FIGURE

NOTE : FIGURE NOT TO SCALE

ACG and BDF are two robots with L = 15 with AC,CG and BD,DF as its arm. so,AC = CG = BD = DF = 15 units.

Base distance between robots is 20 units So AB = 20 units.

Consider a square shape box whose center (E) is at (5,12) w.r.t base of left arm on the left (A (0,0))

The two arm tips are holding the box along its horizontal midline at points G (2.5,12) and F(7.5,12) To find $\theta_1, \theta_2, \theta_3, \theta_4$ of the two robots as shown in figure.

Since length of arms of robot are equal , so $\triangle ACG$ and $\triangle BDF$ are isosceles.

Drop perpendicular's CM and DN on AG and BF. Being isosceles it will bisect the line segment. AG = $\sqrt{(12-0)^2 + (2.5-0)^2} = \sqrt{150.25}$

 $BF = \sqrt{(12 - 0)^2 + (7.5 - 20)^2} = \sqrt{3000.25}$ In Right $\triangle ACM$ $cos \angle CAM = \frac{AM}{AC} = \frac{AG/2}{AC} = \frac{AG}{2AC} = \frac{\sqrt{150.25}}{2*15} = 0.408588$ $\angle CAM = 65.883811 \text{ degrees}$ Similarly In Right $\triangle BDN$ $cos \angle NBD = \frac{BN}{BD} = \frac{BF/2}{BD} = \frac{BF}{2BD} = \frac{\sqrt{300.25}}{2*15} = 0.5775908$ $\angle NBD = 54.71873 \text{ degrees}$ Drop prependiculars GH and FJ to AB.
In Right $\triangle GAH$ $tan \angle GAH = \frac{GH}{AH} = \frac{12}{2.5} = 4.8$ $\angle GAH = 78.231 \text{ degrees}$ Similarly In Right $\triangle FJB$ $tan \angle FBJ = \frac{FJ}{BJ} = \frac{12}{12.5}$ (BJ = AB - HJ - AH = 20 - 5 - 2.5 = 12.5) $\angle FBJ = 43.83086 \text{ degrees}$

From the figure it is clear that.

 $\begin{array}{l} \theta_1 = \angle {\rm GAH} + \angle {\rm CAM} = 144.11552 \ {\rm degrees} \\ \theta_2 = -(2 \ ^* \ \angle {\rm CAM}) = -131.76762 \ {\rm degrees} \ ({\rm Negative \ because \ angle \ is \ measured \ in \ clockwise \ sense}) \\ ({\rm Exterior \ angle \ property, and \ } \triangle {\rm ACG \ is \ isosceles}) \\ \theta_3 = 180 \ - (\angle {\rm NBD} + \ \angle {\rm FBJ}) = 81.45041 \ {\rm degrees} \\ \theta_4 = 2 \ ^* \ \angle {\rm NBD} = 109.43746 \ {\rm degrees} \end{array}$

Note that , only this angle configuration is possible, since $\angle BFK (= \angle NBD = 54.7187)$ is more than $\angle BFJ (= 90 - \angle FBJ = 46.2)$