
Neural Networks and  

Deep Learning 



Example Learning Problem 



Example Learning Problem 

Celebrity Faces in the Wild 



Machine Learning Pipeline 

Features 
• critical for accuracy 
• traditionally hand-crafted 

 
Instead of designing features, try to design feature 

detectors 

Raw data 
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Machine Learning Pipeline 
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Low level features Mid-level features Face-like features 



Logistic Regression unit 

h(x; w,b) 

 

= 1/ e-(wTx + b) 

w1 
w2 

w3 

b 

Objective: 

determine parameters w,b 



Training a neural network 

Given training set (x1, t1), (x2, t2), (x3, t3 ), ….  
 

minimize error = h (xi; w,b) – ti  by adjusting parameters (w,b) 

over all nodes 
 

Use gradient descent : “Backpropagation”:   local optima 

 



MLP with Back-propagation  

input vector 

hidden 

layers 

outputs 

Back-propagate 

error to get gradient 

for parameter 

updating 

Compare outputs with 

correct answer to get 

error vector 
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Why “Deep”? 

• Brains are very deep 

• Humans organize their ideas hierarchically, 
through composition of simpler ideas 

• Insufficiently deep architectures can be 
exponentially inefficient 

• functions computable with a polynomial-
size circuit of depth k may require 
exponential size at depth k-1  [Hastad 86]. 

• Deep architectures help share features 

 



Why learn features?? 

• In the brain, very few filters are hard-coded 

• irreversible damage produced in kittens by 
early visual deprivation [Hubel Wiesel 63] 

• Avoids different feature extraction schemes 
for different kinds of input data 

• Hypothesis :  

  Good Reconstruction  Good Recognition 



Drawbacks of Back-propagation 

• Purely discriminative 

Get all the information from the labels 

And the labels don’t give so much of information 

Need a substantial amount of labeled data 

 

• Gradient descent with random 

initialization leads to poor local minima 

 



Deep Belief Networks 

• Pre-train network from input-data 

alone (generative step) 

• Use weights of pre-trained network 

as the initial point for traditional back-

propagation 

• Leads to quicker convergence 

• Pre-training is fast; fine-tuning can be 

slow 



Deep Autoencoder 
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Pre-Training: Maximum likelihood 

learning 


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Start with a training vector on the visible units. 

Then alternate between updating all the hidden units in 

parallel and updating all the visible units in parallel. 

0 jihv
 jihv
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t = 0                 t = 1                  t = 2                               t = infinity 
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)( 10  jijiij hvhvw 

For each training vector 

Update all hidden units in 

parallel 

Update the all the visible units 

in parallel to get a 

“reconstruction”. 

Update the hidden units again.  

0 jihv 1 jihv

i 

j 

i 

j 

t = 0                 t = 1    
reconstruction data 

Pre-Training: Maximum likelihood 

learning 

 [Hinton 09 ] DBN tutorial 



Deep Belief Networks 

Random  

Initial position 

Pre-trained  

weights 

Good  

Solution 

Input-based 

pre-training 

Slow 

Fine-tuning 

Very slow  

Back-propagation 

[MS Ram] 



Deep Belief Networks 

• Pre-train network from input-data 

alone (generative step) 

• Use weights of pre-trained network 

as the initial point for traditional back-

propagation 

• Leads to quicker convergence 

• Pre-training is fast; fine-tuning can be 

slow 



Searching in parameter space 

One layer :1000 input + 1000 hidden  

  ≈ 1 million weights   

 million-dimensional optimization 

 

need to find global (or at least good) 

optimum from random initialization) 

 

Impossibly slow for Gradient descent  

 



Deep Belief Networks 

Random  

Initial position 

Good  

Solution 

Very slow  

Back-propagation 

million-dimensional space 



Searching in parameter space 

One layer :1000 input + 1000 hidden  

  ≈ 1 million weights   

 million-dimensional optimization 

Impossibly slow for Gradient descent to find 

global optimum from random initialization  

 

• Added complications:  

• gradient magnitude vanishingly small in lower 

parts of network 

• deep networks tend to have more local minima 

than shallow networks 

 



 In practice : MLP vs DBN (MNIST) 

MLP (1 Hidden Layer) 

1 hour: 2.18% 

14 hours: 1.65% 

DBN 

1 hour: 1.65% 

14 hours: 1.10% 

21 hours: 0.97% 

 
Intel QuadCore 2.83GHz, 4GB RAM 

[MS Ram] 



Deep network architecture (MNIST) 
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Designing DBNs 

Relative importance of  
Depth of network :  

Seems quite important 
 

Layer-wise pre-training 
Counter-example:  MNIST: 6-layer MLP: 784-2500-2000-

1500-1000-500-10 (on GPU, w elastic distortions) 

 Error Rate: 0.35% [Ciresan et al 2010] 

“No fashionable unsupervised pre-training is necessary! “ 
         - Jürgen Schmidhuber 

Amount of labeled training data 
Affine and Elastic distortions 

 

Main benefit: DBNs work w less training data 

 

 

 

http://www.idsia.ch/~juergen
http://www.idsia.ch/~juergen
http://www.idsia.ch/~juergen


Kernel Methods 

 

Bishop, Ch.6 

R & N ch 18.6  



Parametric: Discriminative :  

 

 

 



Parametric: Generative 

 

 

 

image from [Herbrich 2002] 



Parametric vs Memory models 

• Parametric models:  

– learn model for data: parameter vector w /  

posterior distribution p(w | t
1
..t

N
) 

– discard training set t 

– e.g. linear classifiers (perceptron) 

• Non-Parametric :  

– models on data e.g. k-NN 

– memory-based: some or all of the training 

data is saved 

– SVM: save a set of “support vectors” 



MNIST dataset 

 

 

 

0 

1 

image from [Herbrich 2002] 



k-NN 

 

 

 

Test 5 Nearest neighbours 



Kernel methods 

• feature space mapping φ(x): 

k(x, x') = φ(x)Tφ(x') 

• symmetric: k(x, x') = k(x', x) 

 

• linear kernel: φ(x) = x 

• stationary kernel: k(x, x') = k(x − x') [stationary 

under translation] 

• homogeneous kernel:  

k(x, x') = k(|x − x'|) (e.g. RBF) 

 



Support Vector Machines 

• Main idea: 

– linear classifier, but in φ(x) kernel space. 

– criterion for decision: max-margin 

• Algorithm 

– user specifies kernel function 

– learn weights for instances 

– no actual computation in high-dim space  

• Classification  

– average of the instance labels, weighted 

by a) proximity b) instance weight.   

 



Example: XOR 

 

 

 

* X-OR problem 
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Margin maximization 

yi = +1 

yi = -1 

Decision hyperplane:  

 wT x + b = 0 

 

If ti = {+1,-1}, margin m= 

    1/||w||  mini ti (w
T xi + b)  

 

w must satisfy the 

constraint that for all  

data (xi,ti) : 

    ti (w
T xi  + b ) > m 

 

Margin is maximized  

when   1/||w|| is maximum, 

ie. minimize ||w|| 

 



Support Vector Machines 

• Main idea: 

– linear classifier, but in φ(x) kernel space. 

– criterion for decision: max-margin 

• Algorithm 

– user specifies kernel function 

– learn weights for instances 

– no actual computation in high-dim space  

• Classification  

– average of the instance labels, weighted 

by a) proximity b) instance weight.   

 



Kernel trick 

 

 

 



Demo 

 

 

 

Demo by Udi Aharoni http://www.youtube.com/watch?v=3liCbRZPrZA 



Support Vector Machines 

• Main idea: 

– linear classifier, but in φ(x) kernel space. 

– criterion for decision: max-margin 

• Algorithm 

– user specifies kernel function 

– learn weights for instances via convex 

optimization 

– no actual computation in high-dim space  

• Classification  

– average of the instance labels, weighted 

by a) proximity b) instance weight.   



Kernel trick 

• Linear classifier is in in high-dimensional ϕ(x) space 

• However, no computation directly on ϕ(x); compute 

only kernel = ϕ(x)Tϕ(x) 

 e.g. for  

      ϕ(x
1
,x

2
) = {1, √2x

1
, √2x

2
, x

1
2
, 
√2 x

1
x

2,  
x

2

2 }  

            k(x,x') =  ϕ(x)Tϕ(x')    

                   = ( (1, x
1
, x

2
) (1, x'

1
, x'

2
)T )2 = <x,x'>2 

• Efficient only if scalar product can be efficiently 

computed.  Holds for: 

• k(x,x') : continuous, symmetric and positive definite  



Dual Representations 

• Scalar product representations arise naturally in 

many classes of problems 

• e.g. Linear regression 

 

 

• Setting gradient to zero:  

 

 
where  ΦT = matrix of ϕ(x

n
), and   



Dual Representations 

• Instead of parameter space w, use parameter 

space a 

• Writing w = ΦTa into J(w):  

 

 

 

 

 

where gram matrix K = ΦΦT, with K
nm

 = ϕ(x
n
)Tϕ(x

m
) 

 

solving for a by setting dJ(a)/da to zero:     



Dual Representations 

• Substituting back into original regression model: 

 

 

• Thus, all computations are performed purely with 

the kernel 

 

 

 

 

 



SVM 

• Why so popular: 

– Very good classification performance, 

compares w best 

–  Fast (convex) and scaleable learning 

–  Fast inference (but slower training) 

• Difficulties:  

– No model (discriminative; black-box) 

– Not as useful for discrete inputs. 

– Art:  how to specify kernel function 

– Difficulties with multiple classes 

 



Choosing Kernels 

 

 

 

Popular kernels that satisfy the Gram  

matrix positive-definiteness criterion inlcude: 

– Linear kernels: k(x,x') = <x,x'> 

– Polynomials: k(x,x') = <x,x'>n 

• for n=2 (quadratic):  

 

Polynomial basis functions k(x,x') =   for x' = 0 



Choosing Kernels 

 

 

 

 

– Gaussian: 

 

– Radial basis functions  

 

 

– Sigmoid (logistic) function  



Gaussian / Sigmoid Bases 

 

 

 

gaussian bases  logistic bases 

k(x,0) 

image from [Bishop 2005] 



Constructing Kernels 

 

 

 

If k1 and k2 are valid kernels, then so are: 



Reading 

 

• Machine Learning 

Bishop : sections 1.1 to 1.2.4, 1.5.1-2, 6.1, 6.2 

 Russell & Norvig: 18.9  


