Scribe notes on

MPLS and Traffic Engineering

Nov. 11,2003

Anshuman Panwar

Y0058

Circuit Switching vs. Packet Switching

In circuit-switched networks, network resources are static ,a fixed bandwidth is allocated to a connection before the start of the transfer, thus creating a “circuit”. The resources remain dedicated to the circuit during the entire transfer and the entire message follows the same path. In packet-switched networks, the message is broken into packets, each of which can take a different route to the destination where the packets are recompiled into the original message. The telephone network is a good example for circuit switched network. In telephone network, bandwidth is reserved for a call at the start of the call.

MPLS (Multi Protocol Label Switching)

Motivation:

In order to meet the growing demand for bandwidth, Internet service providers (ISPs) need higher performance switching and routing products. Although most carrier and service provider core networks run on impressive asynchronous transfer mode (ATM) backbones, most connections to these providers continue to be slow point-to-point connections, introducing latency and sometimes bottlenecks at the edge access points. In destination based forwarding, traffic engineering is very difficult and also traffic engineering should be independent of the link layer. All of these needs can be met with multi protocol label switching (MPLS), because it integrates the key features of both Layer 2 and Layer 3. Most importantly, it is not limited to any Layer 2 or Layer 3 protocol.

MPLS Basics:

                Figure 1 : Label Switched Path


When an ingress router receives an IP packet, it adds an MPLS header to the packet and forwards it to the next router in the LSP.
The labeled packet is forwarded along the LSP by each router until it reaches the tail end of the LSP, at which point the MPLS header is removed and the packet is forwarded based on Layer 3 information such as the IP destination address.
 

MPLS Header and Packet:


 

MPLS Header
 

Label (20 bit) Cos(3bit)
 
S TTL(8-bit)
 


 

L2 Header
 
MPLS Header
 
L3 Header
 
L3 Data
 


 

L2 Header
 
MPLS Header
 
MPLS Header
 
L3 Header
 
L3 Data
 


MPLS Header's total size is 32-bits.
Label (20-bit) : This is the label per flow
CoS (3 bits) : Class of Service
Stack bit:  Indicate the presence of Label Stack.
TTL(8-bit):  Time To Leave.

Fault Tolerance:

Figure 2: Fault tolerance in MPLS

 

MPLS is robust to link failure and recovers from the failure. It uses two kinds of recoveries to recover from failure

Local Recovery: Following the blue path. In local recovery a new path is adopted between the two routers, the path between whom has damaged.

End to end recovery: (The green path) Adopting a new path between the ingress and the egress. End to end recovery better in protection.

The failures are discovered by continuously monitoring the Hello packets.

 

Lambda MPLS

References: