Assignment - 2

B. (3).

A, A^{\prime}, B and B^{\prime} denotes the angle opposite to the sides a, a^{\prime}, b and b^{\prime} respectively in their corresponding triangles.

Given,

$$
\begin{aligned}
& b=b^{\prime}=15 \\
& A+2 B=\pi \\
\Rightarrow \quad & B=\pi / 2-A / 2
\end{aligned}
$$

By hypotenuse theorem,

$$
\begin{aligned}
a & =\sqrt{ }\left((2.5)^{2}+(12)^{2}\right) \\
\Rightarrow \quad a & =12.26 \\
\text { Similarly, } \quad a^{\prime} & \left.=\sqrt{(}(12.5)^{2}+(12)^{2}\right) \\
\Rightarrow \quad a^{\prime} & =17.32
\end{aligned}
$$

By Sine Theorem,

Similarly,

$$
\begin{aligned}
& \sin \left(A^{\prime} / 2\right)=a^{\prime} / 2 b^{\prime} \\
\Rightarrow \quad A^{\prime} / 2 & =\sin -1\left(a^{\prime} / 2 b^{\prime}\right) \\
& =0.62\left(35.28^{\circ}\right)
\end{aligned}
$$

$$
\mathrm{B}^{\prime}=\pi / 2-\mathrm{A} / 2
$$

$$
=0.95\left(54.72^{\circ}\right)
$$

$$
\theta_{3}=\pi-\left(B^{\prime}+\tan ^{-1}(12 / 12.5)\right)
$$

$$
=\pi-(0.95+0.76)
$$

$$
=1.43\left(81.97^{\circ}\right)
$$

$$
\theta_{4}=B^{\prime}+B^{\prime}
$$

$$
=1.91\left(109.44^{\circ}\right)
$$

Results -

$$
\begin{aligned}
& \theta_{1}=2.52\left(144.19^{\circ}\right) \\
& \theta_{2}=-2.30\left(-131.36^{\circ}\right) \\
& \theta_{3}=1.43\left(81.97^{\circ}\right) \\
& \theta_{4}=1.91\left(109.44^{\circ}\right)
\end{aligned}
$$

Note: All angles are measured in anti-clockwise direction.

$$
\begin{aligned}
& a / \sin (A)=b /(\sin (B)) \\
& \sin (A) / \sin (B)=a / b \\
& \sin (A) / \cos (A / 2)=a / b \\
& \text {-------(From (i)) } \\
& 2 \sin (A / 2) \cos (A / 2) / \cos (A / 2)=a / b \\
& \Rightarrow \quad \sin (A / 2)=a / 2 b \\
& \Rightarrow A / 2=\sin ^{-1}(a / 2 b) \\
& =0.421\left(24.12^{\circ}\right) \\
& \Rightarrow \quad B=\pi / 2-\mathrm{A} / 2 \\
& =1.15\left(65.88^{\circ}\right) \\
& \theta_{1}=B+\tan ^{-1}(12 / 2.5) \\
& =1.15+1.37 \\
& =2.52\left(144.19^{\circ}\right) \\
& \theta_{2}=-(B+B) \\
& =-2.30\left(-131.76^{\circ}\right)
\end{aligned}
$$

