
1

An Architecture for Optimal and
Robust Composition of Services
across the Wide-Area Internet

Bhaskaran Raman
Qualifying Examination Proposal

Feb 12, 2001

Examination Committee:
Prof. Anthony D. Joseph (Chair)

Prof. Randy H. Katz
Prof. Ion Stoica

Prof. David Brillinger

Technological Trend
"Service and content providers play an increasing role in the

value chain. The dominant part of the revenues moves from the
network operator to the content provider. It is expected that

value-added data services and content provisioning will create
the main growth."

Subscriber user

Service
broker

Service
mgt.

Access
network
operator

Core
network
operator

Value added
service

providers

Value added
service

providers

Value added
service

providers

Content
providers

Content
providers

Content
providers

Access NetworksAccess Networks

Cellular systemsCellular systems
Cordless (DECT)Cordless (DECT)

BluetoothBluetooth
DECT dataDECT data

Wireless LANWireless LAN
Wireless local loopWireless local loop

SatelliteSatellite
CableCable

DSLDSL

Service Composition

Provider QProvider Q

TextText
toto

speechspeech

Provider RProvider R

Cellular
Phone

Email
repository

Provider AProvider A Video-on-demand
server

Provider BProvider B

Thin
Client

Provider AProvider A

Provider BProvider B

Replicated
instancesTranscoder

Service Composition

• Operational model:
– Service providers deploy different services at various

network locations
– Next generation portals compose services

• Quickly enable new functionality on new devices
• Possibly through SLAs

– Code is NOT mobile (mutually untrusting service providers)
• Composition across

– Service providers
– Wide-area

• Notion of service-level path

Problem Statement

• Optimal service-level path creation
– Based on network and service performance

• Robust service-level paths
– Detect and recover from failures

Challenges

• Optimal service-level path
– When there are multiple instances of each intermediate

service
– How to learn the performance of each “leg” of the

service-level path?
• Robustness

– Detect and recover from failures
– Possibly across the wide-area Internet
– Important for long-lived sessions

• Several minutes/hours
– Quick recovery required for real-time applications
– How to provide appropriate backup?

2

Overall Architecture

Composed services

Hardware platform

Peering relations,
Overlay network

Service clusters

Logical platform

Application plane

Handling failures

Service-level
path creation

Service
location

Network
performance

Detection

Recovery

Problem Scope

• Services have no “hard” state
– Sessions can be transferred from one service instance to

another
– This is assumed while handling failures
– Assumption valid for a large set of applications

• Content streaming
• Transformation agents
• Logical operations: personalized redirection

Research Contributions

• Construction of optimal service-level path
– Choice of instances of intermediate services based on

network performance
• High availability for service-level paths

– Mechanisms for detecting different kinds of failures
– Creation of appropriate backup service-level path to

recover from failures

Outline

• Related work
• Feasibility of failure detection over the wide-area
• Design of the framework
• Evaluation
• Research methodology and timeline
• Summary

Related work: Service Composition

• TACC (A. Fox, Berkeley)
– Fault-tolerance within a single service-provider cluster

for composed services
– Based on cluster-manager/front-end based monitoring

• Simja (Berkeley), COTS (Stanford), Future
Computing Environments (G. Tech)
– Semantic issues addressed – which services can be

composed
– Based on service interface definitions, typing

• None address wide-area network performance or
failure issues for long-lived composed sessions

Related work: Performance and Robustness
• Cluster-based approaches: TACC, AS1, LARD

– AS1 (E. Amir, Berkeley): soft-state model for maintenance of
long-lived sessions

– LARD (Rice Univ): Web-server load balancing within a cluster
– Fault management and load balancing within a cluster
– Wide-area performance and failure issues not addressed

• Wide-area server selection: SPAND (M. Stemm,
Berkeley), Harvest (Colorado), Probing mechanisms
– Network and/or server performance discovery for selecting

optimal replica
– For composed services, require multi-leg measurement
– For long-lived sessions, need recovery during session

• Routing around failures: Tapestry/CAN (Berkeley),
RON (MIT)
– Use redundancy in overlay networks
– Recovery of composed service-level paths not addressed

3

Related work: summary

Yes

Yes

Yes

Our
System

YesYesNoNoNo
Routing
around
failures

??YesNoNo
WA perf.

adaptation

NoNoNoYesYes
Composed
Services

RON
Tapestry,

CAN

WA
server

selection

COTS,
Future
Comp.
Env.

TACC

Outline

• Related work
• Feasibility of failure detection over the wide-area
• Design of the framework
• Evaluation
• Research methodology and timeline
• Summary

Failure detection in the wide-area:
Analysis

Provider AProvider A

Provider AProvider A

Video-on-demand
server

Provider BProvider B

Provider BProvider BThin
Client

Transcoder

Peering relations,
Overlay network

Handling failures

Service-level
path creation

Service
location

Network
performance

Detection

Recovery

Failure detection in the wide-area:
Analysis

• What are we doing?
– Keeping track of the liveness of the WA Internet path

• Why is it important?
– 10% of Internet paths have 95% availability [Labovitz’99]
– BGP could take several minutes to converge [Labovitz’00]
– These could significantly affect real-time sessions based

on service-level paths
• Why is it challenging?

– Is there a notion of “failure”?
– Given Internet cross-traffic and congestion?
– What if losses could last for any duration with equal

probability?

Failure detection: the trade-off

Monitoring for liveness of path
using keep-alive heartbeat

Time

Time
Failure: detected by timeout

Timeout period

Time

False-positive: failure detected
incorrectly è unnecessary
overheadTimeout period

There’s a trade-off between time-to-detection and rate of false-positives

UDP-based keep-alive stream

• Geographically distributed hosts:
– Berkeley, Stanford, UIUC, TU-Berlin, UNSW
– Some trans-oceanic links, some within the US

• UDP heart-beat every 300ms between pairs
• Measure gaps between receipt of successive

heart-beats

4

UDP-based
keep-alive
stream

1111 55

66

85 gaps above 900ms

False-positive
rate: 6/116/11

UDP Experiments: What do we
conclude?

• Significant number of
outages > 30 seconds
– Of the order of once a day

• But, 1.8 second outage è
30 second outage with
50% prob.
– If we react to 1.8 second

outages by transferring a
session can have much
better availability than
what’s possible today

Provider AProvider A

Provider AProvider A

Video-on-demand
server

Provider BProvider B

Provider BProvider BThin
Client

Transcoder

UDP Experiments: What do we
conclude?

• 1.8 seconds good enough for non-interactive
applications
– On-demand video/audio usually have 5-10 second buffers

anyway
• 1.8 seconds not good for interactive/live

applications
– But definitely better than having the entire session cut-

off

UDP Experiments: Validity of
conclusions

• Results similar for other host-pairs:
– BerkeleyàStanford, UIUCàStanford,

BerkeleyàUNSW, TUBerlinàUNSW
• Results in parallel with other independent studies:

– RTT spikes are isolated; undone in a couple of seconds
[Acharya’96]

– Correlation of packet losses does not persist beyond
1000ms [Yajnik’99]

Outline

• Related work
• Feasibility of failure detection over the wide-area
• Design of the framework
• Evaluation
• Research methodology and timeline
• Summary

Design of the Framework

• Question: how do we construct optimal, robust
composed services?

• Need to:
– Monitor for liveness
– Monitor for performance
– Compose services

5

Design Alternative: Hop-by-hop
composition

Active
monitoring

Service 1

Alternate service 1

Service 2

Service 1

Aggregated
active

monitoring Alternate service 1

Service 2

Design Alternative: Hop-by-hop
composition

• No special support
for composition

• Problems:
– Sub-optimal

service-level path
– Alternative path

may not be active
– What if both ends

are fixed?

Service 1

Aggregated
active

monitoring Alternate service 1

Service 2

Architecture Internet

Service cluster: compute
cluster capable of running

services

Peering:
monitoring &
cascading

Destination

Source

Composed services

Hardware
platform

Peering relations,
Overlay network

Service clusters

Logical
platform

Application
plane

Architecture: Advantages

• Overlay nodes are clusters
– Compute platform for services
– Hierarchical monitoring

• Within cluster – for process/machine failures
• Across clusters – for network path failures

– Aggregated monitoring
• Amortized overhead

The Overlay Network

Peering relations,
Overlay network

Handling failures

Service-level
path creation

The overlay network
provides the context for

service-level path creation
and failure handling

Service Level Path Creation

Peering relations,
Overlay network

Handling failures

Service-level
path creation

Service
location

Network
performance

Detection

Recovery

Finding
entry/exit

6

Finding entry and exit

• Independent of other mechanisms
• We do not address this directly
• We assume:

– Entry or exit point can be rather static
• By appropriate placement of overlay nodes
• Pre-configuration possible at end-host

– Or, can learn entry or exit point through another level of
indirection

Service-Level Path Creation

• Connection-oriented network
– Explicit session setup stage
– There’s “switching” state at the intermediate nodes

• Need a connection-less protocol for connection
setup

• Need to keep track of three things:
– Network path liveness
– Metric information (latency/bandwidth) for

optimality decisions
– Where services are located

Service-Level Path Creation

• Three levels of information exchange
– Network path liveness

• Low overhead, but very frequent
– Metric information: latency/bandwidth

• Higher overhead, not so frequent
• Bandwidth changes only once in several minutes

[Balakrishnan’97]
• Latency changes appreciably only once in about an hour

[Acharya’96]
– Information about location of services in clusters

• Bulky, but does not change very often (once in a few
weeks, or months)

• Could also use independent service location mechanism

Service Level Path Creation

• Link-state algorithm to exchange
information
– Lesser overhead of individual measurement è

finer time-scale of measurement
– Service-level path created at entry node
– Link-state because it allows all-pair-shortest-path

calculation in the graph

Service Level Path Creation

• Two ideas:
– Path caching

• Remember what previous clients used
• Another use of clusters

– Dynamic path optimization
• Since session-transfer is a first-order feature
• First path created need not be optimal

Session Recovery: Design Tradeoffs

• End-to-end vs. local-link
• End-to-end:

– Pre-establishment possible
– But, failure information

has to propagate
– And, performance of

alternate path could have
changed

• Local-link:
– No need for information to

propagate
– But, additional overhead

Overlay n/w

Handling failures

Service-level
path creation

Service
location

Network
performance

Detection

Recovery

Finding
entry/exit

7

The Overlay Topology: Design Factors

• How many nodes?
– Large number of nodes è lesser latency overhead
– But scaling concerns

• Where to place nodes?
– Close to edges so that hosts have points of entry and

exit close to them
– Close to backbone to take advantage of good connectivity

• Who to peer with?
– Nature of connectivity
– Least sharing of physical links among overlay links

Outline

• Related work
• Feasibility of failure detection over the wide-area
• Design of the framework
• Evaluation
• Research methodology and timeline
• Summary

Evaluation

• Important concerns:
– Overhead of routing over the overlay network
– Number of overlay nodes required

• Network modeling
– AS-Jan2000, MBone, TIERS, Transit-Stub
– Between 4000-6500 nodes
– Each node represents an Address Prefix [Jamin’00]
– In comparison, the Internet has ~100,000 globally visible

APs [Jamin’00]

Evaluation

• Overlay nodes
– 50, 100, 200: those with max. degree (backbone

placement)
– Peering between “nearby” overlay nodes
– Physical links are not shared

• 1000 random pairs of hosts in original network
– Overhead of routing over overlay network
– No intermediate services used – for isolating the raw

latency overhead

Evaluation: Effect of
Size of Overlay

2.1% have over 5% overhead

2.2% have over 40% overhead

2.6% have over 60% overhead

Evaluation: Routing
Overhead

2.1% of the end-host pairs
have over 5% overhead

13.3% have over 50%
overhead

8

Evaluation: What can we conclude?

• Number of overlay nodes required for low latency
quite low:
– 200 for 5000 nodes
– How many for 100,000 nodes? (number of APs on the

Internet)
– For linear growth, 4000 overlay nodes (in comparison,

there are ~10,000 ASs on the Internet)
– Note: growth has to be sub-linear

• Latency overhead of using overlay network quite
low
– Can get away with < 5% overhead in most nodes in some

cases

Outline

• Related work
• Feasibility of failure detection over the wide-area
• Design of the framework
• Evaluation
• Research methodology and timeline
• Summary

Research Methodology

• Connection-oriented overlay network of
clusters

• Session-transfer on failure
• Aggregation – amortization of overhead

• Simulation
– Routing overhead
– Effect of size of

overlay
• Implementation

– MP3 music for GSM
cellular-phones

– Codec service for IP-
telephony

• Wide-area
monitoring trade-
offs
– How quickly can

failures be
detected?

– Rate of false-
positives

Evaluation

Analysis

Design

Research Methodology: Metrics

• Feasibility:
– Overhead

• End-to-end latency; bandwidth for information exchange
– Scalability

• To a large number of client sessions
– Stability

• Of optimality and session-transfer decisions
• Usefulness:

– Latency to recovery
• Measure of effectiveness

– Use of composability
• For building application functionality

Research Methodology: Approach

• Simulations, Trace-collection, Real implementation
• Simulation

– For initial estimation of overhead
• Simulation + Traces

– Bandwidth usage estimation, Stability study
• Real implementation

– Scalability studies
– Real services for use of composability

• Testbed
– Collaborating with UNSW, TUBerlin

Research Plan: Phase I (0-6 months)

• Detailed analysis of
– Latency and bandwidth overhead
– Latency to recovery

• Use traces of latency/bandwidth over wide-area
• Develop real implementation in parallel

– This is already in progress
– Will give feedback for the analysis above

9

Research Plan: Phase II (6-12 months)

• Use implementation from Phase I
– Deploy real services on the wide-area testbed
– Analyze end-to-end effects of session-recovery
– Examine scalability

• Use traces from Phase I to analyze stability of
optimality decisions
– Collect more traces of latency/bandwidth

Research Plan: Phase III (12-18 months)

• Use feedback from deployment of real services to
refine architecture

• Analyze placement strategies
– Use wide-area measurements and traces from phases I

and II
• Write, graduate…

Appropriate conferences and workshops:
NOSSDAV, ACM Multimedia, SOSP, INFOCOM,

SIGMETRICS, SIGCOMM

Summary

• Logical overlay network of service clusters
– Middleware platform for service deployment
– Optimal service-level path creation
– Failure detection and recovery

• Failures can be detected in O(1sec) over the wide-
area
– Useful for many applications

• Number of overlay nodes required seems
reasonable
– O(1000s) for minimal latency overhead

• Several interesting issues to look at:
– Overhead, Scalability, Stability

References

• [Labovitz’99] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental
Study of Internet Stability and Wide-Area Network Failures”,
Proc. Of FTCS’99

• [Labovitz’00] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian,
“Delayed Internet Routing Convergence”, Proc. SIGCOMM’00

• [Acharya’96] A. Acharya and J. Saltz, “A Study of Internet Round-
Trip Delay”, Technical Report CS-TR-3736, U. of Maryland

• [Yajnik’99] M. Yajnik, S. Moon, J. Kurose, and D. Towsley,
“Measurement and Modeling of the Temporal Dependence in Packet
Loss”, Proc. INFOCOM’99

• [Balakrishnan’97] H. Balakrishnan, S. Seshan, M. Stemm, and R. H.
Katz, “Analyzing Stability in Wide-Area Network Performance”,
Proc. SIGMETRICS’97

Related work: Routing around Failures

• Tapestry, CAN (Berkeley)
– Locate replicated objects in the wide-area using an

overlay network
– Overlay nodes named such that routing table is small
– Redundancy in the overlay network helps in availability in

the presence of failures
• Resilient Overlay Networks (MIT)

– Small number (~50) of nodes on the Internet form a
redundant overlay network

– Application level routing metrics, and quick recovery
from failures

• Recovery of composed service-level paths not
addressed

UDP-based
keep-alive
stream

1111, , 88 55, , 55

66, , 33

85 gaps above 900ms

False-positive
rate: 6/116/11, 3/83/8

10

Open Issues

• Using application level information for dynamic
path construction
– Some transformations may not be good

• Service interfaces for automated composition and
correctness checking

• Soft-state based management of application level
state

UDP-based keep-alive stream

5

5

1

1

6

7

5

7

8

8

8

55

Num.
Failures

376:39:40BerkeleyUIUC

689:54:11UIUCBerkeley

7476:39:10StanfordUIUC

489:53:17UIUCStanford

2124:21:19BerkeleyStanford

258124:21:55StanfordBerkeley

24130:46:38TU-BerlinUNSW

218130:48:11UNSWTU-Berlin

174130:50:11BerkeleyTU-Berlin

27130:49:46TU-BerlinBerkeley

9130:51:45BerkeleyUNSW

135130:48:45UNSWBerkeley

Num. False
positives

Total timeHB sourceHB destination

Example services that can be
composed

• Content streaming
– Audio/Video

• Transcoding
– Format translation
– Text to speech

• Rate adaptation
– Lossy encoding
– Reduction of frame size

• Adding FEC

Example services that can be
composed

• Unicast to multicast and vice-versa
• Personalized redirection

– Between multiple user devices
– Service handoff

• Adding semantic content
– E.g., song title, or classification
– Ads L

Some more composed services

• MP3 à PCM à GSM
• MP3 à Reduce quality à Add FEC for wireless link
• Video à Redirector (Handheld/Desktop)

Link State vs. Distance Vector

• Link State:
– Quicker reaction to failures
– Failure information need not propagate
– Multiple metrics possible (app level)
– Important reason: need distances from intermediate

nodes for composition
• Distance Vector requires lesser storage

– Not true with path vector
• Why not Path Vector?

– Convergence could take a long time [Labovitz’00]

