
1

A Framework for Composing Services
Across Independent Providers in the

Wide-Area Internet

Bhaskaran Raman
Qualifying Examination Proposal

Feb 12, 2001

Examination Committee:
Prof. Anthony D. Joseph (Chair)

Prof. Randy H. Katz
Prof. Ion Stoica

Prof. David Brillinger

Technological Trend
"Service and content providers play an increasing role in the

value chain. The dominant part of the revenues moves from the
network operator to the content provider. It is expected that

value-added data services and content provisioning will create
the main growth."

Subscriber user

Service
broker

Service
mgt.

Access
network
operator

Core
network
operator

Value added
service

providers

Value added
service

providers

Value added
service

providers

Content
providers

Content
providers

Content
providers

Access NetworksAccess Networks

Cellular systemsCellular systems
Cordless (DECT)Cordless (DECT)

BluetoothBluetooth
DECT dataDECT data

Wireless LANWireless LAN
Wireless local loopWireless local loop

SatelliteSatellite
CableCable

DSLDSL

Service Composition

Provider QProvider Q

Provider QProvider Q

TextText
toto

speechspeech

TextText
toto

speechspeech

Provider RProvider R

Provider RProvider R

Cellular
Phone

Email
repository

Provider AProvider A

Provider AProvider A

Video-on-demand
server

Provider BProvider B

Provider BProvider BThin
Client

Replicated
instancesTranscoder

Service Composition

• Operational model:
– Service providers deploy different services at various

network locations
– Next generation portals compose services

• Quickly enable new functionality on new devices
• Possibly through SLAs

– Code is NOT mobile [Roscoe00]
• Composition across

– Service providers
– Wide-area

• Notion of service-level path

Requirements and Challenges

• Framework for composing services
– How are services deployed/replicated?
– Who composes services? How are service-level paths

created?
• Choice of “optimal” service-level path

– When there are multiple instances of each intermediate
service

• Robustness
– Detect and recover from failures
– Possibly across the wide-area Internet
– Important for long-lived sessions

• Several minutes/hours
– Quick recovery required for real-time applications

Overall Architecture

Composed services

Hardware platform

Peering relations,
Overlay network

Service clusters

Logical platform

Application plane

Handling failures

Service-level
path creation

Service
location

Network
performance

Detection

Recovery

2

Problem Scope

• Services have no “hard” state
– Sessions can be transferred from one service instance to

another
– This is assumed while handling failures

• Assumption valid for a large set of applications
[Snoeren01, Brassil01]
– Content streaming
– Transformation agents
– Addition of semantic content (e.g., song title)
– Logical operations: redirection

Research Contributions

• Framework for composing services
– Optimality – choice of service instances
– High availability – failure detection and recovery

• Develop applications that use such composition
– Demonstrate use of mechanisms for optimality and

failure recovery

Outline

• Related work
• Feasibility of failure detection over the wide-area
• Design of the framework
• Evaluation
• Research methodology and timeline
• Summary

Related work: Service Composition
• TACC (A. Fox, Berkeley)

– Fault-tolerance within a single service-provider cluster
for composed services

– Based on cluster-manager/front-end based monitoring
• Simja (Berkeley), COTS (Stanford), Future

Computing Environments (G. Tech)
– Semantic issues addressed – which services can be

composed
– Based on service interface definitions, strict typing

• HP e-speak
– Service description and discovery model
– Scalability?

• None address wide-area network performance or
failure issues for long-lived composed sessions

Related work: Performance and
Robustness

• Cluster-based approaches: TACC, AS1, LARD
– Fault management and load balancing within a cluster
– Wide-area performance and failure issues not addressed

• Wide-area server selection: SPAND, Harvest,
Probing mechanisms
– Network and/or server performance discovery for

selecting optimal replica
– For composed services, require multi-leg measurement
– For long-lived sessions, need recovery during session

Related work: Routing around Failures

• Tapestry, CAN
– Locate replicated objects in the wide-area using an

overlay network
– Redundancy in the overlay network helps in availability in

the presence of failures
• Resilient Overlay Networks

– Small number (~50) of nodes on the Internet form a
redundant overlay network

– Application level routing metrics, and quick recovery
from failures

• Recovery of composed service-level paths not
addressed

3

Related work: summary

Yes

Yes

Yes

Our
System

YesYesNoNoNo
Routing
around
failures

??YesNoNo
WA perf.

adaptation

NoNoNoYesYes
Composed
Services

RON
Tapestry,

CAN

WA
server

selection

COTS,
Future
Comp.
Env.

TACC

Outline

• Related work
• Feasibility of failure detection over the wide-area
• Design of the framework
• Evaluation
• Research methodology and timeline
• Summary

Failure detection in the wide-area:
Analysis

Provider AProvider A

Provider AProvider A

Video-on-demand
server

Provider BProvider B

Provider BProvider BThin
Client

Transcoder

Peering relations,
Overlay network

Handling failures

Service-level
path creation

Service
location

Network
performance

Detection

Recovery

Failure detection in the wide-area:
Analysis

• What are we doing?
– Keeping track of the liveness of the WA Internet path

• Why is it important?
– 10% of Internet paths have 95% availability [IPMA1]
– BGP could take several minutes to converge [IPMA2]
– These could significantly affect real-time sessions based

on service-level paths
• Why is it challenging?

– Is there a notion of “failure”?
– Given Internet cross-traffic and congestion?
– What if losses could last for any duration with equal

probability?

Failure detection: the trade-off

Monitoring for liveness of path
using keep-alive heartbeat

Time

Time

Failure: detected by timeout

Timeout period

Time

False-positive: failure detected
incorrectly

Timeout period

There’s a trade-off between time-to-detection and rate of false-positives

UDP-based keep-alive stream

• Geographically distributed hosts:
– Berkeley, Stanford, UIUC, TU-Berlin, UNSW
– Some trans-oceanic links, some within the US

• UDP heart-beat every 300ms between pairs
– Choice of time value justified later…

• Measure gaps between receipt of successive
heart-beats

4

UDP-based
keep-alive
stream

1111, , 88 55, , 55

66, , 33

85 gaps above 900ms

UDP Experiments: What do we
conclude?

• Significant number of outages
> 30 seconds
– Of the order of once a day
– Availability much lesser than in

PSTN
– Along the lines of findings in

[IPMA1]
• But, 1.8 second outage è 30

second outage with 50% prob.
– If we react to 1.8 second

outages by transferring a
session can have much better
availability than what’s possible
today

Provider AProvider A

Provider AProvider A

Video-on-demand
server

Provider BProvider B

Provider BProvider BThin
Client

Transcoder

UDP Experiments: What do we
conclude?

• 1.8 seconds good enough for non-interactive
applications
– On-demand video/audio usually have 5-10 second buffers

• 1.8 seconds not good for interactive/live
applications
– But definitely better than having the entire session cut-

off
– May require further application support

UDP Experiments: Validity of
conclusions

• Results similar for other host-pairs:
– BerkeleyàStanford, UIUCàStanford,

BerkeleyàUNSW, TUBerlinàUNSW
• Results in parallel with other independent studies:

– RTT spikes are isolated; undone in a couple of seconds
[AS96]

– 86% of bad TCP timeouts are due to one or two elevated
RTTs [AP99]

– Correlation of packet losses does not persist beyond
1000ms [Yajnik98]

Outline

• Related work
• Feasibility of failure detection over the wide-area
• Design of the framework
• Evaluation
• Research methodology and timeline
• Summary

Design of the Framework

• Question: how do we construct optimal, robust
composed services?

5

Design Alternative: End-to-end
monitoring

• No infrastructure
required
– Hop-by-hop

composition
• Problems:

– Overhead
– Sub-optimal

service-level path
– Alternative path

may not be active
– What if both ends

are fixed?

Video-on-demand
server

Active
monitoring

Alternate server

Design Alternative: Client-Side
Aggregation

• Reduces overhead
• Other problems

persist:
– Hop-by-hop

composition
– Alternate server

could be
unavailable

– Does not work if
both ends are
fixed

Video-on-demand
server

Aggregated
active

monitoring Alternate server

Architecture Internet

Service cluster: Compute
cluster capable of running

services

Peering

Destination

Source

Composed services

Hardware
platform

Peering relations,
Overlay network

Service clusters

Logical
platform

Application
plane

Architecture: Advantages

• Overlay nodes are clusters
– Hierarchical monitoring

• Within cluster – for process/machine failures
• Across clusters – for network path failures

– Aggregated monitoring
• Amortized overhead

• Overlay network
– Intuitively, expected to be much smaller than the

Internet
– With nodes near the backbone, as well as near edges

Architecture: Overlay Network

Peering relations,
Overlay network

Logical platform

Handling failures

Service-level
path creation

The overlay network provides the context for service-level
path creation and failure handling

Service-Level Path Creation

Peering relations,
Overlay network

Handling failures

Service-level
path creation

Service
location

Network
performance

Detection

Recovery

Finding
entry/exit

6

Finding entry and exit

• Independent of other mechanisms
• We do not address this directly
• Entry or exit point can be rather static

– Nodes are clusters è do not fail often
– By placement, can make choice of overlay node obvious

• Can learn entry or exit point through
– Pre-configuration,
– Expanding scope search,
– Or, any other level of indirection

Service-Level Path Creation

• Connection-oriented network
– Explicit session setup stage
– There’s “switching” state at the intermediate nodes

• Need a connection-less protocol for connection
setup

• Need to keep track of three things:
– Network path liveness
– Metric information (latency/bandwidth) for

optimality decisions
– Where services are located

Service-Level Path Creation

• Three levels of information exchange
– Network path liveness

• Low overhead, but very frequent
– Metric information: latency/bandwidth

• Higher overhead, not so frequent
• Bandwidth changes only once in several minutes [SPAND]
• Latency changes appreciably only once in about an hour

[AS96]
– Information about location of services in clusters

• Bulky
• But does not change very often (once in a few weeks, or

months)
• Link-state algorithm to exchange information

– Least overhead è max. frequency
• Service-level path created at entry node

Routing on the overlay network

• Two ideas:
– Path caching

• Remember what previous clients used
• Another use of clusters

– Dynamic path optimization
• Since session-transfer is a first-order feature
• First path created need not be optimal

Session Recovery: Design Tradeoffs

• End-to-end vs. local-link
– Pre-established vs. on-demand
– Can use a mix of strategies

• Pre-established end-to-end:
– Quicker setup of alternate

path
– But, failure information has to

propagate
– And, performance of alternate

path could have changed
• On-demand local-link:

– No need for information to
propagate

– But, additional overhead

Overlay n/w

Handling failures

Service-level
path creation

Service
location

Network
performance

Detection

Recovery

Finding
entry/exit

The Overlay Topology

• Need to address:
– How many overlay nodes are deployed?
– Where are they deployed?
– How do they decide to peer?

7

The Overlay Topology: Design Factors

• How many nodes?
– Large number of nodes è lesser latency overhead
– But scaling concerns

• Where to place nodes?
– Need to have overlay nodes close to edges

• Since portion of network between edge and closest overlay
node is not monitored

– Need to have overlay nodes close to backbone
• Take advantage of good connectivity

• Who to peer with?
– Nature of connectivity
– Least sharing of physical links among overlay links

Outline

• Related work
• Feasibility of failure detection over the wide-area
• Design of the framework
• Evaluation
• Research methodology and timeline
• Summary

Evaluation

• Important concern: overhead of routing over the
overlay network
– Addition to end-to-end latency

• Network modeling
– AS-Jan2000, MBone, TIERS, Transit-Stub
– Between 4000-6500 nodes
– Each node represents an Address Prefix [IDMaps]
– In comparison, the Internet has ~100,000 globally visible

APs [IDMaps]

Evaluation

• Overlay nodes
– 200: those with max. degree (backbone placement)
– Peering between “nearby” overlay nodes
– Physical links are not shared

• 1000 random pairs of hosts in original network
– Overhead of routing over overlay network
– No intermediate services used – for isolating the raw

latency overhead

Evaluation: Routing
Overhead

Only 2.1% of the end-host
pairs have over 5% overhead

Evaluation: Effect of
Size of Overlay

2.1% have over 5% overhead

2.2% have over 40% overhead

2.6% have over 60% overhead

8

Evaluation: What can we conclude?

• Latency overhead of using overlay network quite
low
– Can get away with < 5% overhead in most cases

• Number of overlay nodes required for low latency
quite low:
– 200 for 5000 nodes
– How many for 100,000 nodes? (number of APs on the

Internet)
– For linear growth, 4000 overlay nodes (in comparison,

there are ~10,000 ASs on the Internet)

Outline

• Related work
• Feasibility of failure detection over the wide-area
• Design of the framework
• Evaluation
• Research methodology and timeline
• Summary

Research Methodology

Evaluation
Design

Analysis

• Connection-oriented
overlay network of
clusters

• Session-transfer on
failure

• Aggregation –
amortization of overhead

• Simulation
– Routing

overhead
– Effect of size

of overlay
• Implementation

– MP3 music for
GSM cellular-
phones

– Codec service
for IP-
telephony

• Wide-area monitoring trade-offs
– How quickly can failures be detected?
– Rate of false-positives

Research Methodology: Metrics

• Feasibility:
– Overhead

• End-to-end latency; bandwidth for information exchange
– Scalability

• To a large number of client sessions
– Stability

• Of optimality and session-transfer decisions
• Usefulness:

– Latency to recovery
• Measure of effectiveness

– Use of composability
• For building application functionality

Research Methodology: Approach

• Simulations, Trace-collection, Real implementation
• Simulation

– For initial estimation of overhead
• Simulation + Traces

– Bandwidth usage estimation, Stability study
• Real implementation

– Scalability studies
– Real services for use of composability

• Testbed
– Collaborating with UNSW, TUBerlin

Research Plan: Phase I (0-6 months)

• Detailed analysis of
– Latency and bandwidth overhead
– Latency to recovery

• Use traces of latency/bandwidth over wide-area
• Develop real implementation in parallel

– This is already in progress
– Will give feedback for the analysis above

9

Research Plan: Phase II (6-12 months)

• Use implementation from Phase I
– Deploy real services on the wide-area testbed
– Analyze end-to-end effects of session-recovery
– Examine scalability

• Use traces from Phase I to analyze stability of
optimality decisions
– Collect more traces of latency/bandwidth

Research Plan: Phase III (12-18 months)

• Use feedback from deployment of real services to
refine architecture

• Analyze placement strategies
– Use wide-area measurements and traces from phases I

and II
• Write, graduate…

Appropriate conferences and workshops:
NOSSDAV, ACM Multimedia, SOSP, INFOCOM,

SIGCOMM

Summary of Contributions

• Framework for service composition across service
providers

• Notion of connection-oriented network at the
service-level
– For optimizing paths
– For detecting and recovering from failures

