
Learning from Observations 

 

Bishop, Ch.1  

Russell & Norvig Ch. 18 

 



Learning as source of knowledge 

• Implicit models: In many domains, we cannot 

say how we manage to perform so well 

• Unknown environment: After some effort, we 

can get a system to work for a finite 

environment, but it fails in new areas 

• Model structures: Learning can reveal 

properties (regularities) of the system behaviour 

– Modifies agent's decision models to 

reduce complexity and improve 

performance 



Feedback in Learning  

 

• Type of feedback:  

– Supervised learning: correct answers for each 

example 

• Discrete (categories) : classification 

• Continuous : regression 

– Unsupervised learning: correct answers not given 

– Reinforcement learning: occasional rewards 



Inductive learning 

• Simplest form: learn a function from examples 
 

An example is a pair (x, y) : x = data, y = outcome 

   assume: y drawn from function f(x) :  y = f(x) + noise 

f  = target function 

 

Problem: find a hypothesis h 
such that h ≈ f 

given a training set of examples 
 

Note: highly simplified model : 
– Ignores prior knowledge : some h may be more likely 

– Assumes lots of examples are available 

– Objective: maximize prediction for unseen data – Q. How?  

 



Inductive learning method 

• Construct/adjust h to agree with f on training set 

• (h is consistent if it agrees with f on all examples) 

• E.g., curve fitting: 

 

 

 



    y = f(x) 

 

Regression:   

    y is continuous  

 

Classification:  

  y : set of discrete values  

   e.g. classes C1, C2, C3... 

     y ∈ {1,2,3...} 

Regression vs Classification 



Regression 



Polynomial Curve Fitting  



Linear Regression 

y = f(x) = Σ
i 
w

i
 . φ

i
(x) 

 

φ
i
(x)  :  basis function 

 w
i      

: weights 

 

Linear : function is linear in the weights 

Quadratic error function --> derivative is linear in w 

 



Sum-of-Squares Error Function 



0th Order Polynomial 



1st Order Polynomial 



3rd Order Polynomial 



9th Order Polynomial 



Over-fitting 

Root-Mean-Square (RMS) Error: 



Polynomial Coefficients    



9th Order Polynomial 



Data Set Size:  

9th Order Polynomial 



Data Set Size:  

9th Order Polynomial 



Regularization 

Penalize large coefficient values 



Regularization:  



Regularization:  



Regularization:          vs.  



Polynomial Coefficients    



  Binary Classification 



    y = f(x) 
 

Regression:   

    y is continuous  

Classification:  

  y : discrete values e.g. 0,1,2... 
   for classes C0, C1, C2... 

 

Binary Classification: two classes 
    y ∈ {0,1} 

Regression vs Classification 



Binary Classification 



Feature : Length 



Feature : Lightness 



Minimize Misclassification  



Feature Selection 

- Feature selection : which feature is maximally 
discriminative? 

– Axis-oriented decision boundaries in feature 
space  

– Length – or – Width – or Lightness?  

 

- Feature Discovery: construct g(), defined on the 
feature space, for better discrimination 



Feature Selection: width / lightness 

lightness is more discriminative 

     - but can we do better? 

select the most discriminative feature(s) 



- Feature selection : which feature is maximally 
discriminative? 

– Axis-oriented decision boundaries in feature 
space  

– Length – or – Width – or Lightness?  

 

- Feature Discovery: discover discriminative function 
on feature space : g()  

– combine aspects of length, width, lightness  

Feature Selection 



Feature Discovery : Linear 

Cross-Validation 



Feature Discovery : non-linear 



Feature Discovery : non-linear 

overfitting! 



Learning process 

- Feature set : representative? complete? 

 

- Sample size : training set  vs test set 
 

- Model selection:  

– Unseen data   overfitting? 

– Quality vs Complexity 

– Computation vs Performance 

 



Probability Theory 



Learning = discovering regularities 

- Regularity : repeated experiments:  

outcome not be fully predictable 

 

outcome = “possible world” 

set of all possible worlds = Ω 



Probability Theory 

Apples and Oranges 



Sample Space 

Sample ω = Pick two fruits,  

e.g. Apple, then Orange 

Sample Space Ω = {(A,A), (A,O), 

               (O,A),(O,O)}         

= all possible worlds 

 

Event e = set of possible worlds, e ⊆ Ω 

• e.g. second one picked is an apple 



Learning = discovering regularities 

- Regularity : repeated experiments:  

outcome not be fully predictable 

 

- Probability p(e) : "the fraction of possible worlds 

in which e is true” i.e. outcome is event e  

 

- Frequentist view :  p(e)  = limit as N → ∞ 

- Belief view: in wager : equivalent odds  

  (1-p):p that outcome is in e, or vice versa 



Axioms of Probability 

- non-negative : p(e) ≥ 0 

 

- unit sum p(Ω) = 1 

     i.e. no outcomes outside sample space  

 

- additive :  if e1, e2 are disjoint events (no 

common outcome): 

       p(e1) + p(e2)  = p(e1 ∪ e2) 



Why probability theory? 

different methodologies attempted for uncertainty:  

– Fuzzy logic 

– Multi-valued logic 

– Non-monotonic reasoning 

But unique property of probability theory:  

If you gamble using probabilities you have the best 

chance in a wager. [de Finetti 1931]   

 => if opponent uses some other system, he's      

      more likely to lose 



Joint vs. conditional probability 

 

Marginal Probability 

 

 

 

 

Conditional Probability Joint Probability 

 



Probability Theory 

Sum Rule 

 

 

 

Product Rule 

 



Rules of Probability 

 

Sum Rule 

 
Product Rule 



Example 

A disease d occurs in 0.05% of population.   A test is 

99% effective in detecting the disease, but 5% of 

the cases test positive in absence of d.  

10000 people are tested.  How many are expected to 

test positive?  

p(d) = 0.0005 ;   p(t/d) = 0.99 ;   p(t/~d) = 0.05 

p(t) = p(t,d) + p(t,~d)                       [Sum Rule] 

      = p(t/d)p(d) + p(t/~d)p(~d)        [Product Rule] 

      = 0.99*0.0005 + 0.05 * 0.9995 = 0.0505      505 +ve 



Bayes’ Theorem 

posterior  likelihood × prior 



Example 

A disease d occurs in 0.05% of population.   A test is 

99% effective in detecting the disease, but 5% of 

the cases test positive in absence of d.  

If you are tested +ve, what is the probability you have 

the disease?  

p(d/t) = p(d) . p(t/d) / p(t)  ; p(t) = 0.0505 

p(d/t) = 0.0005 * 0.99 / 0.0505 = 0.0098  (about 1%) 

if 10K people take the test, E(d) = 5 

FPs = 0.05 * 9995 = 500  

TPs = 0.99 * 5 =           5.           only 5/505 have d 



Probability Densities 



Expectations 

 

(both discrete / continuous) 

Frequentist approximation w unbiased sample 

discrete x continuous x 



Variances and Covariances 

: Sum over x p(x)f(x,y)     --> is a function of y 



Gaussian Distribution 



The Gaussian Distribution 



Gaussian Mean and Variance 



Central Limit Theorem  

Distribution of sum of N i.i.d. random variables 

becomes increasingly Gaussian for larger N. 
 

Example: N uniform [0,1] random variables. 



Gaussian Parameter Estimation 

Likelihood function 

Observations 
assumed to be 

indpendently 
drawn from same 
distribution (i.i.d) 



Maximum (Log) Likelihood 



The Multivariate Gaussian 

lines of equal  

probability densities 



Multivariate distribution 

joint distribution P(x,y) varies considerably  

though marginals P(x), P(y) are identical 

 

estimating the joint distribution requires 

much larger sample:  O(nk) vs nk 



Marginals and Conditionals 

 

marginals P(x), P(y) are gaussian 

conditional P(x|y) is also gaussian 



Non-intuitive in high dimensions 

As dimensionality 
increases, bulk of 
data moves away 

from center 

 

 

Gaussian in polar coordinates;  

p(r)δr : prob. mass inside annulus δr at r. 

 



Non-intuitive in high dimensions 



Successive Trials – e.g.  Toss a coin three times: 
HHH, HHT, HTH, HTT, THH, THT, TTH, TTT 

 

Probability of k Heads: 

 

 
k 0 1 2 3 

P(k) 1/8 3/8 3/8 1/8 

Probability of success: p, failure q, then 

 

 

Bernoulli Process 



  Model Selection 



Model Selection 

Cross-Validation 



Curse of Dimensionality 



Curse of Dimensionality 

Polynomial curve fitting, M = 3 

 

 

 

 

Gaussian Densities in  

higher dimensions 



  Regression with Polynomials 



Curve Fitting Re-visited 



Maximum Likelihood 

Determine            by minimizing sum-of-squares error,             

. 



Predictive Distribution 



MAP: A Step towards Bayes 

Determine               by minimizing regularized sum-of-squares error,             

. 

MAP = Maximum Posterior 



Bayesian Curve Fitting 



Bayesian Predictive Distribution 



Information Theory 



Twenty Questions 

Knower: thinks of object (point in a probability space) 

Guesser: asks knower to evaluate random variables 

 

Stupid approach: 
 

    Guesser: Is it my left big toe? 

    Knower: No. 

 

    Guesser: Is it Valmiki?  

    Knower: No. 

 

    Guesser: Is it Aunt Lakshmi? 

    ... 



Expectations & Surprisal 

Turn the key:  expectation:  lock will open 

 

Exam paper showing:  could be 100, could be zero.   

  random variable: function from set of marks  

  to real interval [0,1] 

 

Interestingness  ∝  unpredictability 
 

   surprisal (r.v. = x) = - log2 p(x) 
 

    = 0 when p(x) = 1 

    = 1 when p(x) = ½  

    = ∞ when p(x) = 0 



Entropy 

Used in 
• coding theory 
• statistical physics 
• machine learning 



Entropy 



Entropy 

In how many ways can N identical objects be allocated M 

bins? 

 

 

 

 

Entropy maximized when 



Entropy in Coding theory 

x discrete with 8 possible states; how many bits to 

transmit the state of x? 

 

All states equally likely 



Coding theory 



Entropy in Twenty Questions 

Intuitively : try to ask q whose answer is 50-50 

 

  Is the first letter between A and M?  

 

question entropy = p(Y)logp(Y) + p(N)logP(N) 
 

For both answers equiprobable:  

  entropy = - ½ * log2(½) - ½ * log2(½)  = 1.0 
 

For P(Y)=1/1028 

  entropy = - 1/1028 * -10 - eps =  0.01 



Change of variable x=g(y) 


