## **Learning from Observations**

### Bishop, Ch.1 Russell & Norvig Ch. 18

## Learning as source of knowledge

- Implicit models: In many domains, we cannot say how we manage to perform so well
- Unknown environment: After some effort, we can get a system to work for a finite environment, but it fails in new areas
- **Model structures**: Learning can reveal properties (regularities) of the system behaviour
  - Modifies agent's decision models to reduce complexity and improve performance

# Feedback in Learning

- Type of feedback:
  - Supervised learning: correct answers for each example
    - Discrete (categories) : classification
    - Continuous : regression
  - Unsupervised learning: correct answers not given
  - Reinforcement learning: occasional rewards

# Inductive learning

• Simplest form: learn a function from examples

An example is a pair (x, y) : x = data, y = outcomeassume: y drawn from function f(x) : y = f(x) + noise

#### f = target function

Problem: find a hypothesis hsuch that  $h \approx f$ given a training set of examples

Note: highly simplified model :

- Ignores prior knowledge : some h may be more likely
- Assumes lots of examples are available
- Objective: maximize prediction for unseen data Q. How?

# Inductive learning method

- Construct/adjust h to agree with f on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:



## **Regression vs Classification**

y = f(x)

Regression: y is continuous

**Classification:** 

y : set of discrete values e.g. classes  $C_1$ ,  $C_2$ ,  $C_3$ ... y  $\in \{1, 2, 3...\}$ 





## **Polynomial Curve Fitting**



### Linear Regression

$$y = f(x) = \Sigma_i W_i \cdot \varphi_i(x)$$

φ<sub>i</sub>(x) : basis function
W<sub>i</sub> : weights

Linear : function is linear in the weights Quadratic error function --> derivative is linear in **w** 

### Sum-of-Squares Error Function











## **Over-fitting**



Root-Mean-Square (RMS) Error:  $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$ 

## **Polynomial Coefficients**

|               | M=0  | M = 1 | M=3    | M=9         |
|---------------|------|-------|--------|-------------|
| $w_0^\star$   | 0.19 | 0.82  | 0.31   | 0.35        |
| $w_1^\star$   |      | -1.27 | 7.99   | 232.37      |
| $w_2^{\star}$ |      |       | -25.43 | -5321.83    |
| $w_3^\star$   |      |       | 17.37  | 48568.31    |
| $w_4^{\star}$ |      |       |        | -231639.30  |
| $w_5^{\star}$ |      |       |        | 640042.26   |
| $w_6^\star$   |      |       |        | -1061800.52 |
| $w_7^{\star}$ |      |       |        | 1042400.18  |
| $w_8^\star$   |      |       |        | -557682.99  |
| $w_9^{\star}$ |      |       |        | 125201.43   |



### Data Set Size: N = 15



### Data Set Size: N = 100



## Regularization

Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

### **Regularization:** $\ln \lambda = -18$



### **Regularization:** $\ln \lambda = 0$



### **Regularization:** $E_{\rm RMS}$ **vs.** $\ln \lambda$



## **Polynomial Coefficients**

|               | $\ln\lambda=-\infty$ | $\ln \lambda = -18$ | $\ln \lambda = 0$ |
|---------------|----------------------|---------------------|-------------------|
| $w_0^\star$   | 0.35                 | 0.35                | 0.13              |
| $w_1^\star$   | 232.37               | 4.74                | -0.05             |
| $w_2^\star$   | -5321.83             | -0.77               | -0.06             |
| $w_3^\star$   | 48568.31             | -31.97              | -0.05             |
| $w_4^\star$   | -231639.30           | -3.89               | -0.03             |
| $w_5^{\star}$ | 640042.26            | 55.28               | -0.02             |
| $w_6^\star$   | -1061800.52          | 41.32               | -0.01             |
| $w_7^{\star}$ | 1042400.18           | -45.95              | -0.00             |
| $w_8^{\star}$ | -557682.99           | -91.53              | 0.00              |
| $w_9^\star$   | 125201.43            | 72.68               | 0.01              |

## **Binary Classification**

### **Regression vs Classification**

y = f(x)

Regression:

y is continuous

Classification:

y : discrete values e.g. 0,1,2... for classes C<sub>0</sub>, C<sub>1</sub>, C<sub>2</sub>...

Binary Classification: two classes  $y \in \{0,1\}$ 



## **Binary Classification**



## Feature : Length



## Feature : Lightness



### **Minimize Misclassification**



- Feature selection : which feature is maximally discriminative?
  - Axis-oriented decision boundaries in feature space
  - Length or Width or Lightness?
- Feature Discovery: construct g(), defined on the feature space, for better discrimination

### Feature Selection: width / lightness



- Feature selection : which feature is maximally discriminative?
  - Axis-oriented decision boundaries in feature space
  - Length or Width or Lightness?
- Feature Discovery: discover discriminative function on feature space : g()
  - combine aspects of length, width, lightness

### Feature Discovery : Linear



### Feature Discovery : non-linear



### Feature Discovery : non-linear


#### **Learning process**

- Feature set : representative? complete?

- Sample size : training set vs test set
- Model selection:
  - Unseen data  $\rightarrow$  overfitting?
  - Quality vs Complexity
  - Computation vs Performance

# **Probability Theory**

## Learning = discovering regularities

- Regularity : repeated experiments: outcome not be fully predictable

outcome = "possible world" set of all possible worlds =  $\Omega$ 

## **Probability Theory**

**Apples and Oranges** 



Sample  $\omega$  = Pick two fruits, e.g. Apple, then Orange Sample Space  $\Omega = \{(A,A), (A,O), (O,A), (O,O)\}$ = all possible worlds

Event e = set of possible worlds,  $e \subseteq \Omega$ 

• e.g. second one picked is an apple

## Learning = discovering regularities

- Regularity : repeated experiments: outcome not be fully predictable
- Probability p(e) : "the fraction of possible worlds in which e is true" i.e. outcome is event e
- Frequentist view :  $p(e) = \text{limit as } N \rightarrow \infty$
- Belief view: in wager : equivalent odds (1-p):p that outcome is in e, or vice versa

#### **Axioms of Probability**

- non-negative :  $p(e) \ge 0$ 

- unit sum  $p(\Omega) = 1$ 

i.e. no outcomes outside sample space

additive : if e1, e2 are disjoint events (no common outcome):

 $p(e1) + p(e2) = p(e1 \cup e2)$ 

different methodologies attempted for uncertainty:

- Fuzzy logic
- Multi-valued logic
- Non-monotonic reasoning
- But **unique property** of probability theory:
- If you gamble using probabilities you have the best chance in a wager. [de Finetti 1931]
- => if opponent uses some other system, he's more likely to lose

#### Joint vs. conditional probability



Marginal Probability

$$p(X = x_i) = \frac{c_i}{N}$$

Joint Probability

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

**Conditional Probability** 

$$p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

## **Probability Theory**



Sum Rule  $p(X = x_i) = \frac{c_i}{N} = \frac{1}{N} \sum_{j=1}^{L} n_{ij}$   $= \sum_{j=1}^{L} p(X = x_i, Y = y_j)$ 

**Product Rule** 

$$p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(Y = y_j | X = x_i) p(X = x_i)$$

## **Rules of Probability**



- A disease *d* occurs in 0.05% of population. A test is 99% effective in detecting the disease, but 5% of the cases test positive in absence of *d*.
- 10000 people are tested. How many are expected to test positive?

p(d) = 0.0005; p(t/d) = 0.99; p(t/~d) = 0.05

p(t) = p(t,d) + p(t,~d) [Sum Rule]

= p(t/d)p(d) + p(t/~d)p(~d) [Product Rule]

= 0.99\*0.0005 + 0.05 \* 0.9995 = 0.0505 → 505 +ve

#### Bayes' Theorem

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

$$p(X) = \sum_{Y} p(X|Y)p(Y)$$

#### posterior $\propto$ likelihood $\times$ prior

A disease *d* occurs in 0.05% of population. A test is 99% effective in detecting the disease, but 5% of the cases test positive in absence of *d*.

If you are tested +ve, what is the probability you have the disease?

 $p(d/t) = p(d) \cdot p(t/d) / p(t) ; p(t) = 0.0505$ 

p(d/t) = 0.0005 \* 0.99 / 0.0505 = 0.0098 (about 1%)

if 10K people take the test, E(d) = 5
 FPs = 0.05 \* 9995 = 500
 TPs = 0.99 \* 5 = 5. → only 5/505 have d

## **Probability Densities**



#### **Expectations**

$$\mathbb{E}[f] = \sum_{x} p(x)f(x)$$

$$\mathbb{E}[f] = \int p(x)f(x) \,\mathrm{d}x$$

discrete x

continuous X

Frequentist approximation w unbiased sample

$$\mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

(both discrete / continuous)

#### Variances and Covariances

$$\operatorname{var}[f] = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^2\right] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$$

 $\mathbb{E}_x[f(x,y)]$  : Sum over x p(x)f(x,y) --> is a function of y

$$\operatorname{cov}[x, y] = \mathbb{E}_{x, y} \left[ \left\{ x - \mathbb{E}[x] \right\} \left\{ y - \mathbb{E}[y] \right\} \right]$$
$$= \mathbb{E}_{x, y} [xy] - \mathbb{E}[x] \mathbb{E}[y]$$
$$\operatorname{cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[ \left\{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \right\} \left\{ \mathbf{y}^{\mathrm{T}} - \mathbb{E}[\mathbf{y}^{\mathrm{T}}] \right\} \right]$$

$$\begin{aligned} \operatorname{cov}[\mathbf{x}, \mathbf{y}] &= \mathbb{E}_{\mathbf{x}, \mathbf{y}} \left[ \{ \mathbf{x} - \mathbb{E}[\mathbf{x}] \} \{ \mathbf{y}^{\mathsf{T}} - \mathbb{E}[\mathbf{y}^{\mathsf{T}}] \} \right] \\ &= \mathbb{E}_{\mathbf{x}, \mathbf{y}}[\mathbf{x}\mathbf{y}^{\mathsf{T}}] - \mathbb{E}[\mathbf{x}]\mathbb{E}[\mathbf{y}^{\mathsf{T}}] \end{aligned}$$

#### **Gaussian Distribution**

#### The Gaussian Distribution

$$\mathcal{N}\left(x|\mu,\sigma^{2}\right) = \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{-\frac{1}{2\sigma^{2}}(x-\mu)^{2}\right\}$$

$$\mathcal{N}(x|\mu,\sigma^{2}) \qquad \qquad \mathcal{N}(x|\mu,\sigma^{2}) > 0$$

$$\int_{-\infty}^{\infty} \mathcal{N}\left(x|\mu,\sigma^{2}\right) \, \mathrm{d}x = 1$$

#### **Gaussian Mean and Variance**

$$\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) \, x \, \mathrm{d}x = \mu$$

$$\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu,\sigma^2) x^2 \,\mathrm{d}x = \mu^2 + \sigma^2$$

 $\operatorname{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2$ 

Distribution of sum of N i.i.d. random variables becomes increasingly Gaussian for larger N.

Example: N uniform [0,1] random variables.



## **Gaussian Parameter Estimation**



$$p(\mathbf{x}|\mu,\sigma^2) = \prod_{n=1}^{N} \mathcal{N}\left(x_n|\mu,\sigma^2\right)$$

## Maximum (Log) Likelihood

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}}\sum_{n=1}^{N}(x_{n}-\mu)^{2} - \frac{N}{2}\ln\sigma^{2} - \frac{N}{2}\ln(2\pi)$$

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n \qquad \sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2$$

#### The Multivariate Gaussian

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$



#### Multivariate distribution



joint distribution P(x,y) varies considerably though marginals P(x), P(y) are identical

estimating the joint distribution requires much larger sample:  $O(n^k)$  vs nk

## Marginals and Conditionals



marginals P(x), P(y) are gaussian conditional P(x|y) is also gaussian

## Non-intuitive in high dimensions

As dimensionality increases, bulk of data moves away from center



Gaussian in polar coordinates;  $p(r)\delta r$  : prob. mass inside annulus  $\delta r$  at r.

## Non-intuitive in high dimensions



#### Successive Trials – e.g. Toss a coin three times: HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

Probability of k Heads:

| k           | 0   | 1   | 2   | 3   |
|-------------|-----|-----|-----|-----|
| <i>P(k)</i> | 1/8 | 3/8 | 3/8 | 1/8 |

$$P(k) = \binom{n}{k} p^k q^{n-k}$$

#### **Model Selection**

## Model Selection

#### **Cross-Validation**



## **Curse of Dimensionality**



## **Curse of Dimensionality**

Polynomial curve fitting, M = 3

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k$$

Gaussian Densities in higher dimensions



**Regression with Polynomials** 

## **Curve Fitting Re-visited**



## Maximum Likelihood

$$p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}\left(t_n | y(x_n, \mathbf{w}), \beta^{-1}\right)$$

$$\ln p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) = -\underbrace{\frac{\beta}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2}_{\beta E(\mathbf{w})} + \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi)$$

Determine  

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

$$\frac{1}{\beta_{\text{ML}}} = \frac{1}{N} \sum_{n=1}^{n=1} \{y(x_n, \mathbf{w}_{\text{ML}}) - t_n\}^2$$
#### **Predictive Distribution**

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right)$$



#### MAP: A Step towards Bayes

•

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}\right\}$$

$$p(\mathbf{w}|\mathbf{x}, \mathbf{t}, \alpha, \beta) \propto p(\mathbf{t}|\mathbf{x}, \mathbf{w}, \beta) p(\mathbf{w}|\alpha)$$

$$\beta \widetilde{E}(\mathbf{w}) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

Determine  $\mathbf{w}_{\mathrm{MAP}}$  by minimizing regularized sum-of-squares error,  $\widetilde{E}(\mathbf{w})$ 

MAP = Maximum Posterior

## **Bayesian Curve Fitting**

$$p(t|x, \mathbf{x}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{x}, \mathbf{t}) \, \mathrm{d}\mathbf{w} = \mathcal{N}\left(t|m(x), s^2(x)\right)$$

$$m(x) = \beta \phi(x)^{\mathrm{T}} \mathbf{S} \sum_{n=1}^{N} \phi(x_n) t_n \qquad s^2(x) = \beta^{-1} + \phi(x)^{\mathrm{T}} \mathbf{S} \phi(x)$$
$$\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \sum_{n=1}^{N} \phi(x_n) \phi(x_n)^{\mathrm{T}} \qquad \phi(x_n) = \left(x_n^0, \dots, x_n^M\right)^{\mathrm{T}}$$

#### **Bayesian Predictive Distribution**

 $p(t|x, \mathbf{x}, \mathbf{t}) = \mathcal{N}\left(t|m(x), s^2(x)\right)$ 



**Information Theory** 

Knower: thinks of object (point in a probability space) Guesser: asks knower to evaluate random variables

Stupid approach:

Guesser: Is it my left big toe? Knower: No.

Guesser: Is it Valmiki? Knower: No.

Guesser: Is it Aunt Lakshmi?

. . .

## **Expectations & Surprisal**

Turn the key: expectation: lock will open

Exam paper showing: could be 100, could be zero. *random variable*: function from set of marks to real interval [0,1]

Interestingness  $\propto$  unpredictability

surprisal (r.v. = x) = 
$$-\log_2 p(x)$$
  
= 0 when  $p(x) = 1$   
= 1 when  $p(x) = \frac{1}{2}$   
=  $\infty$  when  $p(x) = 0$ 

# Entropy

$$\mathbf{H}[x] = -\sum_{x} p(x) \log_2 p(x)$$

#### Used in

- coding theory
- statistical physics
- machine learning

# Entropy



## Entropy

In how many ways can N identical objects be allocated M bins?

$$W = \frac{N!}{\prod_i n_i!}$$

$$H = \frac{1}{N} \ln W \simeq -\lim_{N \to \infty} \sum_{i} \left(\frac{n_i}{N}\right) \ln \left(\frac{n_i}{N}\right) = -\sum_{i} p_i \ln p_i$$
  
Entropy maximized when  $\forall i : p_i = \frac{1}{M}$ 

# Entropy in Coding theory

x discrete with 8 possible states; how many bits to transmit the state of x?

All states equally likely

$$H[x] = -8 \times \frac{1}{8} \log_2 \frac{1}{8} = 3$$
 bits.

# Coding theory

| _ | x    | a | b  | с   | d    | е              | f              | g              | h              | _ |
|---|------|---|----|-----|------|----------------|----------------|----------------|----------------|---|
| - |      |   |    |     |      | $\frac{1}{64}$ | $\frac{1}{64}$ | $\frac{1}{64}$ | $\frac{1}{64}$ |   |
|   | code | 0 | 10 | 110 | 1110 | 111100         | 111101         | 111110         | 111111         |   |

$$\begin{aligned} \mathbf{H}[x] &= -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{4}\log_2\frac{1}{4} - \frac{1}{8}\log_2\frac{1}{8} - \frac{1}{16}\log_2\frac{1}{16} - \frac{4}{64}\log_2\frac{1}{64} \\ &= 2 \text{ bits} \end{aligned}$$

average code length =  $\frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{16} \times 4 + 4 \times \frac{1}{64} \times 6$ = 2 bits

## **Entropy in Twenty Questions**

Intuitively : try to ask q whose answer is 50-50

Is the first letter between A and M?

question entropy = p(Y)logp(Y) + p(N)logP(N)

For both answers equiprobable: entropy =  $-\frac{1}{2} * \log_2(\frac{1}{2}) - \frac{1}{2} * \log_2(\frac{1}{2}) = 1.0$ For P(Y)=1/1028 entropy =  $-\frac{1}{1028} * -10 - eps = 0.01$ 

## Change of variable x=g(y)



$$p_y(y) = p_x(x) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$$
$$= p_x(g(y)) |g'(y)|$$