

Service Composition

- · Quick development and deployment
- Notion of service-level path
- Composition across
 - Service providers
 - Wide-area

Requirements and Challenges: High Availability

- · Services need to be available always
- Important for long-lived sessions
 - Several minutes or hours
 - Should be uninterrupted
- Availability in PSTN: 99.999% Backup during session
- Internet:
 - 10% of paths have less than 95% availability - BGP convergence could take several minutes

Outline

- Related work
- · Feasibility of failure detection over the wide-area
- Design of the framework
- Evaluation
- Research methodology and timeline
- Summary

Related work

- Composition of services
- Robustness and performance for Internet services
- · Overlay networks on the Internet
- Routing around failures

Related work

Service composition

- TACC

- Within a single service-provider cluster
- · Model does not extend for composition across clusters
- Simja, COTS
 - Semantic issues addressed
 - Also does not address composition across service providers
 - Do not address availability or performance issues
 - This work is complementary to ours

Related work

- Fault tolerant Internet services
- TACC, AS1
 - Web-proxy, Video-proxy
 - Fault-tolerance within cluster, not across
 - Not in the context of wide-area composed paths
- LARD
 - Web-server fault-tolerance
 - Selection of instance within cluster
- Mirror selection (e.g. SPAND)
 - Not for composed services
 - No recovery during a long-lived session

Related work

- Overlay networks
 - Tapestry, CAN
 - Locate replicated objects in the wide-area
 - Intentional Naming System
 - Overlay to route based on service descriptions
 Resilient Overlay Networks
 - Routing around network failures
- Key differences
 - Provision for service composition
 - Connection-oriented overlay network

Related work

- · Routing around failures in networks
 - BGP
 - MPLS, ATM
- I dea of peering between service clusters similar to BGP peering
- We can borrow different flavors of recovery from connection-oriented networks
 - Backup paths
 Routing around failed link
- But, we have to adapt these to composed services

Related work: summary

Composed services → composition across the network not addressed

High availability & performance issues addressed → not in the context of composed services

Outline

- Related work
- · Feasibility of failure detection over the wide-area
- Design of the framework
- Evaluation
- Research methodology and timeline
- Summary

• We perform UDP-based heartbeat experiments

UDP-based keep-alive stream

- Geographically distributed hosts:
 Berkeley, Stanford, UI UC, TU-Berlin, UNSW
- UDP heart-beat every 300ms
 Represents low rate
- Internet jitter is of the order of 100ms anywayMeasure gaps between receipt of successive
 - heart-beats

Routing: Finding entry and exit

- · Independent of other mechanisms
- · Entry or exit point can be rather static Nodes are clusters → do not fail often - By placement, can make choice of overlay node obvious
- · Can learn entry or exit point through
 - Pre-configuration,
 - Expanding scope search,
 - Or, any other level of indirection

Routing on the overlay network

- Connection-oriented network
 - Explicit session setup stage
 - There's "switching" state at the intermediate nodes
- · Need a connection-less protocol for connection setup
- Need to keep track of three things:
 - Network path liveness
 - Metric information (latency/bandwidth) for
 - optimality decisions
 - Where services are located

Routing on the overlay network · Three levels of information exchange - Network path liveness · Low overhead, but very frequent - Metric information: latency/bandwidth

- - Higher overhead, not so frequent
 Bandwidth changes only once in several minutes
 - · Latency changes appreciably only once in about an hour
- Information about location of services in clusters
 - Bulky
 But does not change very often (once in a few weeks, or months)
- Link-state algorithm to exchange information Least overhead → max. frequency
- Service-level path created at entry node

- But, additional overhead

The Overlay Topology

- · Need to address:
 - How many overlay nodes are deployed?
 - Where are they deployed?
 - How do they decide to peer?

The Overlay Topology

- · How many nodes?
 - Large number of nodes → lesser latency overhead - But scaling concerns
- · Where to place nodes?
 - Need to have overlay nodes close to edges Since portion of network between edge and closest overlay node is not monitored
 - Need to have overlay nodes close to backbone Take advantage of good connectivity
- Who to peer with?
- Nature of connectivity
 - Least sharing of physical links among overlay links

Outline

- Related work
- Feasibility of failure detection over the wide-area
- Design of the framework
- Evaluation
- · Research methodology and timeline
- Summary

Evaluation

- · Important concern: overhead of routing over the overlay network
- Addition to end-to-end latency
- Network modeling
 - AS-Jan2000, MBone, TIERS, Transit-Stub - Between 4000-6500 nodes
- · Overlay nodes
- 200: those with max. degree (backbone placement) - Peering between "nearby" overlay nodes
- Physical links are not shared

Research Methodology: Metrics

- Overhead
- End-to-end latency; bandwidth for information exchange
- Latency to recovery
- Measure of effectiveness
- Use of composability
- For building application functionalityScalability
- To a large number of client sessions
- Stability
- Of optimality and session-transfer decisions

Research Methodology: Approach

- · Simulations, Trace-collection, Real implementation
- Simulation
- For initial estimation of overhead
- Simulation + Traces
- Bandwidth usage estimation, Stability study
- · Real implementation
 - Scalability studies
 - Real services for use of composability
- Testbed
 - Collaborating with UNSW, TUBerlin

Research Plan: Phase I (0-6 months)

- Detailed analysis of
 Latency and bandwidth overhead
 Latency to recovery
- Use traces of latency/bandwidth over wide-area
- Develop real implementation in parallel
 - This is already in progress
 - Will give feedback for the analysis above

Research Plan: Phase II (6-12 months)

- Use implementation from Phase I
 - Deploy real services on the wide-area testbed
 - Analyze end-to-end effects of session-recovery
 - Examine scalability
- Use traces from Phase I to analyze stability of optimality decisions
 - Collect more traces of latency/bandwidth

Research Plan: Phase III (12-18 months)

- Use feedback from deployment of real services to refine architecture
- Analyze placement strategies
 - Use wide-area measurements and traces from phases I and II
- Write, graduate...

Appropriate conferences and workshops: NOSSDAV, ACM Multimedia, SOSP, INFOCOM, SIGCOMM

Summary of Contributions

- Framework for service composition across service providers
- Notion of connection-oriented network at the service-level
 - For optimizing paths
 - For detecting and recovering from failures