
CS350 HW3

Due: October 20, 2011

1. Semantics of Trigger Creation for Lazy Execution. Extend your program of Assignment 2 to support
lazy execution. Support the following operation. [byneed [subr (p)] [ident (x)]

You can assume that the program is sequential except for laziness, so you need not implement the
semantic multistack or the thread scheduler. You need not program trigger activation semantics.

[25 points]

2. Consider the nondeteministic choice operation described below.

{Choose [X1#S1 X2#S2 . . . Xn#Sn]}

Here, X1, . . . , Xn are boolean-valued variables, and S1, . . . , Sn are statements. You can assume that
the list is non-empty.

The operation should behave as follows. If X(1), . . . , X(k) is the subsequence of variables bound to
true, then nondeterministically select one of S(1), . . . , S(k), and execute it. If every variable is bound
to false, raise a “missingClause” exception. If no variable is bound, the statement blocks.

If this operation is possible, give its translation in Oz syntax. If it is not possible, explain which
limitation of Oz prevents us from implementing this. Assume facilities provided in the message-passing
model of Oz.

[10 points]

3. Section 5.7.3 gives the translation of Erlang’s receive without timeouts, into Oz. Supplement the
pattern matching mechanism described with guards. The receive operation should block until a pattern
is matched. If a pattern is matched and the corresponding guard is satisfied, then the message is
removed from the mailbox and the body executed. If no pattern is matched or some matched pattern
fails the guard, the receive blocks waiting for a suitable message.

Please consult section 6.19.9 of the Erlang specification, at www.erlang.org/download/erl_spec47.
ps.gz

[10 points]

1

www.erlang.org/download/erl_spec47.ps.gz
www.erlang.org/download/erl_spec47.ps.gz


4. Erlang Programming.

(a) Implement a finite-state automaton for the regular expression a(ba)∗b as a module. This module
should export a public function is accepted/1 which takes a list of characters as argument, and
returns true if the string is accepted by the finite automaton, and false if it is not accepted.

For example,

is_accepted([a,b]) == true

is_accepted([a]) == false

[15 points]

(b) Let us denote a list of characters like [a b] as a string. Write an Erlang program which will
take a list of strings, spawn one process per string, and return the list of results of the finite-state
automata running on the strings.

For example,

results([[a] [a,b]]) == [true,false].

[10 points]

5. Write an erlang function that will discard all messages till the last message, and return the last message.

[10 points]

2


