
Learning Force Control Policies for Compliant Manipulation

Mrinal Kalakrishnan∗, Ludovic Righetti∗, Peter Pastor∗, and Stefan Schaal∗†

Abstract— Developing robots capable of fine manipulation
skills is of major importance in order to build truly assistive
robots. These robots need to be compliant in their actuation
and control in order to operate safely in human environments.
Manipulation tasks imply complex contact interactions with
the external world, and involve reasoning about the forces and
torques to be applied. Planning under contact conditions is
usually impractical due to computational complexity, and a lack
of precise dynamics models of the environment. We present an
approach to acquiring manipulation skills on compliant robots
through reinforcement learning. The initial position control
policy for manipulation is initialized through kinesthetic demon-
stration. We augment this policy with a force/torque profile
to be controlled in combination with the position trajectories.
We use the Policy Improvement with Path Integrals (PI2)
algorithm to learn these force/torque profiles by optimizing a
cost function that measures task success. We demonstrate our
approach on the Barrett WAM robot arm equipped with a 6-
DOF force/torque sensor on two different manipulation tasks:
opening a door with a lever door handle, and picking up a
pen off the table. We show that the learnt force control policies
allow successful, robust execution of the tasks.

I. INTRODUCTION

Developing robots capable of fine manipulation skills is
of major importance in order to build truly assistive robots.
Manipulation tasks imply complex contact interactions with
an unstructured environment and require a controller that is
able to handle force interactions in a meaningful way. In
order for robots to co-exist in an environment with humans,
safety is a prime consideration. Therefore, touching and
manipulating an unstructured world requires a certain level
of compliance while achieving the intended tasks accurately.

Methods for planning kinematic trajectories for manipula-
tors are well-studied and widely used. Rigid body dynamics
models even allow us to plan trajectories that take the robot
dynamics into account. However, once the robot comes into
contact with the environment, planning algorithms would
require precise dynamics models of the resulting contact
interactions. These models are usually unavailable, or so im-
precise that the generated plans are unusable. This seems to
suggest alternate solutions that can learn these manipulation
skills through trial and error.

Acquisition of manipulation skills using reinforcement
learning has been previously demonstrated [1], [2], [3],
[4], [5]. In most of these approaches, the policy encodes
positions which are tracked by a controller. These position

∗Computational Learning and Motor Control Lab, University of Southern
California, Los Angeles, CA 90089, USA. †Max-Planck-Institute for Intelli-
gent Systems, 72076 Tübingen, Germany. Email: {kalakris, pastorsa,
sschaal}@usc.edu, ludovic.righetti@a3.epfl.ch

This research was supported in part by National Science Founda-
tion grants ECS-0326095, IIS-0535282, IIS-1017134, CNS-0619937, IIS-
0917318, CBET-0922784, EECS-0926052, CNS-0960061, the DARPA pro-
gram on Advanced Robotic Manipulation, the Army Research Office, the
Okawa Foundation, and the ATR Computational Neuroscience Laboratories.

(a) (b)

Fig. 1. Force control policies for two different manipulation tasks were
learnt using our method: (a) opening a door, and (b) picking up a pen from
the table.

trajectories are adapted in order to achieve the task, thus
indirectly exerting forces on the objects being manipulated.
A desired position trajectory must penetrate into the object
being manipulated, in order to apply a force on it. This
can potentially be dangerous, for example, if the object is
wrongly positioned, and the resulting forces generated are
too high. In contrast, we propose to learn the forces and
torques to be controlled at the end-effector in conjuction with
a demonstrated kinematic trajectory. This corresponds more
directly to the physical quantities that need to be controlled.
Control of forces instead of positions allows the system
to deal with position and state estimation errors that are
unavoidable when acting in the real world. Furthermore, in
tasks that involve contact with the environment, exploration
in high gain position control mode could be damaging to the
robot and its surroundings.

Methods for learning force profiles from demonstrations
provided via haptic input have been proposed [6]. The
method does not explicitly consider task performance: it
merely reproduces the demonstrated trajectories. In the con-
text of our work, such techniques could be used to initialize
a force profile for futher optimization to improve task per-
formance.

In this paper, we present an approach to learning ma-
nipulation tasks on compliant robots through reinforcement
learning. An initial kinesthetic demonstration of the task is
provided. Execution of this demonstration on a robot with
compliant control fails to execute the task succesfully, be-
cause the demonstration does not include information about
forces to be exerted at the end-effector. We propose to learn
the required end-effector forces through trial and error rein-
forcement learning. This allows the robot to acquire a robust
strategy to perform the manipulation task, while remaining
compliant in its control. We demonstrate our approach on
two different manipulation tasks: opening a door with a lever
door handle, and picking up a pen off the table (Fig. 1). We
show that our approach can learn the force profiles required

2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems
September 25-30, 2011. San Francisco, CA, USA

978-1-61284-456-5/11/$26.00 ©2011 IEEE 4639

to achieve both tasks successfully. The contributions of this
paper are two-fold: (1) we demonstrate that learning force
control policies enables compliant execution of manipulation
tasks with increased robustness as opposed to stiff position
control, and (2) we introduce a policy parameterization
that uses finely discretized trajectories coupled with a cost
function that ensures smoothness during exploration and
learning. The remainder of this paper is structured as follows:
in Section II, we review the Policy Improvement with Path
Integrals (PI2) algorithm [7], and describe how it can used
to optimize desired trajectories subject to certain smoothness
constraints. We then discuss the application of PI2 to learning
force control policies in Section III. In Section IV, we show
experimental results from the application of these ideas to
two different manipulation tasks. Finally, we conclude and
present ideas for future work in Section V.

II. POLICY IMPROVEMENT WITH PATH INTEGRALS (PI2)
We first review the application of the path integral

stochastic optimal control framework to the optimization
of parameterized policies, specifically Dynamic Movement
Primitives [8], as was originally developed [7]. We then apply
these results to a policy which encodes discretized desired
trajectories directly, subject to a smoothness cost.

A. PI2 with Dynamic Movement Primitives
PI2 is a model-free reinforcement learning method that

optimizes the parameters of a policy to minimize a given cost
function. We merely introduce the notation and the algorithm
here; detailed derivations may be found in [7].

We consider control systems of the following form:

ẋt = f(xt, t) + G(xt)(ut + εt), (1)

where xt ∈ Rn denotes the state of the system at time t,
ut ∈ Rp the control vector at time t, f(xt, t) the passive
dynamics, G(xt) the control transition matrix, and εt ∈
Rp Gaussian noise with variance Σε. The immediate cost
function is defined as:

rt = qx(x, t) +
1

2
uT
tRut, (2)

where qx(x, t) is an arbitrary state-dependent cost function,
and R ∈ Rp×p is the positive definite weight matrix of the
quadratic control cost. The cost of a trajectory τ of fixed
duration T , discretized into N time-steps is then defined as:

S(τ) =

N−1∑
i=1

rti + φtN , (3)

where φtN is a terminal cost assigned at time tN . The
parameterized policy to be optimized is of the form of the
control system (1), with only one controlled equation and a
one-dimensional controllable state:

ẋt = f(xt, t) + gT
t (θ + εt), (4)

where xt is the one-dimensional state, gt ∈ Rp are time-
dependent basis functions, and θ ∈ Rp is the policy parame-
ter vector. Dynamic Movement Primitives (DMPs) [8] are a
special case of such a parameterized policy which guarantee
attractor properties towards the goal of the movement while
remaining linear in the policy parameters θ.

The pseudocode for one iteration of the PI2 algorithm for
optimizing the policy parameters θ is listed below:

• Create K roll-outs of the system τ 1 . . . τK from the
same start state x0 using stochastic parameters θ + εt
at every time step.

• For k = 1 . . .K, and time-steps i = 1 . . . N , compute:

Mti =
R−1gtig

T
ti

gT
tiR

−1gti
(5)

S(τ i,k) = φtN ,k +

N−1∑
j=i

qtj ,k+

1

2

N−1∑
j=i

(θ + Mtjεtj)
TR(θ + Mtjεtj) (6)

P (τ i) =
e−

1
λS(τ i,k)∑K

j=1 e
− 1
λS(τ i,j)

(7)

• For time-steps i = 1 . . . N , compute:

δθti =

K∑
k=1

P (τ i,k)Mti,kεti,k (8)

• Compute δθ = 1
N

∑N−1
i=0 δθti

• Update θ ← θ + δθ

Mti is a matrix that projects the noise εti onto the range
space of the basis vector gti under the metric R−1, at time
ti. P (τ i) is a discrete probability assigned to the sampled
trajectory τ i based on its cost: the lower the cost, the
higher the probability. δθti is the vector of parameter updates
computed at time ti, which is a weighted combination of
the noise εti projected onto Mti . δθ is the final parameter
update, computed as the average of updates for each time
step. This algorithm is iterated until convergence of the
noise-less trajectory cost.

B. PI2 with discretized trajectories
In this paper, we apply PI2 to the optimization of a

parameterized policy whose parameters represent the trajec-
tory states discretized in time. Most policy representations,
including DMPs involve the use of basis functions in order
to reduce the parameter space, and achieve smoothness in
the resulting trajectories. This requires apriori selection of
the number of basis functions, which in turn influences
the complexity of the trajectory that can be learnt. We
propose to instead represent trajectories by finely discretizing
them, and control their complexity using a smoothness cost
function imposed over the entire trajectory. While this is
not the primary focus of this paper, it is nevertheless a
novel component, and is potentially useful for other learning
applications.

The main challenge with using a finely discretized tra-
jectory representation is that adding noise directly to this
trajectory would make the resulting trajectory jerky and dif-
ficult to execute on a real robot. To address this problem, we
impose a control cost on the trajectory (via the quadratic cost
matrix R) that measures its squared derivatives (velocities,
accelerations and jerk). The PI2 algorithm relies on the
central assumption [7] that the noise ε in the parameters
is proportional to R−1. Conversely, it imposes restrictions

4640

(a) (b)

Fig. 2. (a) Each curve depicts a column/row of the symmetric matrix R−1,
when R measures the sum of squared accelerations along the trajectory. (b)
20 random samples of ε, drawn from a zero mean normal distribution with
covariance Σε = R−1.

on the generation of exploration noise, such that the noise
minimally impacts the control cost. In our case, this allows
generation of exploration trajectories that are smooth. The
structure of the R−1 matrix ensures that the trajectory does
not diverge from the start or goal. Finally, the projection step
in the PI2 update equation (Eq. (8)) maintains smoothness
at every iteration.

We assume a desired trajectory of duration T , discretized
into N timesteps, represented by θ ∈ RN . These discretized
waypoints can be tracked with the following controller:

ẋt = K (gT
t (θ + ε)− xt) , (9)

where xt is the desired state at time t, K is a control gain,
and gt ∈ RN is a vector that contains 1 at position t and
0 at all other indices. This system, with a sufficiently high
gain K, ensures that the state x tracks the desired trajectory
θ over time. This control system is of the same form as
Eq. (4), allowing PI2 to optimize the parameter vector θ.

Next, we choose the quadratic control cost matrix R such
that the control cost θTRθ measures the sum of squared
derivatives along the entire trajectory. Similar to previous
work on optimization-based motion planning [9], [10], we
define R using finite differencing matrices A1 . . .AD:

R =

D∑
d=1

wd‖Ad‖2, (10)

where d is the order of differentiation, and wd is the weight
of each term in the cost function. In our experiments, we
choose to minimize squared accelerations, i.e., w2 = 1, and
all other weights are 0. The corresponding finite differencing
matrix A2 is of the form:

A2 =

1 0 0 0 0 0
−2 1 0 · · · 0 0 0
1 −2 1 0 0 0

...
. . .

...
0 0 0 1 −2 1
0 0 0 · · · 0 1 −2
0 0 0 0 0 1

(11)

Note that R is always both symmetric and positive definite
when constructed in this fashion.

This particular choice of the R matrix exhibits a few
interesting properties. Fig. 2(a) shows the structure of R−1.
Fig. 2(b) shows samples of the noise ε, drawn from the
distribution N (0,R−1). The covariant structure of the noise

Initial Policy

Kinematic demonstration

+

Zero forces/torques

Fig. 3. A high-level overview of our approach to learning force control
policies for manipulation.

makes exploration in discrete trajectory space possible, since
these samples can be executed without trouble on a real
system. Since our policy parameter vector θ is constant over
time, we also sample the noise ε just once and keep it fixed
over the entire trajectory. If the noise were resampled at every
time-step, it would lose its covariant property. Additionally,
the noise samples do not cause the trajectory to diverge from
the start or goal, which is a property that facilitates learning
of point to point movements [11]. The level of discretization
used does not affect convergence rates, since exploration and
learning is performed covariantly across the entire trajectory,
not independently for each parameter. If adaptation of the
start or goal point is required, the construction of the finite
differencing matrices can be suitably adapted to treat the start
or goal point as a variable instead of a constant [12]. This
representation thus affords a significant amount of flexibility
to adapt the learning process to the problem at hand.

The PI2 update equations are the same as in the case
of the DMPs, with the sparse nature of gt allowing for
some simplifications. These update equations are strikingly
similar to those used in STOMP [10], a stochastic trajectory
optimizer used for kinematic motion planning, although
derived differently. There is, however, one key difference:
the planning problems considered by STOMP contain no
dynamics, hence it optimizes the immediate cost at every
time-step. For reinforcement learning on a dynamical system,
an action at time t influences all future costs, and hence
requires optimization of the cost-to-go (computed in Eq. (6).)

III. LEARNING FORCE FEEDBACK CONTROL

Fig. 3 shows a high-level overview of our approach to
learning manipulation tasks on a compliant robot. The policy
is initialized from a user-provided kinematic demonstration.
The PI2 reinforcement learning algorithm is used to optimize
the policy and acquire the right force/torque profiles through
trial and error. We further discuss some of the steps involved:

A. Demonstration
We record the end-effector position and orientation trajec-

tories during a kinesthetic demonstration of the task provided
by the user. Since forces and torques applied by the robot on
the object being manipulated cannot be observed correctly
during kinesthetic demonstration, the force-torque profiles
are initialized to zero. When controlling zero forces, the
robot is maximally compliant, i.e., the end-effector gives
in to contact forces easily. This forms a safe starting point

4641

for exploration, and ensures that only the forces required to
satisfy the task are learnt. We use the discretized policy rep-
resentation discussed in Sec. II-B, Eq. (9) for both position
and force trajectories.

B. Cost Function
In order to acquire the correct force/torque profiles, the

reinforcement learning algorithm requires a measure of task
success for every trial that it executes. This feedback could
be provided by the user for every trial, but it is more
convenient if task success can be evaluated in an automated
fashion. PI2 has previously been used to optimize boolean
cost functions [3], but learning tends to be faster if the cost
function has a gradient to follow.

C. Execution
The combined position/force trajectory needs to be con-

trolled by the robot in a suitable way. Numerous methods can
be found in the literature that control forces and positions
simultaneously [13]. PI2, being a model-free reinforcement
learning algorithm, is indeed agnostic to the type of con-
troller used. It simply optimizes the policy parameters to
improve the resulting cost function, treating the intermediate
controllers and unmodeled system dynamics as a black box.
However, the generalization ability of the learnt policy to
different parts of the workspace will depend on the force
and position tracking performance of the controller.

D. Rollout reuse
In every iteration of PI2, K noisy rollouts are generated,

evaluated, and used to update the policy. We instead prefer
to preserve a few good rollouts from previous iterations, so
that we continue to learn from them in future iterations,
and achieve stable convergence. However, if the task itself
is stochastic in nature, this procedure may be counter-
productive. For example, if a noisy rollout happens to achieve
a low cost during its evaluation, but is not repeatable, it
nevertheless continues to contribute to future policy updates.
In order to mitigate this effect, we reevaluate all the reused
rollouts at every iteration. This ensures that only rollouts that
consistently generate low costs are carried forward at each
iteration. This feature was critical for PI2 to converge to a
robust policy in the pen grasping experiment presented in
Sec. IV-B.

IV. EXPERIMENTS

Our approach was verified using two different manipula-
tion tasks: opening a door and picking up a pen lying on a
table. These tasks were chosen because each one involves
significant contact with the environment, and are thus ap-
propriate test-beds for the use of force control policies. The
learning process and final executions of both tasks are shown
in the attached video [14].

Both tasks were performed on the 7 degree of freedom
(DOF) Barrett WAM arm, equipped with a three-fingered
Barrett Hand and a 6-DOF force-torque sensor at the wrist.
Fig. 4 shows an overview of the controllers running on our
system. Our control law for the 7-DOF arm is as follows:

τ arm = τ inv. dyn. + τ joint + τ force

Desired task-space position/orientation trajectories are con-

+

Endeffector

Force/Torque

 PI Control

Finger

Low Gain

PD Control
Inverse

Dynamics
Low Gain

PD Control

WAM Robot

Inverse

Kinematics

Desired Cartesian

Position Trajectories
Desired Finger

Position Trajectories

Desired Cartesian

Force/Torque Trajectories

Fig. 4. Overview of the controllers used in our experiments.

verted into joint space using the Jacobian pseudo-inverse.
The resulting joint velocities are integrated and differenti-
ated, to get joint positions and accelerations respectively.
τ inv.dyn. are the inverse dynamics torques obtained from a
recursive Newton Euler algorithm [15]. τ joint is obtained
from low-gain joint PD controllers. Finally, τ force is obtained
from a PI controller in task space on the desired force/torque
trajectory, converted to joint space torques using the Jacobian
transpose. The fingers are position controlled using low-gain
PD controllers. All our controllers run at a rate of 300Hz on
a desktop computer running the Xenomai real-time operating
system.

A. Opening a door
The aim of this experiment is to learn a control policy to

successfully operate a lever door handle and open the door
shown in Fig. 1(a). A kinesthetic demonstration provides the
desired cartesian positions and orientations, while the desired
force/torque trajectories are initialized to 0. The trajectory
was 10 seconds long, discretized into 100 time-steps. Direct
playback of the demonstration fails to achieve the task due to
the compliance of the robot and failure to apply the required
forces and torques on the door handle.

In order to measure task success, we attached a Mi-
croStrain 3DM-GX3-25 Inertial Measurement Unit (IMU)
to the door handle. The resulting orientation measurement
gives us the angle of the handle and of the door itself. We
recorded the desired trajectories of the door angle and handle
angle during the demonstration: tracking these trajectories
forms the primary task success criterion. The immediate
cost function at time t is: rt = 300qdoor + 100qhandle +
100qpos+10qorient+0.1qfmag+0.02qtmag+0.02qttrack+
0.01qftrack + 0.0001θTRθ, where qdoor and qhandle are
the squared tracking errors of the door and handle angles
respectively, qpos and qorient are the squared tracking errors
of the position and orientation of the hand, qfmag and qtmag
are the squared magnitudes of the desired forces and torques,
qftrack and qttrack are the squared force and torque tracking
errors, and θTRθ is the control cost.

We use PI2 to learn policies for all 6 force/torque dimen-
sions. A relatively small exploration noise is also simulta-

4642

Fig. 5. Learnt force/torque control policy and tracking errors for the
door opening task. The green solid lines show the learnt desired forces
and torques respectively. The blue dashed lines indicate the corresponding
measured force/torque values.

(a) (b)
Fig. 6. Evolution of cost functions during learning for the two manipulation
tasks: (a) door opening, and (b) pen grasping.

neously introduced in the cartesian position and orientation,
to correct for imperfections in the demonstrated trajectory.
Fig. 6(a) shows the improvement in the cost with the number
of trials executed. After 110 trials, we obtained a policy
which achieved the task successfully 100% of the time, with
a cost of 498.1 ± 5.3, averaged over 23 trials. Learning
was terminated when all the noisy rollouts in a particular
learning iteration successfully achieved the task, indicating
that the learnt policy was robust to the exploration noise.
Fig. 5 shows the learnt force/torque profiles and their tracking
performance. Fig. 9 shows snapshots from an execution of
the final policy.

For this experiment, the proportional gains for the force
controller were set to 1, while integral gains are set to
0. In theory, a proportional gain of 1 should compensate
for the difference in desired and sensed forces. However,
due to the addition of the joint-space position controller,
these forces cannot be perfectly realized. Despite the force
tracking inaccuracies seen in Fig. 5, the algorithm learns to
achieve the task successfully. This is possible because the
PI2 learning algorithm treats the controllers as a black box;
it simply learns the required sequence of control inputs that
minimize the task cost function.

B. Grasping a pen
The next task is to pick up a pen from the table, as shown

in Fig. 1(b). This task is considered difficult, because the size
of the pen is comparable to the size of the finger-tips, making
the chance of slippage very high. In addition, this task would
be quite difficult to achieve using a pure position-control

Fig. 7. Learnt force/torque control policy and tracking errors for the pen
grasping task. The green solid line shows the learnt desired force in the z
axis. The blue dashed line indicates the corresponding measured force.

Fig. 8. This table shows the extent of position and orientation errors that
the final pen grasping force control policy was able to handle. Position error
was introduced along the direction of closing of the fingers. The ’O’ in the
center marks the original position of the pen during learning. The red ’X’
squares indicate failure, while the green empty squares indicate success.
Negative position errors were tolerated much better than positive errors,
because the hand has two fingers on this side, versus only one on the other.

strategy, since this would require very precise knowledge of
the pen position and the table height.

We use the following initial policy: we keep the desired
position and orientation of the hand fixed over the pen, while
closing the fingers to perform the grasp. The kinematics of
the fingers are such that the fingers dig into the table during
the motion (see Fig. 9 for a visual depiction of the grasping
motion). Servoing zero forces at the wrist allows the hand
to move up when the fingers come into contact with the
table. While this simple strategy works for larger objects, it
was not successful at grasping the pen. Hence, we would
like to learn a profile of downward forces to be applied into
the table that can help in robustly grasping the pen. We use
both proportional and integral gains in the force controller
in order to achieve good force tracking. We use PI2 to learn
the desired force in the z axis, while fixing desired x and
y torques to 0. Force control gains for the remaining 3 axes
are set to zero.

We detect whether the pen has been grasped or not based
on the finger joint angles crossing a threshold value. We
assign a cost for every time-step that the joint angles are
above this threshold. This provides a gradient to the learning
algorithm, i.e., the longer the pen remains grasped without
slipping, the lower the cost. Costs are accumulated during the
6-second grasping phase as well as a subsequent 6-second
lifting phase, which verifies the stability of the grasp. As
with the previous experiment, trajectories were discretized
into 100 time-steps. The immediate cost function at time t
is: rt = 100qpen+1.0qftrack+0.5qfingertrack+0.1qfmag+
0.0001θTRθ, where qpen is an indicator cost which is 1 if the
pen has slipped out of the hand (as described above), qftrack
is the squared force tracking error, qfingertrack is the squared
finger position tracking error, qfmag is the squared force
magnitude, and θTRθ is the control cost. After 90 trials, we

4643

Fig. 9. Sequence of images from executions of the learnt policies for the two manipulation tasks: (top) opening a door with a lever handle, and (bottom)
picking up a pen from the table. The attached video shows the learning process and final executions of each of these tasks.

converged to a policy for which all noisy rollouts succeeded.
This final policy achieved a success rate of 100%, with a cost
of 47.1 ± 0.8, averaged over 21 trials. Fig. 6(b) shows the
evolution of costs during the learning process. For this task,
we set the proportional gains of the force controller to 1,
but also use an integral gain of 0.1. This allows better force
tracking when the fingers are in contact with the table. The
learnt force profile and its tracking performance are shown
in Fig. 7.

During learning, we keep the position and orientation of
the pen fixed, i.e. robustness to position and orientation
uncertainty was not incorporated in the learning process. We
found, however, that the final learnt policy was robust to
position and orientation uncertainty. Fig. 8 shows the extent
of position and orientation errors that could be tolerated by
our policy. We believe these robustness results could further
be improved upon if uncertainty were to be incorporated in
the learning process [3].

Finally, we recorded the cartesian position and orientation
trajectories from a successful grasp, and replayed these
trajectories without the force controller. This policy was
unsuccessful at grasping the pen, which shows that the learnt
force control policy plays a significant role in achieving the
task.

V. CONCLUSION

The need for compliant actuation in robotics is well
understood. In this paper, we have presented a learning
approach for compliant manipulation. The approach relies on
initialization of a desired position trajectory through kines-
thetic demonstration, followed by learning of a desired force
profile through reinforcement learning. We have successfully
demonstrated the application of this approach to two different
manipulation tasks. We have also shown that the use of force
control policies can potentially allow robots to increase their
robustness towards localization errors. Explicit training of
these policies for robustness is a promising direction for

future work. Another potential improvement can arise from
limiting the generation of noise in force/torque space to
directions constrained by contact.

REFERENCES

[1] J. Buchli, E. Evangelos Theodorou, F. Stulp, and S. Schaal, “Variable
impedance control - a reinforcement learning approach,” in Robotics
Science and Systems, 2010.

[2] P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal,
“Skill learning and task outcome prediction for manipulation,” in IEEE
Intl. Conf. on Robotics and Automation, 2011.

[3] F. Stulp, E. Theodorou, J. Buchli, and S. Schaal, “Learning to grasp
under uncertainty,” in IEEE Intl. Conf. on Robotics and Automation,
2011.

[4] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill
coordination with em-based reinforcement learning,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems, October 2010, pp. 3232–
3237.

[5] J. Kober and J. Peters, “Policy search for motor primitives in robotics,”
Machine Learning, pp. 1–33, 2009.

[6] P. Kormushev, S. Calinon, and D. G. Caldwell, “Imitation learning of
positional and force skills demonstrated via kinesthetic teaching and
haptic input,” Advanced Robotics, vol. 25, no. 5, pp. 581–603, 2011.

[7] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” Journal of Machine
Learning Research, pp. 3137–3181, 2010.

[8] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor
landscapes for learning motor primitives,” in Advances in Neural
Information Processing Systems 15. MIT Press, 2002, pp. 1547–
1554.

[9] N. Ratliff, M. Zucker, J. Bagnell, and S. Srinivasa, “CHOMP: Gradient
optimization techniques for efficient motion planning,” in IEEE Intl.
Conf. on Robotics and Automation, 2009, pp. 12–17.

[10] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
IEEE Intl. Conf. on Robotics and Automation, 2011.

[11] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682 – 697,
2008.

[12] A. Dragan, N. Ratliff, and S. Srinivasa, “Manipulation planning with
goal sets using constrained trajectory optimization,” in IEEE Intl. Conf.
on Robotics and Automation, May 2011.

[13] B. Siciliano, L. Sciavicco, and L. Villani, Robotics: modelling, plan-
ning and control. Springer Verlag, 2009.

[14] “Video,” http://www.youtube.com/watch?v=LkwQJ9 i6vQ.
[15] R. Featherstone, Rigid body dynamics algorithms. Springer-Verlag

New York Inc, 2008.

4644

