A Network Layer Approach to Enable TCP over
Multiple Interfaces

Kameswari Chebrolu, Bhaskaran Raman, Ramesh Rao

Abstract— The mobile Internet is set to become ubiquitous
with the deployment of various wireless technologies. When
heterogeneous wireless networks overlap in coverage, a mo-
bile terminal can potentially use multiple wireless interfaces
simultaneously. In this paper, we motivate the advantages of
simultaneous use of multiple interfaces and present a network
layer architecture that supports diverse multi-access services.
Our main focus is on one such service provided by the
architecture: Bandwidth Aggregation (BAG), specifically for
TCP applications.

While aggregating bandwidth across multiple interfaces can
improve raw throughput, it introduces challenges in the form
of packet reordering for TCP applications. When packets are
reordered, TCP misinterprets the duplicate ACKS received as
indicative of packet loss and invokes congestion control. This
can significantly lower TCP throughput and counter any gains
that can be had through bandwidth aggregation. To improve
overall performance of TCP, we take a two-pronged approach:
(1) We propose a scheduling algorithm that partitions traffic
onto the different paths (corresponding to each interface)
such that reordering is minimized. The algorithm estimates
available bandwidth and thereby minimizes reordering by
sending packet pairs on the path that introduces the least
amount of delay. (2) A buffer management policy is introduced
at the client to hide any residual reordering from TCP. We
show through simulations that our network-layer approach
can achieve good bandwidth aggregation under a variety of
network conditions.

Index Terms— Network Architecture, Scheduling Algo-
rithm, Simulation, TCP applications

I. INTRODUCTION

With the growth of the mobile Internet, a variety of
wireless technologies are being deployed for Internet access.
Examples include GPRS, HDR, UMTS, Iridium, 802.11,
Bluetooth, etc. Several research challenges [1]-[4] related
to the use of a single wireless technology at the mobile
client have been explored so far. Considerable research
has also gone into enabling seamless vertical handoffs [5],
content adaptation [6] when moving from one interface to
another. However, most research in this domain has been
confined to single interface use at any given time to meet
the connectivity requirements of the mobile client.

When coverage areas of the different wireless technolo-
gies overlap, end users need not restrict themselves to a
single interface. They can choose multiple interfaces to

make use of all available resources on their interfaces. The
feasibility of using multiple interfaces simultaneously helps
solve some of the limitations of wireless media, and enables
new and exciting services. There are several advantages with
such a setting:

« Bandwidth Aggregation: Aggregating bandwidth of-
fered by the multiple interfaces can help improve
quality or support demanding applications that need
high bandwidth.

« Mobility Support: Handoff related delay can be min-
imized by keeping an alternate communication path
alive.

« Reliability: High levels of reliability guarantees can be
achieved (for applications that require it) by duplicat-
ing/encoding some or all packets on the multiple paths.

« Resource Sharing: The idea of multiple-path use can
also be extended to scenarios involving more than a
single client host. For instance, in an ad-hoc network
of nodes connected in a LAN (via say 802.11 or Blue-
tooth), a subset of nodes may have WAN connections.
The multiple WAN bandwidth resources can be shared
effectively across all the nodes to access the Internet.

« Data-Control Plane Separation: The WAN interfaces
in an ad-hoc/sensor network can also be used for out
of band control communication, to enable simplified
and/or efficient distributed ad-hoc protocols such as
routing.

An architecture that supports multiple communication
paths is required to realize scenarios such as those listed
above. In this paper, we begin by providing a general
framework in the form of such an architecture. We focus our
attention on one of the services provided by the architecture:
Bandwidth Aggregation (BAG). BAG in essence tries to
achieve the following - if we can obtain, say a bandwidth of
200kbps and 100kbps from two interfaces, can we aggregate
bandwidth and obtain in total a bandwidth of 300kbps? Our
focus is on the performance of TCP over such bandwidth
aggregation. In concurrent work [7] we have considered
bandwidth aggregation for real-time interactive applications
with strict QoS requirements.

The architecture can be addressed at different layers of
the protocol stack. Though many link layer solutions [8]-
[10] exist, they are infeasible in our setup, as networks span

different domains. While application and transport layer
solutions as proposed in [11]-[14] can be used, they are
cumbersome to implement as they involve many changes
in the infrastructure — applications and/or server software
have to be changed. Network layer solutions, on the other
hand have the advantage of being totally transparent to
applications and involve only minimal changes. A network
layer solution is easy to deploy, and legacy applications in
particular can benefit from this approach.

Our network layer architecture consists of an infrastruc-
ture proxy. A single proxy may provide services to a set
of mobile clients, and multiple proxies may be provisioned
for reliability and scalability. Some of the features of the
network proxy are similar in spirit to that provided by
Mobile IP [15]. The client acquires a fixed IP address from
the proxy and uses it in establishing connections with the
remote server. The proxy (like the Home-Agent in Mobile-
IP) captures packets destined for the client. The proxy is
aware of the multiple interfaces of the client, and tunnels the
captured packets to the client using IP-in-IP encapsulation.
Unlike Mobile IP, the proxy can manage multiple care-of-
addresses and perform intelligent scheduling of (tunneled)
packets across the corresponding multiple paths.

One of the services provided by the architecture is that
of bandwidth aggregation (BAG) for TCP applications.
While the use of multiple interfaces allows us to increase
throughput, the varying characteristics of the different paths
(corresponding to different interfaces) introduce problems in
the form of packet reordering. Packet reordering can degrade
TCP performance due to the following reasons:

« For every reordered packet, a TCP receiver generates a
duplicate ACK (DUP-ACK). On receiving more than
3 DUP-ACKs, the TCP sender considers the packet
lost and enters fast retransmit and resends the packet
that was only delayed (on one of the interfaces) — this
wastes scarce bandwidth.

o The TCP sender also assumes loss as indicative of
network congestion and reduces its sending rate by
cutting down the congestion window by half.

« Depending on the particular TCP implementation, re-
ordering can also generate bursts of packets. If the
TCP sender is not allowed to send packets in response
to DUP-ACKSs, when a new ACK covering new data
arrives, it produces a burst?.

o Reordering can also affect calculation of round-trip
time (RTT) estimation and hence retransmission time-
out (RTO) as for every packet that is needlessly re-
transmitted, the RTT sample is ambiguous and cannot
be used.

1| the TCP implementation uses max-burst factor as outlined in [16],
burst sizes can be reduced.

In this paper, we systematically address this challenge
of reordering in the presence of multiple communication
paths. We first demonstrate the degradation in performance
that can be caused due to reordering. Based on this, we
identify a set of criteria that will help improve the overall
TCP performance. We then propose a scheduling algorithm
- PET (Packet-Pair based Earliest-Delivery-Path-First algo-
rithm for TCP applications) that partitions the traffic onto
the multiple paths to minimize reordering while utilizing
bandwidths of the interfaces effectively. PET minimizes
reordering by estimating the delivery time of packets on
each Internet path and scheduling packets on the path that
delivers it the earliest. Since, fundamental to scheduling
is an estimate of the available bandwidth on any path, it
obtains this estimate by sending packets in pairs as far as
possible and using their inter-arrival spacing for calculating
the estimate.

Given the dynamic nature of Internet paths, some amount
of reordering is inevitable. To get around this, we propose
a client-side buffer management policy (BMP) that tries to
hide any residual reordering from TCP so that unnecessary
retransmissions are avoided. BMP buffers out of order
packets at the network layer and passes them to TCP in
order. It also attempts to detect losses and react to them in
a timely fashion.

We study the performance of the proposed approaches
through simulations under a variety of network conditions.
PET in conjunction with BMP outperforms by a large
margin naive schemes like weighted round robin (WRR)
that don’t attempt to minimize reordering. Also the per-
formance of PET-BMP is close to an application layer
bandwidth aggregation scheme MTCP, where multiple TCP
connections are opened, one on each interface. Our network
layer approach is effective in addressing the challenge of
reordering, and is thus performance-effective in addition to
being easily deployable.

The rest of the paper is organized as follows. In the next
section (Section I1), we describe our architecture. Section 111
presents our experimental design methodology. We identify
a set of design criteria for improving performance of TCP
in Section IV. Subsequently, in Section V the scheduling
algorithm and buffer management policy are described.
Simulation results are presented in Section VI, while in
Section VII, we discuss some of our assumptions and their
validity. We discuss related work in Section VIII and finally
conclude in Section IX.

Il. ARCHITECTURE AND SERVICES

In this section, we briefly present the motivation behind a
network-layer architecture, and the functional components
of our architecture. We also describe one of the services
provided by the architecture - BAG, which is the focus point

of this paper. Additional details of the architecture can be
found in [17].

A. Why a Network Layer Architecture?

The architecture can potentially be addressed at different
layers of the protocol stack. Link layer solutions are infea-
sible in this setup, as the networks span different domains,
and we may have heterogeneous wireless networks. An
application-level solution is a possible design alternative,
and works by making applications aware of the multi-
ple interfaces. Application specific optimization is possible
here and can lead to better efficiency. However, given
the diversity of applications, this approach would mean
modifying/rewriting the various applications while ensur-
ing compatibility with existing infrastructure, making wide
spread deployment a difficult job. Further, the applications
need to keep track of the state of different interfaces. And
when multiple applications share common client resources
(interfaces), they also have to be designed carefully to avoid
negative interaction. These factors can increase application
complexity.

Transport layer solutions (e.g. [13], [14]) share some of
the same features as application layer solutions. While they
can be efficient, they still need all server software to be
changed, and require cooperation during standardization to
prevent negative interaction.

With IP emerging as a unifying standard for wireless
networks, a network layer approach has the advantages of
being transparent to applications and transport protocols. No
changes are needed in server software, making wide spread
deployment lot easier. Legacy applications, in particular,
can benefit from this approach, as they have no other
design alternative. Another advantage with this setting is
a centralized approach (at the network proxy) to end user
flow management that can potentially prevent any negative
interaction.

While the network layer approach overcomes most lim-
itations of the other approaches, there are efficiency con-
cerns as it operates further down the stack. However, we
believe that with careful design, most inefficiencies can
be minimized (we demonstrate this for the case of TCP
applications in this paper). Further, our design choice as
such does not preclude further optimization at the higher
layers. In fact, our architecture can enhance higher layer
approaches in terms of mobility support. In the absence of
this solution, higher layer approaches may have to handle
mobility themselves or rely on multiple Mobile IP initiations
to handle the multiple interfaces (which to our knowledge
is not supported by Mobile IP). We now briefly describe the
main details of our architecture.

Base stations

Wireless
|nterfaces m __(Internet Path 1
5 Network
E}g F Proxy
&2’ . . Internet Path 2)— E]
CI|ent = [
(MH) Server

\
ternet Patl

Fig. 1. Architecture to Support Multiple Communication Paths

Service Network
(Proxy side network)

Client
(Laptop/PDA)

Application

Mobility | -1 -
Manager
T
Access raffic
Selection
]

Manager
Access

Discovery

Performance
Monitoring Unitf| -~~~

Fig. 2. Functional Components of the Architecture
B. Architecture

Fig 1 shows a high level overview of the architecture.
The network proxy can provide many different services
(Bandwidth Aggregation, mobility support, resource sharing
etc) to the client (the MH). The MH is connected to the
Internet via multiple network interfaces, with each interface
having a care-of IP address. In addition, the MH acquires
a fixed IP address from the network proxy and uses it to
establish connections with the remote server. The MH also
registers its multiple care-of IP addresses with the proxy.
When the application traffic of the MH passes through the
domain of the proxy (i.e., through the fixed IP address
acquired from the proxy), the proxy intercepts the packets
and performs necessary application or transport-specific
processing. It then tunnels them using IP-in-IP encapsula-
tion to the client’s different interfaces. This mechanism is
similar to that used in Mobile IP [15] but has been extended
to handle multiple interfaces. Note that this mechanism is
needed in our architecture even when the client is stationary
— for simultaneous use of interfaces, not just for mobility
support.

The functional components that make up our architecture
reside on the MH and on the network proxy, and are as
shown in Fig. 2. The Profile Manager generates a profile
based on user input and application needs for each applica-
tion. The profile specifies how to handle the application flow
— the interfaces to use, the granularity of sharing (per packet
or per session) while scheduling, any additional functional-
ity needed (reliability, content adaptation etc). Based on this
profile generated, the MH activates the necessary interfaces
(if not already up) using the Access Selection component in

conjunction with Access Discovery. The profile information
is also conveyed to the Profile Server at the proxy. The
Mobility Manager registers the care-of IP addresses with the
Mobility Server on the network proxy. The Traffic Manager
performs the necessary processing and scheduling of traffic
onto the multiple interfaces based on the profile information,
as well as input from the Performance Monitoring Unit
(PMU). The PMUs on both ends monitor various char-
acteristics such as the throughput/delay of the path from
the proxy to the different interfaces, power consumption
at the MH, etc. They also communicate with each other
periodically to keep this information up to date.

BAG services: One of the services provided by the
architecture towards increasing application throughput is
that of Bandwidth Aggregation (BAG). While peak data
rates in wireless networks have shown an increasing trend:
9.6kbps (GSM-TDMA) in 2G to 2Mbps(UMTS) in 3G, the
typical rates a user can expect to see in a loaded network are
still very small [18] - 40kbps in 1xRTT, 80kbps in EDGE,
250kbps in UMTS. Even 802.11 interfaces that can provide
speeds of upto 11Mbps, often are constrained in bandwidth
since most hot spots these days connect to the Internet via
“broadband” (DSL/Cable) which constitutes a bottleneck
under load. Supporting real-time applications with stringent
QoS requirements, large file transfers, intense web sessions
is a difficult task and may not even be possible if confined
to a single interface. Using bandwidth available from all
possible sources increases one’s bandwidth, and may be the
only option to support demanding applications.

In this paper, we focus our attention on BAG services for
TCP applications. In the context of the overall architecture
presented above, a crucial aspect that dictates TCP perfor-
mance is the scheduling algorithm (PET) residing on the TM
at the proxy. This algorithm PET, splits the traffic onto the
different paths with the objective of minimizing reordering.
The client-side TM has a buffer management policy (BMP)
that processes the incoming data before passing it on to
the TCP layer. BMP tries to hide from TCP any residual
reordering that happens. The above explanation corresponds
to down-link traffic. The same holds for up-link traffic, with
the roles of PET and BMP reversed at proxy and MH. We
discuss the design of BAG and BMP in Section V. Prior
to that, we present our experimental design methodology
to help understand the design and the results presented in
future sections.

I1l. EXPERIMENTAL METHODOLOGY

Our design and evaluation are based on experimental
simulations since this allows us to quickly explore a wide
range of possibilities and design choices in a controlled
manner. We use the ns-2 network simulator [19] (version
2.1b9a) for our simulations.

We use the generic network topology captured in Fig. 1.
In our experiments, the main TCP flow is an FTP transfer
from the server to the MH. In our studies, we consider a
wide variety of scenarios to understand the performance of
PET-BMP. We consider both: (a) the presence of cross traffic
and losses at the BS, and (b) their absence. While the first
is a more realistic setting, the second helps us understand
behavior of PET-BMP in response to each parameter better.

For the cross-traffic, we consider a mix of both FTP and
web flows that compete with the main flow for the BS’s
link capacity. Losses are introduced via - 1) congestion at
the BSs, where each BS has a maximum queue size and
implements a drop-tail queuing policy and 2) channel errors,
where the BSs introduce uniformly distributed errors in the
packets.

We use Weighted Fair Queuing (WFQ) [20] for packet
scheduling at the base stations where all flows through the
base station are given the same weight. This permits equal
sharing of the scarce wireless link capacity among all the
flows. Our WFQ implementation uses a single buffer for
storing packets from all the flows.

A. Parameter Settings

The details of the various parameter settings of our ex-
periments are as follows. We consider either 2 or 3 wireless
interfaces (communication paths). We do not consider more
than 3 interfaces since such a scenario is unlikely in practice.

The main FTP/TCP flow lasts for 60 seconds, which is the
duration of the experiment. The server uses the New-Reno
variant of TCP, where the maximum congestion window
size is set to 50 packets. The packet size used is 1500 bytes.
We also use a max-burst factor, which limits to four the
number of packets that can be sent in response to a single
ACK. Without this, New-Reno could send a large burst of
packets upon exiting Fast Recovery [16]. The TCP sink at
the MH does not use delayed Acks.

The number of cross-traffic FTP and web clients con-
sidered for the different interfaces vary depending on the
experiment. The size of the cross traffic FTP transfers are
uniformly distributed between 200 and 2000 kbytes and
their start-times are uniformly distributed between 0 and 60
seconds respectively — the total duration of the experiments.
The web clients run for the entire 60 sec of the simulation.
The details of the CDFs for think/reply/size used in web
clients can be found in [21].

We consider a range of values for the link capacities of the
various interfaces. For experiments without any cross traffic,
we experimented with 3 interfaces with link capacities of
50kbps, 100kbps and 200kbps. These values reflect the
bandwidths one can expect to see on WWANSs when the
wireless channel is dedicated for single use to the MH. In
the presence of cross traffic, we increase the link capacities

Base-Stationl
B, wmH

Base-Station2
[T - B,

Base-Station3
3

Network Proxy

Fig. 3. A Simplifi ed View of the Network between Proxy and MH

of all interfaces to 1000kbps. Note that even in this case,
since we consider different cross traffic patterns at the BSs,
the average throughput available on the interfaces can be
quite asymmetric.

The server and the proxy are connected by a 10Mbps
link with a one-way delay of 15ms. The proxy and Base
Stations (BS) are connected by 10 Mbps links with one-
way delay of 50ms on each. In next generation networks,
the BSs are considered to be an extension of the Internet.
Accordingly, we set the one way delay from proxy to BSs
values typical of present day Internet paths. The results are
not particularly sensitive to the exact value of the one-way
delay. The bandwidth value of 10 Mbps ensures that the
wireless interfaces are the bottleneck.

B. Algorithms Under Comparison

For comparison purposes, we consider three ideal systems
which place a limit on the best that can be achieved by
a network layer approach to bandwidth aggregation. One
is an application-layer solution, MTCP, where we open
multiple TCP connections one on each interface and sum the
throughputs achieved on the individual interfaces. The other
point of comparison is Aggregated Single-Interface TCP
(ASI), where we replace the multiple interfaces with a single
interface of the aggregate capacity. The third is a system that
employs an idealized scheduling policy Earliest Delivery
Path First (EDPF) [7], [22] at the proxy. A brief overview
of the algorithm is as below. Further details of this algorithm
can be found in [7], [22]. (In [7], this algorithm was used to
achieve bandwidth aggregation for video applications that
run on UDP).

The overall idea behind EDPF is to (1) take into consider-
ation the overall path characteristics between the proxy and
the MH — delay, as well as the wireless bandwidth, and (2)
schedule packets on the path which will deliver the packet
at the earliest to the MH. The network between the proxy
and the MH can be simplified as shown in Fig. 3. Each
path [(between the proxy and the MH) can be associated
with three quantities: (1) D;, the one-way wireline delay
associated with the path (between the proxy and Base
Station - BS), (2) B, the bandwidth available at the BS,
and (3) a variable A;, which is the time the wireless channel
becomes available for the next transmission at the BS. If we
denote by a;, the arrival instance of the ' packet (at the

proxy) and by L;, the size of the packet, this packet when
scheduled on path [would arrive at the MH at d..

di = MAX (a; + Dy, A)) + Li/ By @

The first component computes the time at which trans-
mission can begin at the BS, and the second component
computes the packet transmission time. EDPF schedules
the packet on the path p where, p = {l : dﬁ <dr1 <
m < N}, N being the number of interfaces. That is, the
path with the earliest delivery time. EDPF then updates A,
to d?. EDPF tracks the queues at each of the base-stations
through the A; variable. By tracking the queues at the base-
stations and taking it into account while scheduling packets,
EDPF ensures that it uses all the available path bandwidths,
while achieving minimal packet reordering. EDPF has the
property that when packets are of the same size, it eliminates
reordering fully.

We note that comparison with ASI is meaningful only in
the no-cross-traffic case. This is because, if we introduce
cross traffic in ASI by summing up the cross traffic at each
individual BS, the throughput of the main TCP flow goes
down considerably. This is in turn because, the available
bandwidth in ASI now gets distributed equally among all
the flows. On the contrary, when using multiple interfaces
the available bandwidth at a BS gets distributed only among
the flows served by it. Also, note that MTCP is in general
more aggressive than any single end-to-end TCP connection
since it uses multiple congestion windows.

IVV. DESIGN CRITERIA

To motivate the design of the Earliest Estimated Delivery
Path First (PET) and the Buffer Management Policy (BMP),
we now present some preliminary results and derive a set
of design criteria from them. We first state the criterion,
and subsequently explain the reasoning behind it, presenting
simulation results as necessary.

Criterion 1: Utilize bandwidth of all interfaces

Our objective is to achieve the maximum possible
throughput from the server to the MH using TCP over an
underlying heterogeneous network, without any modifica-
tions to TCP. The maximum throughput is achieved only if
we utilize the bandwidth of all the interfaces — hence this
criterion.

Criterion 2: Minimize reordering

Let us now look at what happens when one uses all the
interfaces. A simple scheduling policy that can be imple-
mented at the proxy is the Weighted Round Robin (WRR),
where the number of packets sent on a path (corresponding
to an interface) is proportional to the link capacity of
the interface. Table | shows the performance of WRR in
comparison with MTCP, ASI and EDPF (focus on the first
four rows). As can be seen from the table, the throughput

| Algorithm | Thr(kbps) | DupAcks | Retrx |

MTCP 3396 0 0
ASI 339.6 0 0
EDPF 339 0 0
WRR 2106 533 | 128
[WRRBUFF | 3380 | 0] 0]
[PETBMP| 3368] 0] 0]
TABLE |

IDEAL SITUATION - NO CROSS TRAFFIC, NO LOSSES

achieved by WRR is much lower than MTCP, ASI or
EDPF. This is due to several unnecessary retransmissions.
Whenever packets are reordered, the TCP sink generates
DUP-ACKSs. On receipt of more than 3 DUP-ACKSs for a
packet, the TCP sender considers the packet lost and invokes
congestion control by reducing the sending rate (halving the
congestion window). On the other hand, as can be seen,
EDPF has performed as well as ASI and MTCP. Now,
EDPF is an idealized scheduling policy that has perfect
knowledge of the system parameters, and is thereby able to
eliminate reordering altogether. In reality however, one can
only estimate these parameters and schedule accordingly.
So, eliminating reordering totally may not be feasible, so
the best one can do is to minimize reordering.

Criterion 3: Hide reordering from TCP

Since reordering is inevitable in practice and can have
quite a negative impact on TCP, let us see if its possible
to overcome its effects. The main problem with reordering
is the generation of DUP-ACKSs. Since we do not wish to
make any changes to TCP, we can prevent the generation
of DUP-ACKSs by buffering packets at the client (at the
network layer) and passing them in order to TCP. So, in
the previous example, suppose we employ such a simple
buffering mechanism at the client, the performance of WRR
can be significantly improved. As can be seen from Table I,
WRR-BUFF (WRR with client buffering) performs similar
to EDPF, MTCP, and ASI. Hence this third design criterion:
“hide reordering from TCP”.

Note that this does not mean that we can relax the
second criterion of minimizing reordering assuming that its
effects can be masked by buffering. In the previous example
experimental setup, the amount of reordering was small.
Hence buffering helped in overcoming reordering.

Simply buffering may not help if the amount of reordering
is large. To see this, suppose we increase the delay on the
third interface (the one with capacity 50kbps) from 50ms to
a much higher value of 1s, there is a lot more reordering in
WRR. This is because WRR considers only link capacities
and not path delays while scheduling. In this setup, EDPF
achieves 337.4 kbps, WRR 95.6 kbps, and WRR-BUFF only
70.4 kbps. EDPF achieves good bandwidth aggregation as
the scheduling ensures that there is no reordering (unlike

250 T T T T T T T

200 e A
J MTCP:ifa0 —+—
MTCP:ifal —=—
MTCP:ifa2 —e—
A EDPF:ifaQ ---2---
; EDPF:ifal ---&---

A EDPF:ifa2 ---0--
100 f —— ! 1

150

Throughput (kbps)

50 H/" e e e e e o)

el

Time (sec)

Fig. 4.

WRR, EDPF considers path delays in addition to link
capacities). On the other hand, WRR and WRR-BUFF have
much lower throughput, even lower than what we could have
achieved had we not performed bandwidth aggregation but
just used the highest bandwidth interface (200kbps). Further,
the performance of WRR with buffering is even worse than
without buffering. This is because there are as many as 40
retransmission timeouts in case of WRR-BUFF. Since no
DUP-ACKSs reached the sender to trigger fast retransmission
(due to client buffering), this forced the sender to enter slow
start each time.

Criterion 4: Detect packet losses and react to them in a
timely fashion

So far we have not considered losses. The simple buffer-
ing policy above works because of this. However in the
presence of losses, we could potentially wait indefinitely
until the next expected sequence number comes while
storing out-of order packets. This would eventually trigger
a retransmission timeout at the TCP sender for each packet
loss. When losses are present, we need to react to them in
a timely fashion, or otherwise risk retransmission timeouts
which lower throughput significantly. So in the presence of
buffering it is important to detect losses and react to them
in a timely fashion.

Criterion 5: Avoid Burstiness of Traffic

Another problem with buffering out of order packets is
that sending them all at once to the TCP receiver will
generate a burst of ACKs and they in turn generate a burst
of packets at the TCP sender. In general bursty traffic is not
a good feature and is better avoided as it increases queuing
delay, introduces more losses and lowers throughput [23].

Criterion 6: Isolate losses

Since we are using multiple interfaces, the different paths
can have different loss rates. Since TCP reacts to losses
by reducing the sending rate, it is important to ensure that
losses on one path don’t affect the achievable throughput
on the other paths. We term this as loss isolation. Note that
MTCP achieves such isolation naturally.

Figure 4 shows the instantaneous throughput (averaged

Isolation of Losses

over 1 second intervals) of EDPF and MTCP when losses
(congestion based) are introduced at the BS with 200kbps
capacity by setting the maximum queue size to 30kbytes.
As can be seen in the figure, in case of MTCP, the losses on
one interface have not affected other interfaces but in case
of EDPF, losses on one interface (ifa-0) have lowered the
throughput on other interfaces (ifa-1 and ifa-2). This is not
desirable. So, the final design criterion is to isolate losses.
Note that criteria 1, 2 and 6 dictate the design of the
scheduling algorithm at the proxy while criteria 3, 4 and 5
dictate the design of buffer management at the client.

V. SCHEDULING AND BUFFER MANAGEMENT

We now present our design of a network layer solution
to bandwidth aggregation for TCP applications based on
the design criteria described in the previous section. There
are two main parts of our solution: Packet-Pair based
Earliest-Delivery-Path-First scheduling algorithm for TCP
applications (PET) at the proxy, and the Buffer Management
Policy (BMP) at the MH. We look at each in turn.

A. Packet Pair based Earliest-Delivery-Path-First Schedul-
ing Algorithm for TCP applications (PET)

Consider the EDPF scheduling discipline. It is able to
achieve good utilization of bandwidth on all interfaces while
minimizing reordering (criteria 1 and 2) because it has
perfect knowledge of the system parameters. In reality,
we can only estimate these parameters. So, if the design
of PET is based on the same concept of EDPF but with
perfect knowledge replaced by estimates, we can hope
to meet criteria 1 and 2 to some extent. The parameters
of concern for PET scheduling at the proxy are: (1) the
wireline delay on each of the communication paths from
the proxy to the BSs, and (2) the available bandwidth on
the wireless link. The available bandwidth in turn translates
to the transmission and queuing delay at the BSs.

In the next generation Radio Access Networks, Base
Stations (BSs) are considered to be an extension of the IP
based Internet. Accordingly, we consider the delay expe-
rienced by the packets up to the BS, similar in nature to
Internet path delays. This wireline delay can be estimated
by sending signaling packets to the MH during connection
setup (clock synchronization is not required since only the
relative delay between the different paths matters). This in
general suffices because Internet path delays are known to
vary only slowly, over several tens of minutes [24]. Further,
any errors in estimation are usually small (as average delays
on the backbone are themselves small), and will likely
be masked by the transmission and queuing delay at the

bottleneck bandwidth 2.

The second parameter, the available bandwidth, is de-
pendent on the amount of cross traffic, fluctuating channel
conditions etc. These can definitely change in the middle of
a connection. Hence the available bandwidth, unlike delay,
needs to be estimated and updated continually throughout
the duration of the connection. Our overall approach for
estimating this available bandwidth is based on the packet-
pair technique [25]. The packet-pair technique estimates the
bottleneck capacity of a path from the dispersion (spacing)
experienced by two packets which were sent back-to-back.
Since the wireless link is often the bottleneck in the network
path and since we assume that the BSs implement WFQ,
bandwidth estimation based on this technique is feasible.

Using separate signaling packets to probe bandwidth con-
tinuously is excess overhead. Further, the probing packets
will compete with the main flow for available bandwidth.
Hence we rely on the incoming TCP packets themselves
for bandwidth estimation by treating every incoming TCP
packet as part of a pair and sending packets in pairs on any
path.

Since PET at the proxy needs the inter-arrival time
between packet pairs to update its bandwidth estimate,
we introduce an additional mechanism in the form of a
feedback loop between the MH and the proxy to get this
information. We achieve this by means of Signaling-ACKs
(SIG-ACKs) sent from the MH to the proxy for each TCP
packet received from the sender (via the proxy). Note that
these are different from the regular ACK stream, which may
not even pass through the proxy. The MH reports the packet
arrival times in the SIG-ACKs (again, clock synchronization
not necessary since the proxy only needs the inter-arrival
times).

Once PET has the delay and bandwidth estimates, it
can use EDPF with idealized delay and bandwidth values
replaced by the estimates. In essence, the working of PET
is as follows. PET treats every incoming packet as part of
a pair. To begin with, PET has no bandwidth estimates to
perform scheduling. So, there is an initial phase where it
sends packet-pairs on the various paths in a round-robin
fashion, until it gets a bandwidth estimate of the bottle-
neck in the path through SIG-ACKSs. Then, it uses these
bandwidth estimates to perform EDPF based scheduling to
determine the path (interface) on which to send the first
packet of a pair. The second packet of a pair is always sent
on the same path as the first packet. Retransmitted packets

2Present day wireless technologies such as GPRS, IxRTT show a
high degree of delay variation. These systems are very young and the
delay variation is likely due to initial setup problems. Moreover, we
believe that the variation is caused on the wireless hop (due to release
grant/retransmissions as captured by available bandwidth parameter),
than on the path between proxy and BS (as captured by wireline delay
parameter).

are not part of any pair as the bandwidth estimate can be
ambiguous. As PET clocks out more packets, it gets fresher
bandwidth estimates, which it uses to schedule incoming
packets with the goal of minimizing reordering.

Some additional details on how the PET scheduling
mechanism works are as follows.

o While TCP is in slow start, every TCP ACK generates
two packets that arrive back-to-back at the proxy,
which helps bandwidth estimation. But once in con-
gestion avoidance phase, packets may not arrive back-
to-back at the proxy. However, these packets can still
form a pair for bandwidth estimation since during this
phase, normally the TCP pipe is not empty [26] and
thereby both packets will be buffered at BS (before the
bottleneck wireless link) and still give a valid estimate.

« It is possible for bandwidth estimates to be incorrect
due to transient changes in cross traffic, or during
multiple losses per congestion window where the TCP
pipe gets cleared. In this case, there will be more
reordering which is normally masked by the BMP at
the MH. As new samples arrive, the history clears and
the estimate converges to the correct value?®.

« As long as there is a backlog, PET/EDPF ensure that
bandwidths on all interfaces are utilized effectively.
However there is a danger of getting stuck to a single
interface — this can happen when the available band-
width of one interface is estimated to be much higher
than another. If losses at this stage slow down the TCP
sending rate, to avoid reordering, we may never end
up using the low bandwidth interface. This prevents us
from getting any future bandwidth estimate updates on
it. In the future even if more bandwidth is available on
it, we may never use it. To alleviate this, it is important
to send TCP packet-pairs on an interface periodically
(even if PET chooses another interface) to estimate its
bandwidth.

PET thus attempts to achieve design criteria 1 and 2.
Design criterion 6, isolation of losses, as we argue now, is
not always possible to achieve in a purely network layer
solution. This depends heavily on the loss pattern. The
reason for this is as follows. When a single loss occurs,
if W is the window size just before the loss detection at
the TCP sender, the sender does not send any packets for
the first W/2 DUP-ACKSs [26]. Normally, this should not
clear the TCP pipe (backlog) on all the interfaces, and when
TCP resumes after fast-retransmit, the pipes slowly fill up.
In this case, the losses on one interface do not affect the
others. However, if many packets are lost within a window,

%In our bandwidth estimate update mechanism, we use a large weight
(0.8) for the current estimate, and a corresponding small weight (0.2) for
the history as its important to react rapidly to current conditions, thereby
minimizing reordering.

by the time W/2 DUP-ACKSs arrive, some of the pipes would
have cleared. The scheduler at the proxy cannot help in this
situation by clever scheduling of packets because of the way
TCP reacts to losses.

B. Buffer Management Policy (BMP)

Due to the use of packet-pairs, and also due to errors in
bandwidth estimation, PET scheduling would result in some
amount of reordering. In accordance with design criterion 3,
we use a client-side buffer to hide this reordering. The main
challenge in the design of the Buffer Management Policy
(BMP) is the detection of losses when they happen (design
criterion 4). We discuss this now.

Since we buffer packets, it is important to know if a
packet is lost or merely reordered. A mechanism to do
this is as follows. Suppose we are expecting (an in-order)
sequence number N. We start a timer associated with it
— when the timer expires we conclude that N could not
have been reordered, and hence was lost. We then send the
buffered packets to TCP so that DUP-ACKSs can be sent
and fast-retransmit triggered. We call this timer-based loss
detection.

Timer-based loss detection requires adaptation of the
timer value, which can potentially be done based on the
amount of reordering seen. However, a simpler mechanism
to detect losses exists if we assume that packets always
arrive in order on an interface (which is usually the case).
Suppose we receive sequence humbers greater than NV on all
of the interfaces, we can conclude that IV is lost. We call this
comparison-based loss detection. Even if this mechanism is
used, a timer based mechanism cannot be dispensed with
totally. This is because, if an interface (say ifa-2) is not
used for a long time due to low bandwidth, we could wait
indefinitely to conclude that N was lost (for a comparison-
based loss detection, some sequence number above N must
be received on ifa-2 as well, to conclude loss). This would
eventually trigger a TCP timeout, which is undesirable.
Similar problems would arise if a loss happens towards
the end of a connection, when there are no more new
packets to be sent on all the interfaces. Hence, a timer-
based mechanism is required, but can act as a backup for
comparison-based loss detection. In such a case, since the
timer Kicks in only rarely, its value is not so crucial, and
can be set at a conservative value. (In our experiments, we
set it to 0.5sec.).

Design criterion 5 (avoid burstiness) can be achieved
in two possible ways. One is to separate the generated
ACKSs by an interval at the client-side network layer, before
sending them out on to the network (ACK pacing [27]).
The same effect can also be achieved by separating packets
by an interval when sending them to the TCP layer from

the client-side buffer. We implemented ACK pacing in our
experimental setup.

So in essence, PET attempts to satisfy criteria 1 and 2
by sending packets in pairs to obtain bandwidth estimates
which it uses in turn to schedule packets to minimizing
reordering. Criterion 6, isolation of losses is difficult to
achieve using PET because of default TCP response to
losses. BMP on the other hand buffers out-of-order packets
and sends them in order to hide the effects of reordering
on TCP (criterion 3). It also attempts to react to losses in
a timely fashion based on comparison and timer based loss
detection (criterion 4). ACK pacing [27] can be used to
avoid burstiness (criterion 5).

VI. EXPERIMENTAL RESULTS

The above design of PET-BMP needs detailed evaluation.
This section presents the results of our experiments to
demonstrate the effectiveness of PET with BMP in achiev-
ing our design criteria.

Let us first look at how well PET-BMP performs in the
ideal setup described in Section 1V, with no cross traffic and
no losses. Table I compares the performance of PET-BMP
with other algorithms. PET-BMP achieves a throughput of
336.8 kbps (last row in Table I) — very close to that of
EDPF. The slight decrease in throughput is mainly due to
two reasons: (1) The initial phase, where until an estimate
is available, it sends packets in a round-robin fashion. (2)
The use of packet pairs which introduce some small amount
of reordering.

Now let us relax the idealistic assumptions in the exper-
imental setting and introduce cross traffic and losses. We
first look at each effect separately (Sec. VI-A and Sec. VI-
B). Later we consider both cross traffic and losses in the
same experiment (Sec. VI-C).

A. Cross Traffic and No Losses

In this experiment, we introduce cross traffic at the BSs
and ensure that no losses happen by giving adequate queue
sizes at the base station. Note that the link capacities here
are 1000kbps on each interface. The number of flows that
constitute cross traffic during the course of the simulation
is 3 ftp and 16 web flows at BSO, 5 ftp and 24 web flows
at BS1 and 6ftp and 20 web flows at BS2. These number
of flows for the cross-traffic are merely to illustrate the
behaviour — we consider various other settings in Sec. VI-C.

Figure 5 shows the variation in the instantaneous TCP
throughput. We compare WRR and PET scheduling, both
with BMP implemented at the client. We compare these
with the MTCP application-level solution for bandwidth
aggregation. We see that PET-BMP follows MTCP very
closely, whereas WRR-BMP lags behind by a big margin.

1400 |- ' ' ' " MTCP —e—]
PET-BMP ---a&---
1200 WRR-BMP - |
2 1000 |
=3 :
5 800 1
2 :
< : A
S 600
£ s
F 400 |
200 | |
0 L 1 I L |
0 10 20 30 40 50 60
Time (sec)
Fig. 5. Cross Traffi c, No Losses
250 . : : . .
200 F
7 Ifa0:200kbps ——
£ Ifal:100kbps ---s---
< 150 F| [fa2: 5Okbps -+-e-- i
g’. drop %
E] A L '
g 100 ppeed’ AV | o hany pesmad
c ' v i u
[= w
" l. .
50 200000000 seeees sesee e po eecsees oo .,...'_
s N b oo
*
0 X alf X X £ L X X
10 20 30 40 50 60
Time (sec)

Fig. 6. No Cross Traffi ¢, Losses

The average throughput obtained by the main TCP flow
in comparison to MTCP, PET-BMP, and WRR-BMP are
967.6, 960, and 589 kbps respectively. This illustrates that
PET-BMP is able to meet the goal of effective bandwidth
aggregation in this setting.

Let us now consider losses but no cross traffic.

B. No Cross Traffic and Losses

As mentioned in Sec. I, we now use 50, 100, and 200
kbps for the link capacities. Instead of introducing random
drops, we control the packets that were dropped, so as to
explain the behavior of PET-BMP better. We drop a total
of 10 packets (this suffices to illustrate the comparative
behaviour of PET-BMP). We ensure that there is only one
drop per congestion window for the first 5 packets dropped.
Later we drop 2 packets per congestion window and then
3.

The throughput achieved by PET-BMP in this case was
330.2 kbps, a decrease of 6.6 kbps from the no loss case
(refer to Table I). The number of retransmissions were 15
- five more than what was needed to recover from losses.
Note that such unnecessary retransmissions in case of PET-
BMP happen only in response to losses unlike in WRR,
where they happen on a regular basis due to reordering.
Comparing with ASI, the throughput achieved by ASI for
same drop pattern was 338.2, 1.4kbps lesser than the no

loss case. For ASI, the number of retransmissions were 10,
equal to the number of dropped packets.

The reason for more retransmissions in case of PET-BMP
is the following. When a packet is detected lost by the
TCP sender, on receipt of 3 duplicate ACKSs, it retransmits
the packet and enters fast recovery. It is possible that the
retransmitted packet may arrive before other outstanding
packets when fast recovery was entered. In this case, when
the ACK generated by the retransmitted packet arrives, the
TCP sender considers the packet immediately following the
acknowledged packet as lost and retransmits it. However as
we can see, the drop in throughput is small which shows
that PET-BMP is able to react to the losses and recover
from them in a timely fashion. If we had depended on a
timeout in the BMP to react to the losses, the decrease in
throughput would have been much higher.

The drop in throughput of PET-BMP in comparison with
ASI is due to an important factor - lack of adequate loss
isolation. Fig 6 shows the throughput achieved by PET-BMP
on the 3 interfaces (ifa-0, ifa-1 and ifa-2) along with the
time of dropped packets. As we can see in the figure, the
first drop does not affect any interfaces. The next two drops
affect ifa-2 but not the other two. The 4th drop affects ifa-2
and ifa-1, but not ifa-0. However, when more than one drop
happen per congestion window (the drops after 50 sec), all
interfaces suffer. This demonstrates that isolation of losses
may be possible with PET-BMP when losses are spread out,
but is difficult to achieve when losses are clustered.

C. Cross Traffic and Losses

We finally perform an experiment where we consider
both cross traffic as well as losses. For this experiment,
we randomly generate 10 different cross traffic scenarios.
For each scenario, we randomly choose a value between 2
and 8 for the number of FTP flows and a value between 16
and 32 for the number of web flows at a BS (normally, due
to randomness, cross traffic profiles on the interfaces are
different, introducing asymmetry). This range of possible
cross-traffic covers a range of scenarios of the available
bandwidth for the main flow on each of the wireless
bottleneck links. Note that not all flows are simultaneously
active at any given time.

In each “scenario”, the start times and file sizes for the
cross traffic varies depending on a random number “seed”.
So, for each cross traffic scenario, we conduct 10 different
runs with different seeds and average the throughput seen
by the main TCP flow across the seeds. This run across
different seeds ensures averaging across various start/finish
times of the cross-traffic.

We consider two types of losses - congestion and channel
errors. We present results when considering just congestion
losses and also when channel losses are introduced on top

10

900
800
700
600
500
400
300
200 - -

Throughput (kbps)

100 - y

0 1 2 3 4 5 6 7 8 9
Scenario

Fig. 7. Congestion Losses, # Interfaces = 2

900 T T T T
MTCP —e—

800 |- PET-BMP ---&--- i
WRR-BMP - - -
700 ' WRR -~
HBI -+

600 |- mE Y
500 |
400
300
200

100 —

Throughput (kbps)

0 1 2 3 4 5
Scenario

(2]
~
[ee)
©

Fig. 8. Congestion Losses and Channel Losses, # Interfaces = 2

of congestion losses. For the second case, we use the same
traffic pattern as was used for the case of congestion losses.
For introducing congestion losses, we set the maximum
queue size at the BSs to 200 kbytes. The distribution used
for introducing channel losses is uniform, with a loss rate
of 1%.

We first present results for the case of 2 interfaces and
then increase the number of interfaces to 3 to show the
effect of increased reordering (more interfaces, more scope
for reordering) on the performance of PET-BMP.

Fig. 7 compares the throughput achieved by the different
algorithms when considering just congestion losses for the
case of 2 interfaces. Fig. 8 shows the throughput when
channel losses are introduced on top of congestion losses.
In these figures, we also show the throughput of MTCP
as seen on just the highest bandwidth interface (HBI)- this
is what would have been TCP’s throughput had we done
no bandwidth aggregation and simply used just the highest
bandwidth interface. For ease of visualization, we sort the
10 scenarios in the order of increasing bandwidth achieved
by MTCP.

When considering congestion losses alone, we find that
PET-BMP performs very closely with MTCP (the difference
ranges between 4-27 kbps). This is true across the wide
range of cross-traffic scenarios we have considered. In
contrast, WRR lags behind PET-BMP and MTCP consid-

1200

1000 |

800

Throughput (kbps)
¥
>

600 | O e
a7 FUSN Heo i i X
400 b o e 7 . i
N - \,\+‘ P R

e T
200 * e

O 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9
Scenario

Fig. 9. Cross Traffi ¢, No Losses

erably. The use of BMP alone with WRR brings in some
benefits, but not a whole lot. Compared to the case of using
just the Highest Bandwidth Interface, PET-BMP clearly
illustrates the advantages of bandwidth aggregation. WRR-
BMP performs better than HBI in some cases, while in
others it performs worse. This shows that if care is not
taken when scheduling to minimize reordering, effects of
bandwidth aggregation could be nullified.

When channel losses are considered in addition to con-
gestion losses, PET-BMP performs better than WRR-BMP,
and can still bring in considerable benefits over using just
the highest bandwidth interface (HBI). However, it falls
behind MTCP by a larger margin (78-174 kbps) than with
just congestion losses. This is mainly due to the aggressive
behavior of MTCP during losses (multiple congestion win-
dows) and also due to the inability of PET to achieve loss
isolation.

Though PET-BMP performs sub-optimally in the pres-
ence of channel errors, we argue that this is not much of a
problem due to the following reason. The scheduling algo-
rithm PET can achieve loss isolation (similar throughputs
as MTCP) as long as loss rates are low and losses are
more spread out. In the above experiments, while congestion
losses were under 0.7%, additional channel losses increased
this percentage to 1.4%. This degradation in throughput
of PET-BMP compared to MTCP is mainly due to this
increase in loss rate. It does not matter to PET (or to TCP)
whether losses are due to congestion or channel errors as
long as these rates are not too high. Ideally TCP should react
to only congestion losses not channel errors. Considerable
research [1] has gone into undoing the effect channel errors
have on the congestion window of the TCP sender. With
some of these mechanisms in place (e.g. through use of
ELN/ECN bit), we can expect PET-TCP to perform similar
to MTCP, as was seen in the no-channel-loss case in
Fig. 7. As far as congestion losses are concerned, the loss
rates should not reach high values because of TCP default
behavior of cutting down its sending rate in response to
congestion.

11

Fig. 9 shows the performance of the different algorithms
for the case of 3 interfaces with just congestion losses. As
the number of interfaces increase, so does the scope for
reordering. As can be seen, the difference between PET-
BMP and MTCP is wider than in the case of 2 interfaces.
The difference ranges between 30-60kbps now.

D. Summary of Results

The above experimental results indicate that PET-BMP
can bring in significant benefits through bandwidth aggre-
gation over using just a single interface. It performs as well
as the application level MTCP solution and outperforms by
a large margin approaches based on using Weighted-Round-
Robin in most scenarios. It achieves this through meeting
the design criteria in Sec. IV — all except “isolation of
losses”. While, it can still perform close to MTCP, when the
loss rates are low, higher loss rates degrade its performance
due to its inability to perform “loss isolation” and due to the
inherent aggressiveness of MTCP. However, when wireless
losses are minimized using other mechanisms (e.g. [1]),
the performance of PET-BMP can become comparable to
MTCP.

For the range of scenarios we have considered, the
estimation techniques used by PET are effective, and we
have not found the need for any parameter tuning — PET is
simple enough to be robust in this regard. Given the ease
of deployment of PET-BMP and the performance gains for
effective bandwidth aggregation, we believe that it has wide
applicability.

VII. DISCUSSION

In this section, we elaborate on the validity of some
of our assumptions, and other issues with our network
layer approach. In parallel, we also point out some design
alternatives worth further study.

A. Validity of Assumptions

Two assumptions that feature in the above work are (a)
WFQ implementation at the BSs, and (b) proper estimation
of delay on the paths from proxy to BSs.

Unlike First-Come-First-Serve implementation, WFQ im-
plementation or other variants of it, divide the link capacity
equally among all the flows and thereby help bandwidth
estimation techniques in getting a reliable estimate. Though
the scheduling policy employed at a BS is not in our control,
we believe that WFQ is a good design choice for a variety
of reasons and should be adopted at the edge Radio Access
Networks (RANS). For one, it ensures fair allocation of
the already scarce wireless capacity to the different flows.
It reduces the complexity of bandwidth monitoring tools
employed by end users, or by the network operators to

monitor link utilization. Different protocols can benefit from
good bandwidth estimation to improve their performance.
For example, bandwidth estimates can help (regular, single
interface) TCP tune its optimal window size. Since the
number of flows at the edge is anyway small, the scalability
of WFQ is not much of an issue.

We now turn to the issue of delay estimates. Obtaining
delay estimates for the path between proxy and the BSs
during the course of the connection without support from
the BSs, is in general a difficult task. This is because, it
is difficult to figure out the contribution of queuing delay
to the overall end to end delay observed on the path. As
mentioned earlier, we don’t view this as a serious limitation
because of the following reasons. For one, delay estimates
during connection setup (where there is no queuing) or
estimates from the recent past (few tens of seconds to a
few minutes) will most likely be sufficient for the duration
of the connection. This is because Internet path delays are
known to vary only slowly, over several tens of minutes [24].
Further, any errors in estimation which usually are small (as
average delays on the backbone are themselves small) will
likely be masked by the transmission and queuing delay at
the bottleneck bandwidth. In Equation 1 of section Ill, A;
dominates a; + D; for most packets. We observed this in
our experiments as well.

Another choice we made when running the experiments
is to disable the use of delayed ACKs. This ensured that
during slow start packets always come in pairs at the proxy.
If this option is enabled, we still get back to back packets
but with less frequency and that number can be greater than
2. Our scheme can be extended to work in this case too but
the number of samples we collect for bandwidth estimation
can go down. This design possibility is worth further study.

B. Deployment Complexity and Overheads

Our network layer architecture has been designed with the
goal of introducing minimum changes to the infrastructure.
The only changes needed are software changes at the
MH and deployment of proxies, no changes are needed
in the radio network or server software. The deployment
complexity of our architecture is thus minimal. To increase
reliability and scalability of the architecture, we envision
multiple proxies, each providing service to a subset of MHs.

As far as the complexity of algorithms go, we note that
the implementation of BMP at the MH or PET at proxy
is unlikely to be a source of major overhead in terms of
memory* or CPU requirements. Further, although we have
presented BMP as a network layer approach, there is no
reason why it cannot be integrated into the TCP receiver.

*Maximum buffer size in BMP is at most the size of TCP congestion
window, usually under 128 kbytes

12

This does not need many changes to the infrastructure, only
MHs who want to take advantage of bandwidth aggregation
only need apply this patch. This can further reduce some of
the state that needs to be maintained at the network layer,
which TCP receiver already does.

There is a source of network overhead in PET-BMP — the
need to send a SIG-ACK to proxy for every packet received
at the MH. Though this doubles the load in the reverse
direction, the additional bandwidth needed is very small as
the size of these packets is very small. Even if the wireless
links are asymmetric in nature (uplink has much lower
bandwidth than downlink), given that we have a choice of
more than one interface, there will normally be enough left-
over bandwidth to send these packets. In the event this were
not the case because of heavy uplink traffic, it is possible to
minimize the overhead by performing bandwidth estimation
at the client and passing information to the proxy only in the
event of a considerable increase or decrease in bandwidth.
This possibility needs further evaluation.

C. Miscellaneous issues

Mobility, blackouts, and losses are an integral part of a
wireless environment and should be addressed in the design
of the network architecture. Since in our architecture, we
have mobility support integrated with scheduling, it is easy
to handle stalls during handoff by not sending packets on the
interface which is performing handoff related processing.
Blackouts on an interface can be similarly handled — they
can be detected if no SIG-ACKS arrive from MH in
response to packets sent on it in a long while.

Another important aspect when performing bandwidth
aggregation is to ensure how friendly a TCP flow that uses
bandwidth aggregation is to others that don’t. Since, we did
not make any changes of TCP, it reacts to losses the same
way as the other flows and hence bandwidth aggregation
does not interfere with other flows. On the contrary, ap-
proaches based on opening multiple TCP sockets as in [11],
[13] may be too aggressive in face of losses.

An important observation to make is that our network
layer solution preserves the semantics of the IP service
model, and does not violate the end-to-end design principle.
Our solution delays or drops TCP packets, both of which
IP is allowed to do in its service model.

VI,

Bandwidth aggregation across different logical channels
has its origins as a link layer approach in the context
of analog dial-ups, ISDN, and ATM [8]-[10]. These ap-
proaches require identical, stable link characteristics, special
hardware and/or access to the endpoints of the links or
specialized headers. This makes it difficult or infeasible to

RELATED WORK

use them in the present scenario, where the Radio Access
Networks in question belong to different domains controlled
by different providers.

The Stripe protocol [28] is a generic load-sharing protocol
that can be used over any logical First-In-First-Out (FIFO)
channels, it was implemented in some routers in the context
of Multilink PPP. It is based on Surplus Round Robin (SRR)
and provides FIFO delivery of these packets to higher layers
with minimum overhead in the form of packet processing
(looking up the packet sequence number). The design goals
of stripe are different from those considered in this paper.
SRR boils down to WRR when the packets are of the same
size which is likely the case when using TCP for FTP flows.
As was shown in earlier sections, WRR introduces a lot of
reordering and hence does not perform well in this setting.

Some application layer approaches to bandwidth aggre-
gation using multiple TCP connections have been proposed
in [11], [12] albeit in a different context (all the TCP
connections are over the same path). Contemporary to our
initial work [22], where we introduced the concept of
network layer bandwidth aggregation and looked at perfor-
mance issues faced by real-time applications, some transport
and network layer solutions have also been proposed to
achieve bandwidth aggregation. The Reliable Multiplexing
Transport Protocol (RMTP) [14] is a rate-based transport
protocol that multiplexes application data onto different
channels. Parallel TCP (pTCP) [13] is another transport
layer approach that opens multiple TCP connections one
for each interface in use. Another reliable transport protocol
proposed for use in message-based signaling in IP networks
is the Stream Control Transmission Protocol (SCTP) [29].
SCTP supports multi-streaming and multi-homing. How-
ever, it does not ensure in-order delivery across data streams
which then has to be handled at the application layer. The
focus of this paper is on an architecture that introduces
minimum changes to the infrastructure while enabling many
diverse services. The application/transport layer solutions
cannot achieve the same as they require changes to server
software. Further these approaches can be TCP unfriendly
when the multiple TCP connections they open share a
common bottleneck. Additionally, unless mobility support
is integrated within, these approaches may have to rely on
a solution similar to ours for mobility support.

A network layer solution based on tunneling similar
in spirit to our initial work [22], was proposed in [30]
for bandwidth aggregation. This work does not address
in depth the architectural components that enable diverse
services. Further, the scheduling algorithm proposed for
use with TCP was WRR (no buffer management policy
was considered). As was demonstrated in this paper, WRR
performs poorly if the scheduling does not track varying
available bandwidths. Some of the other suggestions that

13

were made to tune TCP parameters to overcome reordering
i.e permit large window sizes, set high values for retransmis-
sion timeouts and avoid fast retransmissions on DUP-ACKs
when implemented, will perform very poorly in presence of
losses, even nullifying any benefits that can be had through
bandwidth aggregation.

Some modifications to the TCP sender to make the
connection more robust to packet reordering have been
proposed in [31], [32]. The TCP sender is extended to
detect unnecessary retransmissions due to packet reordering
through the use of duplicate selective acknowledgment
(DSACK). DSACK reports to the sender any duplicate
packets received permitting the sender to undo any effects
(reduction in congestion window) the spurious retransmis-
sion had on congestion control state. This work does not
address the problem of bandwidth aggregation, only how to
cope with reordering that can be caused by one of many
reasons - high-speed switches, satellite links, differentiated
services etc including multipath. Thus, PET can also be
used in conjunction with this TCP modification, eliminating
the need for BMP. Though this warrants further study, we
believe BMP is a better approach as it a pro-active approach
in that it prevents the need for retransmissions (hence
wasting scarce bandwidth) in the first place as opposed to
taking a corrective measure. In fact BMP when integrated
into the TCP receiver can be viewed as a receiver side
modification to TCP to make it robust against reordering.

IX. CONCLUSIONS

In this paper, we motivate the advantages of simultaneous
use of multiple interfaces and consider a network layer
architecture that enables such use. Our network layer archi-
tecture provides many different services and is transparent
to applications/transport protocols and is easy to deploy.
One of the services provided by the architecture is that of
BAG - aggregating bandwidth of the multiple interfaces to
increase application throughput. We look at this service in
the context of TCP applications. The use of multiple paths
with varying characteristics introduces challenges in the
form of reordering. TCP reacts to the DUP-ACKSs generated
by the reordered packets by unnecessary fast retransmis-
sions and by invoking congestion control which can lower
throughput significantly. To improve the performance of
TCP in this setting, we propose a scheduling algorithm
PET that minimizes reordering by taking into consideration
individual path characteristics. To overcome any residual
reordering after PET, we propose a buffer management
policy BMP that tries to hide the effects of reordering from
TCP by sending packets in order as far as possible. We show
through simulation that PET in combination with BMP
achieves good bandwidth aggregation under a variety of

network conditions. Our solution is thus both performance-
effective as well as easy to deploy.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]
(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]
(18]
(19]

[20]

(21]
[22]

(23]

REFERENCES

H. Baakrishnan, V.Padmanabhan, S.Sheshan, and R.Katz, “A com-
parision of mechanisms for improving TCP performance over
wireless links” |[EEE/ACM Trans. Networking, vol. 5, no. 6, pp.
756-769, Dec 1997.

H. Balakrishnan, V.Padmanabhan, and R.Katz, “The effects of
asymmetry on TCP performance,” Mobile Networks and Applica-
tions, vol. 4, no. 3, pp. 219-241, Oct 1999.

S. Lu, V. Bharghavan, and R. Srikant, “Fair scheduling in wireless
packet networks,” IEEE/ACM Trans. Networking, vol. 7, no. 4, pp.
473-489, Aug 1999.

A. Campbell, J. Gomez, S. Kim, Z. Turanyi, C.-Y. Wan, and
A. Valko, “Comparison of IP micromobility protocols” |IEEE

Wireless Communications, vol. 9, no. 1, pp. 72—82, Feb 2002.

M. Stemm and R. Katz, “Vertica handoffs in wireless overlay
networks,” Mobile Networks and Applications, vol. 3, no. 4, pp.
335-350, 1998.

B. Girod, M. Kalman, Y. Liang, and R. Zhang, “Advances in
channel-adaptive video streaming,” Wreless Communications and
Mobile Computing, vol. 2, no. 6, pp. 549-552, Sep 2002.

K. Chebrolu and R. R. Rao, “Bandwidth aggregation for real-time
applications in heterogeneous wireless networks,” submitted for
Publication.

K. Sklower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti, “The
PPP multilink protocol (MP),” RFC 1990, Aug 1996.

J. Duncanson, “Inverse multiplexing,” |IEEE Commun. Mag.,

vol. 32, no. 4, pp. 34-41, Apr 1994,

Inverse Multiplexing for ATM (IMA) specifi cation, Version 1.1,
ATM Forum Doc. AF-PHY-0086.001, The ATM Forum Technica
Committee Std., 1999.

H. Sivakumar, S.Bailey, and R.L.Grossman, “Psockets. The case
for application-level network striping for data intensive applications
using high speed wide area networks,” in Proc. |[EEE Supercom-
puting’ 00, Dallas, Nov. 2000.

S.Ostermann, M.Allman, and H.Kruse, “An application-level solu-

tion to TCP's satellite ineffi ciencies,” in Proc. WOSBIS 96, Rye,
Nov. 1996.

H. Hsieh and R. Sivakumar, ‘A transport layer approach for
achieving aggregate bandwidths on multi-homed mobile hosts,” in
Proc. ACM MOBICOM' 02, Atlanta, Sept. 2002.

L. Magalhaes and R. Kravets, “Transport level mechanisms for
bandwidth aggregation on mobile hosts,” in Proc. |IEEE ICNP'01,
Riverside, Nov. 2001.

C. E. Perkins, “Mobile IP,” IEEE Commun. Mag., vol. 35, no. 5,

pp. 84-99, May 1997.

K. Fal and S. Floyd, “Simulation-based comparisons of Tahoe,

Reno and SACK TCP,” Computer Communication Review, vol. 26,
no. 3, pp. 5-21, Jul 1996.

K. Chebrolu, R. Mishra, P. Johansson, and R. R. Rao, “A network
layer architecure to enable multi-access services,” unpublished.

D. Brudnicki. Third generation wireless technology. [Online].
Available: http://www.seasim.org/archive/sim102001.pdf

Network simulator. ns2. [Onling]. Available: http://www.isi.edu/
nsnam/ns

A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation
of afair queuing algorithm,” in Proc. ACM SSGCOMM’ 89, Austin,
Texas, Sept. 1989, pp. 1-12.

Web traffi c generator. [Onling]l. Available: http://www.isi.edu/
nsnam/ns/ns-contributed.html

K. Chebrolu and R. R. Rao, “Communication using multiple
wireless interfaces,” in Proc. IEEE WCNC' 02, Orlando, Mar. 2002.
L. Kleinrock, Ed., Queueing Theory. New York: Wiley, 1975.

[24]
[29]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

14

A. Acharya and J. Saltz, “A study of internet round-trip delay,”
Univ. of Maryland, College Park, Tech. Rep. CS-TR 3736, 1996.
S. Keshav, “A control-theoretic approach to flbow control,” Computer
Communication Review, vol. 21, no. 4, pp. 3-15, 1991.

V. Jacobson. (1990, Apr.) Modified TCP congestion avoidance
agorithm. end2end-interest mailing list. [Onling]. Available:
ftp://ftp.ee.lbl.gov/email /vanj.90apr30.txt

J. Aweya, M. Ouellette, and D. Y. Montuno, “A self-regulating TCP
acknowledgment (ACK) pacing scheme,” International Journal of
Network Management, vol. 12, no. 3, pp. 145-163, May/June 2002.
H. Adiseshu, G. Parulkar, and G. Varghese, ‘A reliable and scalable
striping protocol,” ACM Computer Communication Review, vol. 26,
no. 4, pp. 131-141, Oct 1996.

R. Stewart et al., “Stream control transmission protocol,” RFC 2960,
Oct. 2000.

D. S. Phatak and T. Goff, “A novel mechanism for data streaming
across multiple 1P links for improving throughput and reliability
in mobile environments,” in Proc. |IEEE INFOCOM'’ 02, New York,
June 2002, pp. 773-781.

E. Blanton and M. Allman, “On making tcp more robust to packet
reordering,” Computer Communication Review, vol. 32, no. 1, pp.
20-30, Jan 2002.

M. Zhang, B. Karp, S. Floyd, and L. Peterson, “Improving TCP's
performance under reordering with DSACK,” International Com-
puter Science Ingtitute, Berkeley, Tech. Rep. TR-02-006, Jul 2002.

