1. Modus Ponens (M.P.) | p ⇒q ∴ q |
2. Modus Tollens (M.T.) | p⇒q ~q ∴ ~p |
3. Hypothetical Syllogism (H.S.) | p⇒q q⇒r ∴ p⇒r |
4. Disjunctive Syllogism (D.S.) | p ∨ q ~ p ∴ q |
5. Constructive Dilemma (C.D. | (p⇒q) . (r⇒s) p ∨ r ∴ q v s |
6. Absorption (Abs.) | p⇒q ∴ p ⇒ (p∧q) |
7. Simplification (Simp.) | p∧q ∴ p |
8. Conjunction (Conj.) | p q ∴ p∧q |
9. Addition (Add.) | p ∴ p ∨ q |
10. De Morgan’s Theorem (De M.) | ~(p∧q) ≡ (~p∨~q) ~(p∨q) ≡ (~p∧~q) |
11. Commutation (Com.) | (p∨q) ≡ (q∨p) (p∧q) ≡ (q∧p) |
12. Association (Assoc.) | [p∨(q∨r)] ≡ [(p∨q)∨r] [p∧ (q∧r)] ≡ [(p∧q) ∧r] |
13. Distribution (Dist) | [p∧(q∨r)] ≡ [(p∧q)∨(p∧r)] [p∨(q∧r)] ≡ [(p∨q) ∧ (p∨r)] |
14. Double Negation (D.N.) | p ≡ ~ ~p |
15. Transposition (Trans.) | (p⇒q) ≡ (~q ⇒~p) |
16. Material Implication (M. Imp.) | (p⇒q) ≡ (~p∨q) |
17. Material Equivalence (M. Equiv.) | (p≡q) ≡ [(p⇒q) ∧ (q⇒p)] (p≡q) [(p∧q)∨(~p ∧ ~q)] |
18. Exportation (Exp.) | [(p∧q) r] ≡ [p ⇒ (q ⇒ r)] |
19. Tautology (Taut.) | p ≡ (p∨p) p ≡ (p∧p) |