CS365: Artificial Intelligence

Quiz: Logic

Name:

Question 1. (Formalism): [5] Construct a turth-table and show that the rule of Material Equivalence is a tautology.

Solution:

ſ	p	q	$p \Rightarrow q$	$q \Rightarrow p$	$p \equiv q$	$(p \Rightarrow q) \land (q \Rightarrow p)$	$(p \equiv q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$
	Т	Т	Т	Т	Т	Т	Т
	Т	F	F	Т	\mathbf{F}	\mathbf{F}	Т
	F	Т	Т	F	F	\mathbf{F}	Т
	F	F	Т	Т	Т	Т	Т

Since $(p \equiv q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$ is true for all truth assignments of p and q, it is a tautology.

Question 2. (Propositional Logic): [10]

Prove the following using either resolution or traditional logic, using these propositions: S : I study; G: I get good grades; E: I enjoy.

- 1. If I study I make good grades.
- If I do not study I enjoy.
 ∴ either I make good grades or I enjoy.

Solution:

Traditional logic proof (one of many possible solutions):

1. $S \Rightarrow G$

2.
$$\neg S \Rightarrow E$$

$$\therefore G \lor E$$

- 3. $\neg E \Rightarrow S$ (2; transp.+D.N.)
- 4. $\neg E \Rightarrow G (3,1; \text{H.S.})$
- 5. $E \lor G$ (4; M.I.+D.N.)
- 6. $G \lor E$ (5; Comm.) \Box

Resolution Refutation Proof: (statements 1 to 4 are the Clause Form of the given statements; 3,4 are the Goal negation)

- 1. $\neg S \lor G$ [1]
- 2. $S \lor E$ [2]
- 3. $\neg G$ [G.N. part a]
- 4. $\neg E$ [G.N. part b]
- 5. $E \lor G(1,2)$
- 6. G(5,3)
- 7. NIL (6,3) \Box

Question 3. (First-Order Logic): [10]

Express the following in FOL and construct a proof using resolution refutation:

- 1. Everyone has a parent
- 2. For any persons x, y, and z, if z is y's parent and y is x's parent, then z is the grandparent of x.
- 3. Therefore, everyone has a grandparent.

Solution:

Translation to F.O.L. with predicates P(x,y) [x is parent of y] and G(x,y):

- 1. $\forall x \exists y P(y,x)$
- 2. $\forall x \; \forall y \; \forall z \; [P(y, x) \land P(z, y) \Rightarrow G(y, z)]$
- 3. $\therefore \forall x \exists y \ G(y, x)$

In resolution refutation, getting the **clause form** is the most critical step.

clause 1:

the clause says that "for every x, there is someone (y) who is the parent of x."

while removing $\exists y$, we must use a new *skolem function*: P(f(x),x). This notation is simply saying that the y for which P(y,x) is true, may be different for [has some dependence on] each x.

Common error: replacing $\exists y$ by a constant – e.g. p(A,x) – is saying that A is the parent for everyone. clearly not what is intended.

clause 2:

after removing quantifiers and implication, we have:

 $\neg [P(y_2, x_2) \land P(z_2, y_2)] \lor G(z_2, x_2)$

which says that:

either $(y_2 \text{ is not the parent of } x_2 \text{ and the child of } z_2)$, or $(z_2 \text{ is the grandparent of } x_2)$.

and after de Morgan's, we get:

 $\neg P(y_2, x_2) \lor \neg P(z_2, y_2) \lor G(z_2, x_2)$

which says that:

either $(y_2 \text{ is not the parent of } x_2)$ or $(y_2 \text{ is not the child of } z_2)$, or $(z_2 \text{ is the grandparent of } x_2)$.

Goal negation:

 $\exists x \ \forall y \neg G(y, x)$; (i.e. there is an x who has no grandparent) which becomes $\neg G(y_3, A)$; where A is a skolem constant.

Common error: the negation must be applied before removing quantifiers. otherwise, you'll get $\neg G(g(x), x)$. This says "everyone has no grandparent", which is much stronger than "someone has no grandparent".

In the derivation below, clauses 1,2 are from the statements and Clause 3 from the Goal Negation.

Proof using Resolution Refutation:

- 1. $P(f(x_1), x_1)$ [1]
- 2. $\neg P(y_2, x_2) \lor \neg P(z_2, y_2) \lor G(z_2, x_2)$ [2]
- 3. $\neg G(y_3, A)$ [GN]
- 4. $\neg P(y_2, A) \lor \neg P(z_2, y_2) [2,3; s = \{x_2/A, y_3/z_2\}]$
- 5. $\neg P(z_2, f(A))$ [4,1; $s = \{x_1/A, y_2/f(A)\}$]
- 6. NIL [5,1; $s = \{x_1/f(A), z_2/f(f(A))\}$]