
3D Object Recognition with Deep Belief Nets

Vinod Nair and Geoffrey E. Hinton
Department of Computer Science, University of Toronto

10 King’s College Road, Toronto, M5S 3G5 Canada
{vnair,hinton}@cs.toronto.edu

Abstract

We introduce a new type of top-level model for Deep Belief Nets and evalu-
ate it on a 3D object recognition task. The top-level model is a third-order
Boltzmann machine, trained using a hybrid algorithm that combines both
generative and discriminative gradients. Performance is evaluated on the
NORB database (normalized-uniform version), which contains stereo-pair
images of objects under different lighting conditions and viewpoints. Our
model achieves 6.5% error on the test set, which is close to the best pub-
lished result for NORB (5.9%) using a convolutional neural net that has
built-in knowledge of translation invariance. It substantially outperforms
shallow models such as SVMs (11.6%). DBNs are especially suited for
semi-supervised learning, and to demonstrate this we consider a modified
version of the NORB recognition task in which additional unlabeled images
are created by applying small translations to the images in the database.
With the extra unlabeled data (and the same amount of labeled data as
before), our model achieves 5.2% error.

1 Introduction

Recent work on deep belief nets (DBNs) [10], [13] has shown that it is possible to learn
multiple layers of non-linear features that are useful for object classification without requir-
ing labeled data. The features are trained one layer at a time as a restricted Boltzmann
machine (RBM) using contrastive divergence (CD) [4], or as some form of autoencoder [20],
[16], and the feature activations learned by one module become the data for training the
next module. After a pre-training phase that learns layers of features which are good at
modeling the statistical structure in a set of unlabeled images, supervised backpropagation
can be used to fine-tune the features for classification [7]. Alternatively, classification can
be performed by learning a top layer of features that models the joint density of the class
labels and the highest layer of unsupervised features [6]. These unsupervised features (plus
the class labels) then become the penultimate layer of the deep belief net [6].

Early work on deep belief nets was evaluated using the MNIST dataset of handwritten digits
[6] which has the advantage that a few million parameters are adequate for modeling most of
the structure in the domain. For 3D object classification, however, many more parameters
are probably required to allow a deep belief net with no prior knowledge of spatial structure
to capture all of the variations caused by lighting and viewpoint. It is not yet clear how well
deep belief nets perform at 3D object classification when compared with shallow techniques
such as SVM’s [19], [3] or deep discriminative techniques like convolutional neural networks
[11].

In this paper, we describe a better type of top-level model for deep belief nets that is trained
using a combination of generative and discriminative gradients [5], [8], [9]. We evaluate the
model on NORB [12], which is a carefully designed object recognition task that requires

1

hj

lk

vi

(a)

hj

lk

vi

(b)

h1
h2

l1

v1 v2

l2

(c)

h1 h2

l1

l22

v1 v2

(d)

W112 W212

W122 W222W111 W211
h dd

111 211

W121 W221

Nv visible units

Nh hidden

units

(e)

Figure 1: The Third-Order Restricted Boltzmann Machine. (a) Every clique in the model contains
a visible unit, hidden unit, and label unit. (b) Our shorthand notation for representing the clique
in (a). (c) A model with two of each unit type. There is one clique for every possible triplet of
units created by selecting one of each type. The “restricted” architecture precludes cliques with
multiple units of the same type. (d) Our shorthand notation for representing the model in (c).
(e) The 3D tensor of parameters for the model in (c). The architecture is the same as that of an
implicit mixture of RBMs [14], but the inference and learning algorithms have changed.

generalization to novel object instances under varying lighting conditions and viewpoints.
Our model significantly outperforms SVM’s, and it also outperforms convolutional neural
nets when given additional unlabeled data produced by small translations of the training
images. We use restricted Boltzmann machines trained with one-step contrastive divergence
as our basic module for learning layers of features. These are fully described elsewhere [6],
[1] and the reader is referred to those sources for details.

2 A Third-Order RBM as the Top-Level Model

Until now, the only top-level model that has been considered for a DBN is an RBM with
two types of observed units (one for the label, another for the penultimate feature vector).
We now consider an alternative model for the top-level joint distribution in which the class
label multiplicatively interacts with both the penultimate layer units and the hidden units
to determine the energy of a full configuration. It is a Boltzmann machine with three-way
cliques [17], each containing a penultimate layer unit vi, a hidden unit hj , and a label unit
lk. See figure 1 for a summary of the architecture. Note that the parameters now form a
3D tensor, instead of a matrix as in the earlier, bipartite model.

Consider the case where the components of v and h are stochastic binary units, and l is a
discrete variable with K states represented by 1-of-K encoding. The model can be defined
in terms of its energy function

E(v,h, l) = −
∑

i,j,k

Wijkvihj lk, (1)

where Wijk is a learnable scalar parameter. (We omit bias terms from all expressions for
clarity.) The probability of a full configuration {v,h, l} is then

P (v,h, l) =
exp(−E(v,h, l))

Z
, (2)

where Z =
∑

v′,h′,l′ exp(−E(v′,h′, l′)) is the partition function. Marginalizing over h gives
the distribution over v and l alone.

2

The main difference between the new top-level model and the earlier one is that now the
class label multiplicatively modulates how the visible and hidden units contribute to the
energy of a full configuration. If the label’s kth unit is 1 (and the rest are 0), then the kth

slice of the tensor determines the energy function. In the case of soft activations (i.e. more
than one label has non-zero probability), a weighted blend of the tensor’s slices specifies
the energy function. The earlier top-level (RBM) model limits the label’s effect to changing
the biases into the hidden units, which modifies only how the hidden units contribute to
the energy of a full configuration. There is no direct interaction between the label and the
visible units. Introducing direct interactions among all three sets of variables allows the
model to learn features that are dedicated to each class. This is a useful property when the
object classes have substantially different appearances that require very different features
to describe. Unlike an RBM, the model structure is not bipartite, but it is still “restricted”
in the sense that there are no direct connections between two units of the same type.

2.1 Inference

The distributions that we would like to be able to infer are P (l|v) (to classify an input), and
P (v, l|h) and P (h|v, l) (for CD learning). Fortunately, all three distributions are tractable
to sample from exactly. The simplest case is P (h|v, l). Once l is observed, the model
reduces to an RBM whose parameters are the kth slice of the 3D parameter tensor. As a
result P (h|v, l) is a factorized distribution that can be sampled exactly.

For a restricted third-order model with Nv visible units, Nh hidden units and Nl class labels,
the distribution P (l|v) can be exactly computed in O(NvNhNl) time. This result follows
from two observations: 1) setting lk = 1 reduces the model to an RBM defined by the kth

slice of the tensor, and 2) the negative log probability of v, up to an additive constant,
under this RBM is the free energy :

Fk(v) = −

Nh∑

j=1

log(1 + exp(

Nv∑

i=1

Wijkvi)). (3)

The idea is to first compute Fk(v) for each setting of the label, and then convert them to a
discrete distribution by taking the softmax of the negative free energies:

P (lk = 1|v) =
exp(−Fk(v))

∑Nl

k=1
exp(−Fk(v))

. (4)

Equation 3 requires O(NvNh) computation, which is repeated Nl times for a total of
O(NvNhNl) computation.

We can use the same method to compute P (l|h). Simply switch the role of v and h in
equation 3 to compute the free energy of h under the kth RBM. (This is possible since the
model is symmetric with respect to v and h.) Then convert the resulting Nl free energies
to the probabilities P (lk = 1|h) with the softmax function.

Now it becomes possible to exactly sample P (v, l|h) by first sampling l̃ ∼ P (l|h). Suppose

l̃k = 1. Then the model reduces to its kth-slice RBM from which ṽ ∼ P (v|h, l̃k = 1) can be

easily sampled. The final result {ṽ, l̃} is an unbiased sample from P (v, l|h).

2.2 Learning

Given a set of N labeled training cases {(v1, l1), (v2, l2), ..., (vN , lN)} , we want to learn the
3D parameter tensor W for the restricted third-order model. When trained as the top-level
model of a DBN, the visible vector v is a penultimate layer feature vector. We can also
train the model directly on images as a shallow model, in which case v is an image (in row
vector form). In both cases the label l represents the Nl object categories using 1-of-Nl

encoding. For the same reasons as in the case of an RBM, maximum likelihood learning
is intractable here as well, so we rely on Contrastive Divergence learning instead. CD was
originally formulated in the context of the RBM and its bipartite architecture, but here we
extend it to the non-bipartite architecture of the third-order model.

3

An unbiased estimate of the maximum likelihood gradient can be computed by running a
Markov chain that alternatively samples P (h|v, l) and P (v, l|h) until it reaches equilibrium.
Contrastive divergence uses the parameter updates given by three half-steps of this chain,
with the chain initialized from a training case (rather than a random state). As explained
in section 2.1, both of these distributions are easy to sample from. The steps for computing
the CD parameter updates are summarized below:

Contrastive divergence learning of P (v, l):

1. Given a labeled training pair {v+, l+k = 1}, sample h+ ∼ P (h|v+, l+k = 1).

2. Compute the outer product D+

k = v+h+T .

3. Sample {v−, l−} ∼ P (v, l|h+). Let m be the index of the component of l− set to 1.

4. Sample h− ∼ P (h|v−, l−m = 1).

5. Compute the outer product D−

m = v−h−T .

Let W·,·,k denote the Nh×Nv matrix of parameters corresponding to the kth slice along the
label dimension of the 3D tensor. Then the CD update for W·,·,k is:

∆W·,·,k = D+

k −D−

k , (5)

W·,·,k ←W·,·,k + η∆W·,·,k, (6)

where η is a learning rate parameter. Typically, the updates computed from a “mini-batch”
of training cases (a small subset of the entire training set) are averaged together into one
update and then applied to the parameters.

3 Combining Gradients for Generative and Discriminative Models

In practice the Markov chain used in the learning of P (v, l) can suffer from slow mixing. In
particular, the label l− generated in step 3 above is unlikely to be different from the true
label l+ of the training case used in step 1. Empirically, the chain has a tendency to stay
“stuck” on the same state for the label variable because in the positive phase the hidden
activities are inferred with the label clamped to its true value. So the hidden activities
contain information about the true label, which gives it an advantage over the other labels.

Consider the extreme case where we initialize the Markov chain with a training pair
{v+, l+k = 1} and the label variable never changes from its initial state during the chain’s
entire run. In effect, the model that ends up being learned is a class-conditional generative
distribution P (v|lk = 1), represented by the kth slice RBM. The parameter updates are
identical to those for training Nl independent RBMs, one per class, with only the training
cases of each class being used to learn the RBM for that class. Note that this is very different
from the model in section 2: here the energy functions implemented by the class-conditional
RBMs are learned independently and their energy units are not commensurate with each
other.

Alternatively, we can optimize the same set of parameters to represent yet another distri-
bution, P (l|v). The advantage in this case is that the exact gradient needed for maximum
likelihood learning, ∂logP (l|v)/∂W , can be computed in O(NvNhNl) time. The gradient
expression can be derived with some straightforward differentiation of equation 4. The dis-
advantage is that it cannot make use of unlabeled data. Also, as the results show, learning
a purely discriminative model at the top level of a DBN gives much worse performance.

However, now a new way of learning P (v, l) becomes apparent: we can optimize the
parameters by using a weighted sum of the gradients for log P (v|l) and log P (l|v). As
explained below, this approach 1) avoids the slow mixing of the CD learning for P (v, l), and
2) allows learning with both labeled and unlabeled data. It resembles pseudo-likelihood in
how it optimizes the two conditional distributions in place of the joint distribution, except
here one of the conditionals (P (v|l)) is still learned only approximately. In our experiments,
a model trained with this hybrid learning algorithm has the highest classification accuracy,
beating both a generative model trained using CD as well as a purely discriminative model.

4

The main steps of the algorithm are listed below.

Hybrid learning algorithm for P (v, l):

Let {v+, l+k = 1} be a labeled training case.
Generative update: CD learning of P (v|l)

1. Sample h+ ∼ P (h|v+, l+k = 1).

2. Compute the outer product D+

k = v+h+T .

3. Sample v− ∼ P (v|h+, l+k = 1).

4. Sample h− ∼ P (h|v−, l+k = 1).

5. Compute the outer product D−

k = v−h−T .

6. Compute update ∆W g
·,·,k = D+

k −D−

k .

Discriminative update: ML learning of P (l|v)

1. Compute log P (lc = 1|v+) for c ∈ {1, ..., Nl}.

2. Using the result from step 1 and the true label l+k = 1, compute the update

∆W d
·,·,k = ∂ log P (l|v)/∂W·,·,c for c ∈ {1, ..., Nl}.

The two types of update for the cth slice of the tensor W·,·,c are then combined by a weighted
sum:

W·,·,c ←W·,·,c + η(∆W g
·,·,c + λ∆W d

·,·,c), (7)

where λ is a parameter that sets the relative weighting of the generative and discriminative
updates, and η is the learning rate. As before, the updates from a mini-batch of training
cases can be averaged together and applied as a single update to the parameters. In ex-
periments, we set λ by trying different values and evaluating classification accuracy on a
validation set.

Note that the generative part in the above algorithm is simply CD learning of the RBM for
the kth class. The earlier problem of slow mixing does not appear in the hybrid algorithm
because the chain in the generative part does not involve sampling the label.

Semi-supervised learning: The hybrid learning algorithm can also make use of unlabeled
training cases by treating their labels as missing inputs. The model first infers the missing
label by sampling P (l|vu) for an unlabeled training case vu. The generative update is then
computed by treating the inferred label as the true label. (The discriminative update will
always be zero in this case.) Therefore the unlabeled training cases contribute an extra
generative term to the parameter update.

4 Sparsity

Discriminative performance is improved by using binary features that are only rarely active.
Sparse activities are achieved by specifying a desired probability of being active, p << 1, and
then adding an additional penalty term that encourages an exponentially decaying average,
q, of the actual probability of being active to be close to p. The natural error measure to use
is the cross entropy between the desired and actual distributions: p log q +(1−p) log(1− q).
For logistic units this has a simple derivative of p−q with respect to the total input to a unit.
This derivative is used to adjust both the bias and the incoming weights of each hidden unit.
We tried various values for p and 0.1 worked well. In addition to specifying p it is necessary
to specify how fast the estimate of q decays. We used qnew = 0.9 ∗ qold +0.1 ∗ qcurrent where
qcurrent is the average probability of activation for the current mini-batch of 100 training
cases. It is also necessary to specify how strong the penalty term should be, but this is easy
to set empirically. We multiply the penalty gradient by a coefficient that is chosen to ensure
that, on average, q is close to p but there is still significant variation among the q values for
different hidden units. This prevents the penalty term from dominating the learning. One

5

added advantage of this sparseness penalty is that it revives any hidden units whose average
activities are much lower than p.

5 Evaluating DBNs on the NORB Object Recognition Task

5.1 NORB Database

For a detailed description see [12]. The five object classes in NORB are animals, humans,
planes, trucks, and cars. The dataset comes in two different versions, normalized-uniform
and jittered-cluttered. In this paper we use the normalized-uniform version, which has
objects centred in the images with a uniform background. There are 10 instances of each
object class, imaged under 6 illuminations and 162 viewpoints (18 azimuths × 9 elevations).
The instances are split into two disjoint sets (pre-specified in the database) of five each to
define the training and test sets, both containing 24,300 cases. So at test time a trained
model has to recognize unseen instances of the same object classes.

Pre-processing: A single training (and test) case is a stereo-pair of grayscale images, each
of size 96×96. To speed up experiments, we reduce dimensionality by using a “foveal” image
representation. The central 64 × 64 portion of an image is kept at its original resolution.
The remaining 16 pixel-wide ring around it is compressed by replacing non-overlapping
square blocks of pixels with the average value of a block. We split the ring into four smaller
ones: the outermost ring has 8 × 8 blocks, followed by a ring of 4 × 4 blocks, and finally
two innermost rings of 2 × 2 blocks. The foveal representation reduces the dimensionality
of a stereo-pair from 18432 to 8976. All our models treat the stereo-pair images as 8976-
dimensional vectors1.

5.2 Training Details

Model architecture: The two main decisions to make when training DBNs are the number
of hidden layers to greedily pre-train and the number of hidden units to use in each layer.
To simplify the experiments we constrain the number of hidden units to be the same at
all layers (including the top-level model). We have tried hidden layer sizes of 2000, 4000,
and 8000 units. We have also tried models with two, one, or no greedily pre-trained hidden
layers. To avoid clutter, only the results for the best settings of these two parameters are
given. The best classification results are given by the DBN with one greedily pre-trained
sparse hidden layer of 4000 units (regardless of the type of top-level model).

A DBN trained on the pre-processed input with one greedily pre-trained layer of 4000
hidden units and a third-order model on top of it, also with 4000 hidden units, has roughly
116 million learnable parameters in total. This is roughly two orders of magnitude more
parameters than some of the early DBNs trained on the MNIST images [6], [10]. Training
such a model in Matlab on an Intel Xeon 3GHz machine takes almost two weeks. See a
recent paper by Raina et al. [15] that uses GPUs to train a deep model with roughly the
same number of parameters much more quickly.

We put Gaussian units at the lowest (pixel) layer of the DBN, which have been shown to be
effective for modelling grayscale images [7]. See [7], [21] for details about Gaussian units.

6 Results

The results are presented in three parts: part 1 compares deep models to shallow ones,
all trained using CD. Part 2 compares CD to the hybrid learning algorithm for training
the top-level model of a DBN. Part 3 compares DBNs trained with and without unlabeled
data, using either CD or the hybrid algorithm at the top level. For comparison, here are
some published results for discriminative models on normalized-uniform NORB (without
any pre-processing) [2], [12]: logistic regression 19.6%, kNN (k=1) 18.4%, Gaussian kernel
SVM 11.6%, convolutional neural net 6.0%, convolutional net + SVM hybrid 5.9%.

1Knowledge about image topology is used only along the (mostly empty) borders, and not in
the central portion that actually contains the object.

6

6.1 Deep vs. Shallow Models Trained with CD

We consider here DBNs with one greedily pre-trained layer and a top-level model that
contains the greedily pretrained features as its “visible” layer. The corresponding shallow
version trains the top-level model directly on the pixels (using Gaussian visible units), with
no pre-trained layers in between. Using CD as the learning algorithm (for both greedy pre-
training and at the top-level) with the two types of top-level models gives us four possibilities
to compare. The test error rates for these four models(see table 1) show that one greedily
pre-trained layer reduces the error substantially, even without any subsequent fine-tuning
of the pre-trained layer.

Model RBM with Third-order
label unit RBM

Shallow 22.8% 20.8%
Deep 11.9% 7.6%

Table 1: NORB test set error rates for deep and shallow models trained using CD with two
types of top-level models.

The third-order RBM outperforms the standard RBM top-level model when they both have
the same number of hidden units, but a better comparison might be to match the number
of parameters by increasing the hidden layer size of the standard RBM model by five times
(i.e. 20000 hidden units). We have tried training such an RBM, but the error rate is worse
than the RBM with 4000 hidden units.

6.2 Hybrid vs. CD Learning for the Top-level Model

We now compare the two alternatives for training the top-level model of a DBN. There are
four possible combinations of top-level models and learning algorithms, and table 2 lists
their error rates. All these DBNs share the same greedily pre-trained first layer – only the
top-level model differs among them.

Learning RBM with Third-order
algorithm label unit RBM

CD 11.9% 7.6%
Hybrid 10.4% 6.5%

Table 2: NORB test set error rates for top-level models trained using CD and the hybrid
learning algorithms.

The lower error rates of hybrid learning are partly due to its ability to avoid the poor mixing
of the label variable when CD is used to learn the joint density P (v, l) and partly due to its
greater emphasis on discrimination (but with strong regularization provided by also learning
P (v|l)).

6.3 Semi-supervised vs. Supervised Learning

In this final part, we create additional images from the original NORB training set by
applying global translations of 2, 4, and 6 pixels in eight directions (two horizontal, two
vertical and four diagonal directions) to the original stereo-pair images2. These “jittered”
images are treated as extra unlabeled training cases that are combined with the original
labeled cases to form a much larger training set. Note that we could have assigned the
jittered images the same class label as their source images. By treating them as unlabeled,
the goal is to test whether improving the unsupervised, generative part of the learning alone
can improve discriminative performance.

There are two ways to use unlabeled data:

1. Use it for greedy pre-training of the lower layers only, and then train the top-level
model as before, with only labeled data and the hybrid algorithm.

2The same translation is applied to both images in the stereo-pair.

7

2. Use it for learning the top-level model as well, now with the semi-supervised variant
of the hybrid algorithm at the top-level.

Table 3 lists the results for both options.

Top-level model Unlabeled Unlabeled
(hyrbid learning jitter for jitter at the Error

only) pre-training top-level?
lower layer?

RBM with No No 10.4%
label unit Yes No 9.0%

Third-order No No 6.5%
model Yes No 5.3%

Yes Yes 5.2%

Table 3: NORB test set error rates for DBNs trained with and without unlabeled data, and
using the hybrid learning algorithm at the top-level.

The key conclusion from table 3 is that simply using more unlabeled training data in the
unsupervised, greedy pre-training phase alone can significantly improve the classification
accuracy of the DBN. It allows a third-order top-level model to reduce its error from 6.5%
to 5.3%, which beats the current best published result for normalized-uniform NORB without
using any extra labeled data. Using more unlabeled data also at the top level further improves
accuracy, but only slightly, to 5.2%.

Now consider a discriminative model at the top, representing the distribution P (l|v). Unlike
in the generative case, the exact gradient of the log-likelihood is tractable to compute.
Table 4 shows the results of some discriminative models. These models use the same greedily
pre-trained lower layer, learned with unlabeled jitter. They differ in how the top-level
parameters are initialized, and whether they use the jittered images as extra labeled cases
for learning P (l|v).

Initialization Use jittered
of top-level images as Error
parameters labeled?

Random No 13.4%
Random Yes 7.1%

Model with
5.2% error Yes 5.0%

from table 3

Table 4: NORB test set error rates for dis-
criminative third-order models at the top
level.

We compare training the discriminative top-
level model “from scratch” (random initializa-
tion) versus initializing its parameters to those
of a generative model learned by the hybrid al-
gorithm. We also compare the effect of using the
jittered images as extra labeled cases. As men-
tioned before, it is possible to assign the jittered
images the same labels as the original NORB
images they are generated from, which expands
the labeled training set by 25 times. The bot-
tom two rows of table 4 compare a discriminative
third-order model initialized with and without
pre-training. Pre-trained initialization (5.0%)

significantly improves accuracy over random initialization (7.1%). But note that discrimina-
tive training only makes a small additional improvement (5.2% to 5.0%) over the accuracy
of the pre-trained model itself.

7 Conclusions

Our results make a strong case for the use of generative modeling in object recognition.
The main two points are: 1) Unsupervised, greedy, generative learning can extract an
image representation that supports more accurate object recognition than the raw pixel
representation. 2) Including P (v|l) in the objective function for training the top-level model
results in better classification accuracy than using P (l|v) alone. In future work we plan to
factorize the third-order Boltzmann machine as described in [18] so that some of the top-level
features can be shared across classes.

8

References

[1] Y. Bengio, P. Lamblin, P. Popovici, and H. Larochelle. Greedy Layer-Wise Training of
Deep Networks. In NIPS, 2006.

[2] Y. Bengio and Y. LeCun. Scaling learning algorithms towards AI. In Large-Scale Kernel
Machines, 2007.

[3] D. DeCoste and B. Scholkopf. Training Invariant Support Vector Machines. Machine
Learning, 46:161–190, 2002.

[4] G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14(8):1711–1800, 2002.

[5] G. E. Hinton. To Recognize Shapes, First Learn to Generate Images. Technical Report
UTML TR 2006-04, Dept. of Computer Science, University of Toronto, 2006.

[6] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527–1554, 2006.

[7] G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313:504–507, 2006.

[8] M. Kelm, C. Pal, and A. McCallum. Combining Generative and Discriminative Methods
for Pixel Classification with Multi-Conditional Learning. In ICPR, 2006.

[9] H. Larochelle and Y. Bengio. Classification Using Discriminative Restricted Boltzmann
Machines. In ICML, pages 536–543, 2008.

[10] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evalu-
ation of deep architectures on problems with many factors of variation. In ICML, pages
473–480, 2007.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[12] Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object recognition
with invariance to pose and lighting. In CVPR, Washington, D.C., 2004.

[13] H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional Deep Belief Networks for
Scalable Unsupervised Learning of Hierarchical Representations. In ICML, 2009.

[14] V. Nair and G. E. Hinton. Implicit mixtures of restricted boltzmann machines. In
Neural information processing systems, 2008.

[15] R. Raina, A. Madhavan, and A. Ng. Large-scale Deep Unsupervised Learning using
Graphics Processors. In ICML, 2009.

[16] Marc’Aurelio Ranzato, Fu-Jie Huang, Y-Lan Boureau, and Yann LeCun. Unsupervised
learning of invariant feature hierarchies with applications to object recognition. In Proc.
Computer Vision and Pattern Recognition Conference (CVPR’07). IEEE Press, 2007.

[17] T. J. Sejnowski. Higher-order Boltzmann Machines. In AIP Conference Proceedings,
pages 398–403, 1987.

[18] G. Taylor and G. E. Hinton. Factored Conditional Restricted Boltzmann Machines for
Modeling Motion Style. In ICML, 2009.

[19] V. Vapnik. Statistical Learning Theory. John Wiley and Sons, 1998.

[20] P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol. Extracting and Composing
Robust Features with Denoising Autoencoders. In ICML, 2008.

[21] M. Welling, M. Rosen-Zvi, and G. E. Hinton. Exponential family harmoniums with an
application to information retrieval. In NIPS 17, 2005.

9

