Learning from Observations

Bishop, Ch.1
Russell & Norvig Ch. 18



Learning as source of knowledge

* Implicit models: In many domains, we cannot
say how we manage to perform so well

« Unknown environment: After some effort, we
can get a system to work for a finite
environment, but it fails in new areas

 Model structures: Learning can reveal
properties (regularities) of the system behaviour

— Modifies agent's decision models to
reduce complexity and improve
performance



Feedback in Learning

* Type of feedback:
— Supervised learning: correct answers for each
example

» Discrete (categories) : classification
« Continuous : regression

— Unsupervised learning: correct answers not given

— Reinforcement learning: occasional rewards



Inductive learning

« Simplest form: learn a function from examples

An example Is a pair (X, y) : X = data, y = outcome
assume: y drawn from function f(x) : y = f(x) + noise

f =target function

Problem: find a hypothesis h
such that h =f
given a training set of examples

Note: highly simplified model :
— Ignores prior knowledge : some h may be more likely
— Assumes lots of examples are available
— Objective: maximize prediction for unseen data — Q. How?



Inductive learning method

« Construct/adjust h to agree with f on training set
« (his consistent if it agrees with f on all examples)
* E.g., curve fitting:

fix)
i




Regression vs Classification
Y = f(x) Y

Regression:
y IS continuous

Classification:

y : set of discrete values
e.g. classes C,, C,, C,...

y € {1,2,3...}




Regression



Polynomial Curve Fitting

0 1

M
y(x,w) = wo + wizr + wox? + ... +wya™M = ij:cj
=0




Linear Regression
y =f(x) =Z w, . @(x)

@.(X) : basis function

W, I weights

Linear : function is linear in the weights
Quadratic error function --> derivative is linear in w



Sum-of-Squares Error Function
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Ot Order Polynomial
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15t Order Polynomial




3'd Order Polynomial




oth Order Polynomial




Over-fitting

—©— Training
—O— Test

M 6 9

Root-Mean-Square (RMS) Error: Egxys = /2E(w*)/N




Polynomial Coefficients

M=0 M=1 M=3 M =09
wg | 019  0.82 0.3l 0.35
w¥ 1.27  7.99 232.37
wi -25.43 -5321.83
Wi 17.37 18568.31
Wy -231639.30
wi 640042.26
Wi -1061800.52
Wk 1042400.18
Wi -557682.99
Wi 125201.43




oth Order Polynomial




Data Set Size: N =15

oth Order Polynomial




Data Set Size: v — 100

oth Order Polynomial




Regularization

Penalize large coefficient values
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Regularization: In X = —18




Regularization: InA =0

InA=0




Regularization: Egys VS. InA

Training
Test
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Polynomial Coefficients

InA=-o0 InA=-18 InA=0
wy 0.35 0.35 0.13
w3 232.37 4.74 -0.05
w3 -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.05
wy -231639.30 -3.89 -0.03
wi 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
ws | 1042400.18 -45.95 -0.00
w3 -557682.99 -91.53 0.00
wy 125201.43 72.68 0.01




Binary Classification




Regression vs Classification

v = f(x) ki

Regression:

y is continuous

Classification: X L.

y : discrete values e.g. 0,1,2... fiv)
for classes C,, C;, C,... f

Binary Classification: two classes
y €1{0,1}




Binary Classification

Preprocessing

¢ A

Feature extraction

v

Classification I

2 g

"salmon” "sea bass"




Feature : Length

scileron sea bass
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Feature : Lightness
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Minimize Misclassification

?

: R4 = R &
p(mistake) = p(x € Rqy,C2) + p(x € Ra,C1)
— p(x, C2) dx + f p(X, C1) dx.
Rl Rg




Feature Selection

- Feature selection : which feature is maximally
discriminative?

— Axis-oriented decision boundaries in feature
space

— Length — or — Width — or Lightness?

- Feature Discovery: construct g(), defined on the
feature space, for better discrimination




Feature Selection: width / lightness

select the most discriminative feature(s)
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Feature Selection

- Feature selection : which feature is maximally
discriminative?

— Axis-oriented decision boundaries in feature
space

— Length — or — Width — or Lightness?

- Feature Discovery: discover discriminative function
on feature space : g()

— combine aspects of length, width, lightness




Feature Discovery : Linear
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Feature Discovery : non-linear
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Feature Discovery : non-linear
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Learning process

- Feature set : representative? complete?

- Sample size : training set vs test set

- Model selection:
— Unseen data -2 overfitting?
— Quality vs Complexity
— Computation vs Performance




Probabllity Theory



Learning = discovering regularities

- Regularity : repeated experiments:
outcome not be fully predictable

outcome = “possible world”
set of all possible worlds = Q



Probabllity Theory

Apples and Oranges




Sample Space

Sample w = Pick two fruits,
e.g. Apple, then Orange
Sample Space Q = {(A,A), (A,0),

(0,A),(0,0);
= all possible worlds

Event e = set of possible worlds, e € Q
 e.g. second one picked is an apple




Learning = discovering regularities

- Regularity : repeated experiments:
outcome not be fully predictable

- Probability p(e) : "the fraction of possible worlds
in which e is true” i.e. outcome is event e

- Frequentist view : p(e) =limitas N —» =

- Belief view: In wager : equivalent odds
(1-p):p that outcome is in e, or vice versa



Axioms of Probability

- non-negative : p(e) 20

- unit sum p(Q) = 1
l.e. N0 outcomes outside sample space

- additive : if el, e2 are disjoint events (no
common outcome):

p(el) + p(e2) =p(el v e2)



Why probability theory?

different methodologies attempted for uncertainty:
— Fuzzy logic
— Multi-valued logic
— Non-monotonic reasoning

But unique property of probability theory:

If you gamble using probabilities you have the best
chance in a wager. [de Finetti 1931]

=> if opponent uses some other system, he's
more likely to lose




Joint vs. conditional probability

Marginal Probability
Y; i } T p(X =) = CN
)
Joint Probability Conditional Probability
PX =2, Y = y;) = -2 p(Y = y|X = ;) = "2

N C;




Probabllity Theory
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Product Rule




Rules of Probability

Sum Rule

Product Rule




Example

A disease d occurs in 0.05% of population. Atestis
99% effective Iin detecting the disease, but 5% of
the cases test positive in absence of d.

10000 people are tested. How many are expected to
test positive?

p(d) =0.0005; p(t/d)=0.99; p(t/~d)=0.05
p(t) = p(t,d) + p(t,~d) [Sum Rule]
= p(t/d)p(d) + p(t/~d)p(~d) [Product Rule]
= 0.99*0.0005 + 0.05 * 0.9995 = 0.0505 =>» 505 +ve




Bayes’ Theorem

p(X]Y)p(Y)
p(X)

p(Y]X) =

p(X)=> p(X[Y)p(Y)

posterior « likelihood x prior




Example

A disease d occurs in 0.05% of population. Atestis
99% effective in detecting the disease, but 5% of
the cases test positive in absence of d.

If you are tested +ve, what is the probability you have
the disease?

o(d/t) = p(d) . p(t/d) / p(t) : p(t) = 0.0505
o(d/t) = 0.0005 * 0.99 / 0.0505 = 0.0098 (about 1%)

If 10K people take the test, E(d) =5
FPs = 0.05 * 9995 = 500
TPs=0.99*5= 5. = only 5/505 have d




Probability Densities

4

ox L




Expectations

=" p(@) () E[f] = [ p(2)f (x) dz

discrete x continuous X

Freguentist approximation w unbiased sample

1N
ﬁ Z (both discrete / continuous)




Variances and Covariances

E.[f(r.,y)] :Sumoverx p(X)f(x,y) -->is a function of y
coviz,y| = Eqy[{z —Elz]}{y —Ely]}]
= Eayloy] — E[z]E[y]

covlx,y] = Exy [{X —Ex]Hy" - E[yT]H
= Exylxy']| —EXE[y"]




Gaussian Distribution



T

he Gaussian Distribution

1 1
N (x[p,0%) = 2ro)17E &P {_F(x — u)z}

Nl o) N (|, 0%) > 0

/ N (z|p,07) dz =1
20 o




Gaussian Mean and Variance

Elz] = /OO N (z|p,0%) zdz = p
Elz?] = foo N (zlp,0?) 2* dz = pu° + o

var[z] = E[z?] — E[z]? = o




Central Limit Theorem

Distribution of sum of N 1.1.d. random variables
becomes increasingly Gaussian for larger N.

Example: N uniform [0,1] random variables.




Gaussian Parameter Estimation

A

Observations  p(x)
assumed to be
indpendently
drawn from same
distribution (i.i.d)

Likelihood function N
p(x|p, o) = [ [ N (wnln, %)

n=1




Maximum (Log) Likelihood
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The Multivariate Gaussian
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Multivariate distribution
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joint distribution P(x,y) varies considerably
though marginals P(x), P(y) are identical

estimating the joint distribution requires
much larger sample: O(n¥) vs nk




Marginals and Conditionals
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marginals P(x), P(y) are gaussian
conditional P(x|y) is also gaussian




Non-intuitive in high dimensions

As dimensionality
increases, bulk of
data moves away

from center

p(r)

-

Ti

Gaussian in polar coordinates;
p(r)or : prob. mass inside annulus or at r.




Non-intuitive in high dimensions
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Bernoulli Process

Successive Trials — e.g. Toss a coin three times:
HHH, HHT, HTH, HTT, THH, THT, TTH, TTT

Probability of k Heads:

k 0 1 2 3
P(ky| 1/8 | 3/8 | 3/8 | 1/8




Model Selection




Model Selection

Cross-Validation

run 1

run 2

run 3

run 4




Curse of Dimensionality
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Curse of Dimensionality

Polynomial curve fitting, I\/I =3
D D D

y X, W = wWo + ngxz + ZZw@J:{:ZmJ + YTszjkxzmjxk

1=1 j=1 1=1 5=1 k=1

Gaussian Densities In
higher dimensions




Regression with Polynomials



Curve Fitting Re-visited

o T




Maximum Likelihood

Determlne ares error, /(W)

Z {y Lp, W) — }2




Predictive Distribution

p(tl, W, Bur) = N (Ely(z, waw), Byl )




MAP: A Step towards Bayes

p(wla) = N(w|0,a 'T) = (%)(M_H)/z exp {—%WTW}
p(wlx, t, a, B) o p(t|x, w, B)p(w|«)
BE(w :éi (T, W) —tn}* + W Tw
2 — ’ 2

Determine  WatAP by minimizing regularized sum-of-squares error, E(w)

MAP = Maximum Posterior



Bayesian Curve Fitting

p(tlz,x, t) = /p(t|a:,w)p(w|x,t) dw :N(t|m(x),82(a:))
m(z) = Bp(x)'S ) | Pp(an)tn $*(x) = B + p(2)"Sp(x)

N
STl =0l + 5 p@a)p(an)T  Plan) = (..., xM)"
n=1




Bayesian Predictive Distribution

p(tlz,x,t) = N (tjm(z), s*(x))




Information Theory



Twenty Questions

Knower: thinks of object (point in a probability space)
Guesser: asks knower to evaluate random variables

Stupid approach:

Guesser: Is it my left big toe?
Knower: No.

Guesser: Is it Valmiki?
Knower: No.

Guesser: Is it Aunt Lakshmi?




Expectations & Surprisal

Turn the key: expectation: lock will open

Exam paper showing: could be 100, could be zero.
random variable: function from set of marks
to real interval [0,1]

Interestingness & unpredictability

surprisal (r.v. = x) = - log, p(x)

=0whenp(x)=1
=1 when p(x) = %2
= o« when p(x) =0




Entropy

Hlz] = — ) p(x)logy p(x)

Used in
 coding theory
e statistical physics
* machine learning




Entropy
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Entropy

In how many ways can N identical objects be allocated M

ing?
bins” A

1 i i
H=<InW = lim (%)ln(%):—;pilnpi

Entropy maximized when  Vi:p; = L
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Entropy in Coding theory

X discrete with 8 possible states; how many bits to
transmit the state of x?

All states equally likely

1 1
H[z] = —8 x 3 log, 3= 3 bits.




Coding theory

x| a b C d s f g h
1 1 1 1 1 1 1 1
p(x) | 5 1 % 16 61 64 64 64
code | 0 10 110 1110 111100 111101 111110 111111
1 1 1 1 1 1 1 1 4 1
Hiz] = —Zlog, = — —log, = — =log, = — — log, — — — log, —
7] g 08275 T B2 T g 0828 T Tg 082 e T g 1082
= 2 bits
de length 1><1+1><2+1><3+1><4+4><1><6
r n — — — _ _ T
average code leng 5 1 3 T 61

= 2 bits




Entropy In Twenty Questions

Intuitively : try to ask g whose answer is 50-50
Is the first letter between A and M?

guestion entropy = p(Y)logp(Y) + p(N)logP(N)

For both answers equiprobable:
entropy = - ¥2 * log,(*2) - ¥2 * log,(¥2) = 1.0

For P(Y)=1/1028
entropy = - 1/1028 * -10 - eps = 0.01




Change of variable x=g(y)




