support Vector Machines

• Main idea:

– linear classifier, but in φ(x) kernel space.

– criterion for decision: max-margin

• Algorithm

– user specifies kernel function

– learn weights for instances

– no actual computation in high-dim space

• Classification

– average of the instance labels, weighted

by a) proximity b) instance weight.

Example: XOR

* X-OR problem

 φ(x
1
,x

2
) = {x

1
, x

2
, x

1
x

2
}

Better:

 φ(x
1
,x

2
) = {1, √2x

1
, √2x

2
, x

1
2

,
√2 x

1
x

2,
x

2
2 }

Margin maximization

yi = +1

yi = -1

Decision hyperplane:

 wT x + b = 0

If ti = {+1,-1}, margin m=

 1/||w|| mini ti (w
T xi + b)

w must satisfy the

constraint that for all

data (xi,ti) :

 ti (w
T xi + b) > m

Margin is maximized

when 1/||w|| is maximum,

ie. minimize ||w||

Support Vector Machines

• Main idea:

– linear classifier, but in φ(x) kernel space.

– criterion for decision: max-margin

• Algorithm

– user specifies kernel function

– learn weights for instances

– no actual computation in high-dim space

• Classification

– average of the instance labels, weighted

by a) proximity b) instance weight.

Kernel trick

Demo

Demo by Udi Aharoni http://www.youtube.com/watch?v=3liCbRZPrZA

Support Vector Machines

• Main idea:

– linear classifier, but in φ(x) kernel space.

– criterion for decision: max-margin

• Algorithm

– user specifies kernel function

– learn weights for instances via convex

optimization

– no actual computation in high-dim space

• Classification

– average of the instance labels, weighted

by a) proximity b) instance weight.

Kernel trick

• Linear classifier is in in high-dimensional ϕ(x) space

• However, no computation directly on ϕ(x); compute

only kernel = ϕ(x)Tϕ(x)

 e.g. for

 ϕ(x
1
,x

2
) = {1, √2x

1
, √2x

2
, x

1
2
,
√2 x

1
x

2,
x

2

2 }

 k(x,x') = ϕ(x)Tϕ(x')

 = ((1, x
1
, x

2
) (1, x'

1
, x'

2
)T)2 = <x,x'>2

• Efficient only if scalar product can be efficiently

computed. Holds for:

• k(x,x') : continuous, symmetric and positive definite

Dual Representations

• Scalar product representations arise naturally in

many classes of problems

• e.g. Linear regression

• Setting gradient to zero:

where ΦT = matrix of ϕ(x

n
), and

Dual Representations

• Instead of parameter space w, use parameter

space a

• Writing w = ΦTa into J(w):

where gram matrix K = ΦΦT, with K
nm

 = ϕ(x
n
)Tϕ(x

m
)

solving for a by setting dJ(a)/da to zero:

Dual Representations

• Substituting back into original regression model:

• Thus, all computations are performed purely with

the kernel

SVM

• Why so popular:

– Very good classification performance,

compares w best

– Fast (convex) and scaleable learning

– Fast inference (but slower training)

• Difficulties:

– No model (discriminative; black-box)

– Not as useful for discrete inputs.

– Art: how to specify kernel function

– Difficulties with multiple classes

Choosing Kernels

Popular kernels that satisfy the Gram

matrix positive-definiteness criterion inlcude:

– Linear kernels: k(x,x') = <x,x'>

– Polynomials: k(x,x') = <x,x'>n

• for n=2 (quadratic):

Polynomial basis functions k(x,x') = for x' = 0

Choosing Kernels

– Gaussian:

– Radial basis functions

– Sigmoid (logistic) function

Gaussian / Sigmoid Bases

gaussian bases logistic bases

k(x,0)

image from [Bishop 2005]

Constructing Kernels

If k1 and k2 are valid kernels, then so are:

Reading

• Machine Learning

Bishop : sections 1.1 to 1.2.4, 1.5.1-2, 6.1, 6.2

 Russell & Norvig: 18.9

