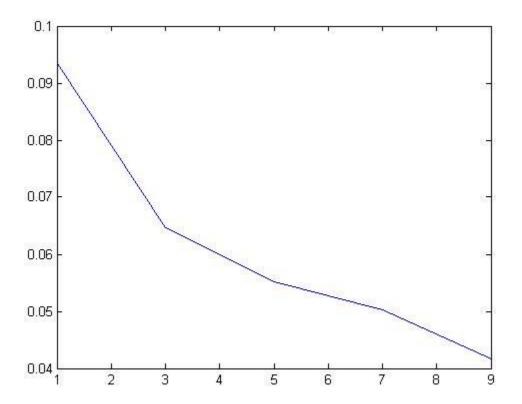
Assignment 1 Q3)

DEEP BELIEF NETWORK:

Deep Belief Networks


[Hinton06] showed that RBMs can be stacked and trained in a greedy manner to form so-called Deep Belief Networks (DBN). DBNs are graphical models which learn to extract a deep hierarchical representation of the training data. They model the joint distribution between observed vector \boldsymbol{x} and the $\boldsymbol{\ell}$ hidden layers \boldsymbol{h}^k as follows:

$$P(x, h^1, \dots, h^{\ell}) = \left(\prod_{k=0}^{\ell-2} P(h^k | h^{k+1})\right) P(h^{\ell-1}, h^{\ell})$$

where $x=h^0$, $P(h^{k-1}|h^k)$ is a conditional distribution for the visible units conditioned on the hidden units of the RBM at level k, and $P(h^{\ell-1},h^\ell)$ is the visible-hidden joint distribution in the top-level RBM.

Architecture	epochs	BATCH SIZE	ERROR
[100]	1	100	65.6136
[100]	10	100	41.0078
[100 500]	1	100	65.6136
[100 500]	10	100	41.7401
[100]	40	100	39.6237

Error decrease with no. of epochs.

