
IEEE INTERNET OF THINGS JOURNAL 1

High Throughput Acceleration of Scabbard Key
Exchange and Key Encapsulation Mechanism Using

Tensor Core on GPU for IoT Applications
Author’s Version

Muhammad Asfand Hafeez∗, Graduate Student Member, IEEE,, Wai-Kong Lee‡, Member, IEEE,
Angshuman Karmakar†, Member, IEEE, and Seong Oun Hwang‡, Senior Member, IEEE

Abstract—High throughput key encapsulations and decapsula-
tions are needed by IoT applications in order to simultaneously
process a multitude of small data in secure communication. In
this paper, we present two novel techniques for accelerating the
implementation of polynomial convolution on a GPU, utilizing
advanced Tensor cores, which benefit the performance of key
encapsulations. First, a polynomial re-structuring technique is
proposed to allow several polynomials with distinct public keys
to be processed in a single communication cycle. This is an
improvement compared to the previous work by Lee et al.
Next, we observe that polynomial convolution in some key
encapsulation mechanisms contains reduction patterns that are
not friendly to parallel implementation. We propose separating
the multiplication and reduction processes so they can be paral-
lelized independently. To verify the effectiveness of our proposed
techniques, we applied it to two key-encapsulation mechanisms
from the Scabbard post-quantum key-encapsulation mechanism
suite and evaluate their performance. Experimental results show
that polynomial convolution using Tensor cores is 1.05× faster
(for the Florete scheme) and 3.6× faster (for the Sable scheme)
than using CUDA core-based multiplication with conventional
cores on a GPU. The Tensor cores based encapsulations and
decapsulations are faster than a reference implementation on a
CPU supporting AVX2 by more than 5.6× and 6.4×, respectively,
for the Florete scheme and 8.3× and 13.3× faster, respectively,
for the Sable scheme. This shows that the proposed techniques
can achieve significantly higher throughput for key exchange and
encapsulation mechanisms, which are important for securing IoT
applications.

Index Terms—Cryptography, Polynomial Convolution, Tensor
Cores, Post-quantum Cryptography, Lattice-based Cryptogra-
phy, General Matrix Multiplication (GEMM).

I. INTRODUCTION

W ITH the advent of the quantum computer (QC), the
security of many known classical cryptographic algo-

rithms such as Rivest-Shamir-Adleman (RSA) and Elliptic-
curve cryptography (ECC) is in danger. This is because the
mathematically hard problems that form the foundation of
classical cryptography can be solved by a QC at a much

The author∗is with the Department of IT Convergence Engineering,
Gachon University, Seongnam 13120, South Korea (e-mail: muhammadas-
fandh@gmail.com) and authors‡ are with the Department of Computer
Engineering, Gachon University, Seongnam 13120, South Korea (e-mail:
waikong.lee@gmail.com; sohwang@gachon.ac.kr). The author† is with the
Department of Computer Science and Engineering, Indian Institute of
Technology, Kanpur 208016, India (e-mail: angshuman@cse.iitk.ac.in) and
with imec-COSIC, Department Electrotechniek, KU Leuven Belgium (e-
mail:angshuman.karmakar@esat.kuleuven.be). (Corresponding author: Seong
Oun Hwang.)

faster speed when employing Shor’s algorithm [1] and as
described by Proos and Zalka [2]. This is a severe threat to
classical cryptography, which has been used for more than four
decades. To mitigate such threats, post-quantum cryptography
(PQC) has been actively researched since the early 2000s,
which primarily aims to develop public-key cryptography that
can resist the threats from the QC. In 2016, the National
Institute of Standards and Technology (NIST) [3] initiated a
standardization process to select PQC schemes such as the key
encapsulation mechanism (KEM) and the signature schemes to
be used in the post-quantum world. Since the introduction of
this standardization process, various efficient implementations
have been proposed on different platforms, such as the field
programmable gate array (FPGA) [4], Apple processors [5],
and the microcontroller [6]. Currently, NIST has shortlisted
four candidates to be used as a standard: the CRYSTALS-
KYBER KEM [7], CRYSTALS-Dilithium [8], FALCON [9],
and SPHINCS+ [10] signatures.

A. Development of PQC After the NIST Standardization

Although the selection of the Kyber algorithm as a standard
is an important milestone in the development of PQC, that
does not indicate that the field of PQC will stop innovating
and evolving. Instead, the standardization process has served
as a roadmap for future development and improvement of PQC
schemes. For example, during this standardization process, we
saw that aggressive and non-conventional choices of parame-
ters (e.g., LAC and Round 5) [11] had been discouraged. These
choices can be potentially exploited by attackers, leading to
vulnerabilities in a PQC system. Similarly, the use of non-
constant-time error correction codes which are very crucial
in lattice-based PQC schemes. These codes can be sources of
side-channel attacks, which can compromise the security of the
system. Therefore, the use of error correction codes in PQC
schemes must be carefully considered and evaluated to ensure
they do not introduce vulnerabilities. Hence, a continuous
effort to improve the existing PQC schemes while not com-
promising their security is still a highly productive research
direction. For instance, Mera et al. [12] proposed Scabbard, a
suite of KEM schemes that improve on Saber, the NIST PQC
finalist [13]. Similarly, Liang et al. [14] proposed an improved
version of the NTRU KEM [15] which was also a finalist in the
NIST’s standardization procedure. In this work, we focus only

IEEE INTERNET OF THINGS JOURNAL 2

on Scabbard [12], which utilizes a modified version of the ring-
learning-with-errors (RLWE) problem, that has been widely
studied and analyzed. This allows Scabbard [12] to benefit
from the extensive research and analysis conducted on the
RLWE problem, giving it a strong foundation. Furthermore,
Scabbard [12] was designed with trading security and real-
world efficiency taken into consideration, making it a suitable
candidate for practical implementations. Scabbard [12] offers
improved security and efficiency compared to the original
Saber scheme, making it a strong choice for an alternate PQC
scheme in real-world implementations.

B. Deploying PQC Schemes on IoT Applications

Besides security aspects, current research interest is grad-
ually increasing towards employing PQC schemes on un-
conventional hardware platforms such as massively parallel
processors like the graphics processing unit (GPU) [16],
instruction set architecture (ISA) [17] and the application-
specific instruction set processor (ASIP) [18]. The growing
trend of developing future applications around the Internet of
Things (IoT) paradigm has spurred interest in enhancing secu-
rity through using PQC schemes on non-traditional hardware
platforms such as [19], [20], [21]. This academic pursuit seeks
to explore and expand upon potential solutions for securing
IoT sensor nodes and systems against emerging threats.

Many sensor nodes that are major constituents of the IoT
have constrained computational resources, memory, and power
and require an ASIP to support cryptographic operations. On
the other hand, cloud servers in an IoT network need to handle
massive amounts of communication from many sensor nodes,
so it is natural to employ an accelerator like a GPU to offload
cryptographic operations. This paper focuses on the latter
case, wherein efficient techniques based on the latest GPU
architecture are developed to accelerate PQC KEMs. Owing to
its massively parallel cores, the GPU has been widely used to
accelerate cryptographic schemes. Tensor cores are specialized
components of the advanced GPU by NVIDIA manufactured
after 2017, which is faster than the standard Compute Unified
Device Architecture (CUDA) cores. Several applications for
deep neural networks use NVIDIA’s Tensor cores to increase
the training and inference performance [22]. However, it was
not widely used in the realm of cryptography, with very few
published works available [23], [24]. The use of Tensor cores
improves the speed of polynomial convolution, which is the
key to achieving a high throughput KEM implementation on
the GPU.

C. High Throughput Implementation of Key Exchange
Schemes and Key Encapsulation Mechanisms on a GPU

In a key encapsulation mechanism (KEM), the public keys
are non-ephemeral, i.e., they do not need to be changed after
each communication session. But in key exchange (KEX)
schemes, the public keys are ephemeral, i.e., they have to be
changed after each session. Lattice-based KEM schemes are
usually built on top of KEX schemes by applying Fujisaki-
Okamoto transformation [25]. Owing to the limited resources
in IoT sensor nodes, KEX schemes (using ephemeral keypairs)

that are more computationally lightweight are more suitable
than KEM using non-ephemeral keypairs.

Most lattice-based PQC schemes involve polynomial convo-
lution, which is the most time-consuming component. Various
methods have been proposed in order to speed up polynomial
convolution on different platforms [26], [27], [28], [29]. Sim-
ilarly, there are efforts to implement PQC candidates from the
NIST standardization procedure on GPU platforms [30], [31],
[32]. For instance, Supersingular Isogeny Key Encapsulation
(SIKE) was accelerated by using a GPU [33]. Recently, Lee
et al. [23] proposed the first implementation of NTRU (a PQC
KEM) using the Tensor cores, which showed a significant
speed-up compared to the standard CUDA cores. The proposed
solution also applies to other lattice-based schemes, including
FrodoKEM and LAC [23]. However, this high performance
comes with a price: it is only applicable to the same keypair
(non-ephemeral keypair), limiting the applicability of such
implementations in IoT applications. DPCrypto [16] was later
proposed wherein a dot-product instruction is used to compute
polynomial convolutions. This allows the use of ephemeral
keypairs, but the performance is slower than Tensor cores
based implementations. But how to efficiently utilize the
Tensor cores for computing a KEX with ephemeral keypairs
remains an open research problem.

Tensor cores based polynomial convolution first pack the
public key into matrix form before performing General Matrix
Multiplication (GEMM). The previous approach proposed by
Lee et al. [23] packed one public key into cyclic form, so
GEMM using the Tensor cores can only perform polynomial
convolution between one fixed public key and multiple random
polynomials. This breaches the KEX requirement wherein the
keypair must be refreshed after every instance.

In this paper, we present a new approach to resolving this
issue. Our techniques allow polynomial convolution to be
computed by Tensor cores while at the same time avoiding the
issue with non-ephemeral keypairs. The proposed Tensor cores
based solution was applied to two of the KEMs in Scabbard
suite [12] (Florete and Sable) to evaluate its effectiveness in
achieving high throughput KEX and KEM. The following are
our key contributions.

1) The previous work that utilizes Tensor cores to compute
polynomial convolution was proposed by Lee et al. [23].
It may suffer from security issues because one of the
matrices is generated from a fixed polynomial, which
violates the ephemeral keypair requirement in KEX.
In this paper, a technique was proposed to restructure
and pack multiple random polynomials (usually pub-
lic keys) into a matrix before computing the GEMM.
This allows our implementation to handle polynomial
convolution between different public keys and multiple
random polynomials. This also implies that the proposed
Tensor cores based polynomial convolution can use
ephemeral keypairs, which makes it a more secure way
to implement KEX compared to the technique proposed
by Lee et al. [23].

2) The proposed Tensor cores based polynomial convolu-
tion was evaluated on two lattice-based KEMs described
in [12]: Florete and Sable. Sable employs nega-cyclic

IEEE INTERNET OF THINGS JOURNAL 3

polynomial convolution, which can be parallelized nat-
urally [23] since there is no dependency between each
polynomial coefficient. This makes it a good candidate
for employing Tensor cores in polynomial convolution.
On the other hand, Florete is constructed using the
ring learning with rounding (RLWR) approach, which
includes 768 × 768 polynomial multiplication and dif-
ferent reduction patterns for various parts. Therefore,
reduction in Florete is dependent on multiple patterns,
where multiple synchronizations are required to avoid
data race issues. This makes it challenging to paral-
lelize polynomial convolution using Tensor cores. To
resolve this issue, we propose to first perform polyno-
mial multiplication (which can be accelerated by Tensor
cores) followed by various reduction steps that can be
parallelized separately. This allows a high throughput
implementation of Florete supported by the proposed
Tensor cores based polynomial convolution.

3) For the implementation of Sable KEX on an RTX3060
Ti GPU, our Tensor cores based implementation can
achieve 456, 204 encryptions per second and 557, 2971
decryptions per second, which is 1.7× faster and 3.1×
faster, respectively, than using standard CUDA cores.
The highest throughput achieved by a Sable KEM was
228, 699 encapsulations per second and 390, 775 decap-
sulations per second. Our Tensor cores based polynomial
convolution achieved up to a 1.56× speed-up, compared
to the recent implementation of a Saber KEM [16]
that had the same polynomial length as Sable. For
the implementation of a Florete KEX, the throughput
achieved by the Tensor cores based implementation
was 230, 202 encryptions per second and 472, 227 de-
cryptions per second, which is 1.1× faster and 1.07×
faster, respectively, than standard CUDA cores. The
highest throughput of the Florete KEM was 167, 748
encapsulations per second and 172, 757 decapsulations
per second.

Experimental results showed that the proposed Tensor cores
based implementation can achieve high throughput KEX and
KEM. For IoT applications that have sensor nodes with
constrained resources, KEX (ephemeral keypairs) is the pre-
ferred choice; our solution can be used to implement a high
throughput secure KEX in such circumstances. In addition,
for IoT applications that prefer to adopt KEM instead of
KEX, our solution can be adopted to achieve high throughput,
secure KEM. Note that our proposed method is applicable
to any lattice-based encryption with a modulus of 11 bits
maximum and having both cyclic and nega-cyclic polynomial
convolution.

The rest of this paper is structured as follows. Section II
introduces the Scabbard [12] post-quantum KEM suite and
related research. Our techniques are presented in Section III.
Experiment results and the analysis are presented in Section
IV. We conclude the paper in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we first provide some background informa-
tion before introducing Scabbard [12] as an improvement to

the Saber design. We conclude by discussing current work
on high throughput PQC implementations on GPUs and other
hardware.

A. Background
Secure communication is crucial, particularly in the IoT as

its many sensor nodes collect and transmit sensitive data across
networks. Therefore, IoT security has become a necessity,
but it is challenging to implement due to the application-
specific complexity of infrastructures, the infrequent main-
tenance of deployments, and the limited processing power
and memory capacity in sensor nodes. Moreover, the strict
energy constraints on battery-powered sensor nodes commonly
used in the IoT, and the sometimes compelling need for
rapid time-to-market, may pose significant security risks. As
a result, the use of cryptography to provide security should
be acknowledged as essential, because a powerful QC will be
able to easily break widely used conventional cryptographic
algorithms. PQC arose as a new area in response to QCs,
and NIST recently concluded a multi-round standardization
procedure for PQCs. These new methods are based on dif-
ferent mathematical problems compared to traditional ones,
including problems regarding lattices, codes, multivariate poly-
nomials, and hash functions. These mathematical problems
are expected, or are known, to be resistant to QCs. The
primary assessment criteria for PQC standards are security
analysis and implementation performance. Besides software
implementation offered by the NIST PQC candidates, some
researchers have also developed purely hardware or hardware-
software co-processors [34][35] to improve the performance
of these candidates. This can be very useful in protecting the
communication in IoT applications, which is briefly illustrated
in Figure 1. Sensor nodes frequently send data to an IoT
gateway, which relays the sensor data to the IoT cloud. The
sensor data are usually encrypted before being sent to the IoT
gateway, typically achieved through symmetric key encryption
algorithms such as AES. The encryption keys for all sensor
nodes need to be refreshed periodically to avoid potential
attacks (e.g., side channel attacks [36]) that could reveal the
encrypted sensor data. KEX/KEM can be used to achieve this
goal in IoT applications, where the encryption keys can be
exchanged securely between the IoT cloud and sensor nodes.
However, some IoT applications that utilize sensor nodes with
constrained resources may prefer KEX over KEM owing to the
relatively low overhead in computation. In such a scenario, an
ephemeral public keypair is required for security. Regardless
of whether KEX or KEM is used, handling a large volume of
secure communications from sensor nodes is a daunting task
even for high-end servers. Hence, it is beneficial to offload
some cryptographic computations to accelerators like GPUs
to ensure timely communication in IoT applications [37].

B. Scabbard: An Improved Saber
Scabbard, a lattice-based KEM suite proposed by Mera et

al. [12], contains three KEM schemes: Florete, Espada, and
Sable. By examining the most recent development in lattice-
based cryptography, Mera et al. provided concrete instanti-
ations of the schemes in the suite to address the issues of

IEEE INTERNET OF THINGS JOURNAL 4

Fig. 1. A typical communication scenario in IoT application.

constructing efficient cryptosystems from earlier ideas. These
three KEMs are summarized below:

1) Florete: The main idea is to use ring lattices rather than
module lattices. Also, Florete uses the highly optimized
256×256 polynomial multiplier that was already devel-
oped and improved for Saber on many platforms. This is
achieved by combining 256× 256 polynomial multipli-
cation with Toom-Cook-3 multiplication. Therefore, to
perform 768×768 polynomial multiplication in Florete,
only seven 256 × 256 polynomial multiplications are
required, compared to the nine 256 × 256 polynomial
multiplications in Saber. Since the lattice size (768) is
the same in both cases, this translates into a significant
speed-up without compromising security. This makes
Florete one of the fastest PQC KEMs available.

2) Espada: Similar to Saber, Espada uses the module
learning with rounding (MLWR) technique but with
degree-63 polynomials instead of degree-255 polyno-
mials, as in Saber. Because the degree of the poly-
nomial is proportional to the multiplier size, lower-
degree polynomials help to reduce the footprint of
hardware modules. Although Espada needs to perform
144 multiplications (compared to nine multiplications
in Saber), the polynomial multiplications of Espada can
be done in parallel. Thus, the Espada user has greater
freedom to trade off speed and area, compared to other
PQC schemes, making it a very interesting scheme for
hardware implementations.

3) Sable: Based on the hard lattice problem known as
learning with rounding (LWR). It can be shown that
the LWR problem is at least as hard as the LWE
problem [38]. In these schemes, the errors are generated
implicitly using rounding instead of adding explicitly
as in LWE. Mera et al. showed how errors can be
properly estimated when they are generated implicitly by
rounding [12]. Since errors are crucial for determining
the security of lattice-based schemes, it is important to
estimate them properly to eliminate the possibilities of
overestimation or underestimation. This enabled Mera
et al. to improve the parameters of Saber without com-
promising its security. This allowed a reduction of the
key sizes, thereby reducing the bandwidth of Saber. This
altered Saber is called Sable.

The security of the Scabbard [12] key-encapsulation mecha-
nism is based on the hardness of the LWR problem in order to

TABLE I
PARAMETERS OF FLORETE, SABLE AND ESPADA

Parameters L N p q PQ Security Moduli Key Sizes

Florete 1 768 512 1024 2157
ϵq : 10
ϵp: 9
ϵt: 3

PK: 896
SK: 1152
CT: 1248

Sable 3 256 512 2048 2169
ϵq : 11
ϵp: 9
ϵt: 4

PK: 896
SK: 1152
CT: 1024

Espada 12 64 8192 32768 2128
ϵq : 15
ϵp: 13
ϵt: 3

PK: 1280
SK: 1728
CT: 1304

estimate the errors properly. Protocol 1 depicts the generalized
LWR based KEX for Scabbard. It allows Alice and Bob to
establish a shared secret key without revealing their private
keys to each other. The proposed KEM is designed to be
secure and efficient, with key encapsulation being performed
using the recipient’s public key, and the shared secret key
being generated only by the intended parties. It involves three
algorithms: key generation (Algo.1), encapsulation (Algo. 2),
and decapsulation (Algo. 3).

Algorithm 1 generates a public key (PK) and a private key
(SK) based on the security parameter N. Algorithm 2 accepts a
PK as input and generates ciphertext (CT) and a shared secret
key (K). Algorithm 3 performs decapsulation and accepts PK,
CT and SK as input and returns the shared secret key as
output. In Algorithms 1-3, H and G represents hash functions.
h1, h2 and h3 are constant polynomials having coefficients
of 2(ϵq−ϵp−1), (2(ϵq−ϵp−1) + 2(ϵq−B−1) - 2(ϵq−ϵt−1)) and
2(ϵq−ϵp−1), respectively. The values of different parameters
i.e. L, N, p, q, ϵp, ϵq, and ϵt are given in Table. I.

Similar to other lattice-based schemes, the performance
bottleneck in Scabbard [12] is also a polynomial convolution.
For more details about Scabbard, see the original Mera et al.
study [12]. The design parameters for these algorithms are
given in I. Although Saber is an ideal lattice-based scheme
because of the higher security level of Sable due to the
significant value of moduli q, the bandwidth consumption of
Florete (2048 bytes) is even less than Saber (2080 bytes),
assuming we take into account the bandwidth usage of each
scheme, i.e., the combined sizes of both public key and
ciphertext.

C. Previous Work

Recently, a lot of work has been done on efficient im-
plementations of PQC on various platforms to increase its
versatility. For instance, Zhu et al. [39] demonstrated that the
Karatsuba method may be used to construct for the Saber
KEM a high-speed hardware multiplier architecture suitable
for IoT-based applications. Similarly, Seo et al. [40] provided
a SIKE-optimized implementation for the ARM processor. An
and Seo et al. [41] presented new optimized parallel techniques
for FrodoKEM and NewHope GPU implementations for IoT
and cloud computing technologies. Recent work by Lee and
Hwang [31] and Gao et al. [30] described the implementation
of Kyber and NewHope KEM on the GPU platform using the
NTT approach, to provide high throughput.

IEEE INTERNET OF THINGS JOURNAL 5

Protocol 1 Scabbard generalized key-exchange scheme
Alice Bob
seedA ← U({0, 1}256)
r ← U({0, 1}256)
A ← genL×L

N (XOF(seedA)) ∈ (RN
q)L×L

s ← βη((RN
q)L)

b = ⌊ A.s⌉p ∈ (RN
p)L

(b′,seedA)−−−−−−→
r′ ← U({0, 1}256)
A ← genL×L

N (XOF(seedA)) ∈ (RN
q)L×L

s′ ← βη((RN
q)L)

b′ = ⌊ AT .s′⌉p ∈ (RN
p)L

u′ = bT .(s′ mod p) ∈ RN
p

c′ = HelpDecode(u′) ∈ RN
t

(b′,c′)←−−−−
u =b′.(s mod p) ∈ RN

p

c =Decode (u, c′) ∈ RN
2Bt

k = Encode (c) k′ = Encode (u′)
keyAlice =Hash(k) keyBob = Hash(k′)

Algorithm 1 KEM KeyGenreation
Data: nil
Result PK = (seedA, b), SK = (s, H(PK), r)

1: seedA ← U({0, 1}256)
2: r ← U(0, 1)256
3: A← genL×L

N (XOF(seedA)) ∈ (RN
q)L×L

4: s ← βn((RN
q)L)

5: b = bits(A.s + h1, ϵq, ϵp) ∈ (RN
q)L

// Rounding
6: PK← (seedA,b)r ←$ {0, 1}256
7: SK← (s, H(PK),r)
8: return
9: PK= (seedA,b), SK = (s,H(PK), r)

Recently, Lee et al. [42] presented the Physical Unclonable
Function (PUF) approach to implementing public key creation
in SABER KEM for low-power devices, which is highly
parallel and delivers high throughput. On the other hand,
DPCrypto [16] utilized the dot-product instruction to speed
up the matrix multiplication and polynomial convolution in
post-quantum lattice-based cryptography methods. Following
this work, TensorCrypto [23] explored Tensor cores to perform
polynomial convolution. However, that work only supports
non-ephemeral keypairs, which is not desirable for KEX owing
to security concerns. Our work improves TensorCrypto [23] to
support ephemeral keypairs and avoid such security limitations
in KEX.

III. PROPOSED TECHNIQUE

This section presents the proposed polynomial re-structuring
technique for Sable and Florete. The technique allows parallel
polynomial convolution to operate on different input poly-
nomials, as opposed to the fixed one in TensorCrypto [23].
Additionally, parallel polynomial convolution is also imple-

Algorithm 2 KEM Encapsulation
Data: PK = (seedA, b)
Result CT = (c′, b′), key = K

1: m′ ←$ {0, 1}
256

2: m = arrange msg(m′)
3: (K ′, r′)← G(m||H(PK))
4: r′ ← U({0, 1}256)
5: A ← genL×L

N (XOF(seedA)) ∈ (RN
q)L×L

6: s′ ← βη((RN
q)L)

7: b′ =bits(AT .s′ + h1, ϵq, ϵp)
// Rounding

8: u′ = bT .(s′ mod p) ∈ RN
p

9: c′ =bits((u′ + h3 − 2ϵp−Bm), ϵp, (ϵt +B)) ∈ RN
2Bt ▷

HelpDecode
10: K ← H(K ′, H(c′))
11: return

CT = (c′, b′),key = K

mented using CUDA cores in order to analyze the best
implementation strategy for the targeted KEMs. Note that the
proposed techniques are applicable to both KEX and KEM.

A. Proposed Polynomial Re-structuring Technique using Ten-
sor Cores

Polynomial multiplication/convolution is one of the most
time-consuming parts of most lattice-based cryptography
schemes. Generally, polynomial convolution involves two
polynomials: polynomial a, which usually represents the pub-
lic/private key, and polynomial b with small coefficients,
representing the random elements. For instance, polynomial
b in Sable and Florete is ternary, i.e., b = {−1, 0, 1}.

The Tensor cores primarily designed to accelerate the
throughput of artificial intelligence (AI) by performing matrix

IEEE INTERNET OF THINGS JOURNAL 6

Algorithm 3 KEM Decapsulation
Data: PK = (seedA, b), SK = (s,H(PK),r), CT = (c′,b′)
Result key = K

1: u =b′.(s mod p) ∈ RN
p

2: m′
1 = bits ((u+ h2 − 2ϵp−ϵt−Bm), ϵp, B) ∈ RN

2B ▷
Decode

3: m1 = orignal msg(m′
1)

4: m2 = arrange msg(m1)
5: (K ′

1, r
′
1)← G(m2||H(pk))

6: A ← genL×L
N (XOF(seedA)) ∈ (RN

q)L×L

7: s′1 ← βη((RN
q)L)

8: b′1 = bits (AT .s′1 + h1, ϵq, ϵp)
// Rounding

9: u′
1 = bT .(s′1 mod p) ∈ RN

p

10: c′1 =bits((u′
1 + h3 − 2ϵp−Bm), ϵp, (ϵt +B)) ∈ RN

2Bt ▷
HelpDecode

11: if c′ = c′1 then
12: return K = H(K ′

1, H(c′))
13: else
14: return K = H(r,H(c′))
15: end if

multiplication and accumulation (MMA) operations. Tensor-
Crypto [23] demonstrated that cyclic polynomial convolution
might also be conducted with the Tensor cores (Figure 2).
Polynomial a is packed into cyclic form, while small polyno-
mial b may be stored in column-major form. In this way, the
GEMM performed by the Tensor cores eventually produces
polynomial convolution between one fixed polynomial and
multiple random polynomials. This approach, proposed by
TensorCrypto [23], is effective when a large number of small
polynomials (b) must be handled concurrently, which is typi-
cally found in the cloud environment. However, this technique
repeatedly uses the same polynomial a for KEX/KEM, which
breaches the requirement of the ephemeral keypair.

To allow the use of ephemeral keypairs in KEX, we need
to ensure that multiple distinct polynomials (a) can be packed
into matrix form. This requires a novel re-structuring method,
which is proposed in this paper and illustrated in Figure 3.
The original version in Figure 2 derives the output coefficients
from the cyclic product of two polynomials. From Figure
2, we see that only polynomial a is arranged in a cyclic
form while polynomial b is kept in the original form. See
et al. [43] showed that if we vary the order of summations,
the small coefficient polynomial b also shows a cyclic pattern
throughout the computation (see Rearranged Form in Figure
3). Therefore, instead of only arranging polynomial a, as done
in [23], we can arrange polynomial b in nega-cyclic order
and rearrange polynomial a nega-cyclically by skipping odd-
level arrangements as shown in Figure 3. By doing this, we
can reduce the original matrix into a smaller one, which is
helpful for implementing an embedded system that only needs
to handle one polynomial convolution at a time [43]. However,
this is not suitable for a GPU implementation, which needs to
handle many KEXs at a time. Note that Matrix A and Matrix
B in Figure 3 imply a nega-cyclic pattern, which is found in

Sable.
In this paper, we extend the idea from See et al. [43] to

support the computation of multiple polynomials. Referring
to Figure 4, we propose to first restructure polynomials a
and b into restructured form following the idea in [43], and
then pack them into matrix form. For instance, polynomials a
and x can be two unique public keys while b and y are two
random polynomials, and the matrix multiplication produces
the output polynomials c and z. By using this approach,
the proposed method allows encapsulation/decapsulation with
different polynomials a, which resolves the issue in Tensor-
Crypto [23].

B. Parallel Polynomial Convolution using Tensor Core

Tensor cores in state-of-the-art NVIDIA GPU architectures
(e.g., Turing and Ampere) are designed to handle 16 × 16
matrix multiplication in a warp (32 threads). To handle a
bigger matrix, one can use multiple warps to compute separate
portions of the matrix and then aggregate the results repeatedly
to produce the final results. For instance, to multiply a 32-
by-32 matrix, four warps are launched in parallel to perform
16× 16 matrix multiplication. The other four warps calculate
the other half of the matrix in parallel, as depicted in Figure 5.
This means two iterations are needed to perform the operation.
Finally, results are saved in Matrix C in parallel. (N/16)2

warps and N/16 iterations are needed to perform a convolution
of N × N matrices in parallel. However, in the case of
multiplication, warps and iterations increase to 2 × (N/16)2
and 2× (N/16), respectively.

Algorithm 4 shows the Tensor cores based polynomial
convolution that takes 16 × 16 input matrices. Matrix A is
comprised of random public keys arranged in nega-cyclic form
(in Sable) and in sequential sequence (in Florete), and Matrix
B contains non-constant polynomials (plaintext). All matrices
are kept in a one-dimensional array (i.e., global memory).
First, the method initializes two fragments for the 16×16 sub-
matrices and one fragment for collected results (lines 1-3). It
cycles across Matrix A (row-major) and Matrix B (column-
major) to multiply in parallel (lines 11-15). In each cycle,
16 × 16 sub-matrices are loaded from Matrix A and Matrix
B (in global memory) for concurrent matrix multiplication.
(N/16) Each warp operates on separate regions of Matrix A
and Matrix B. The collected results are transferred to Matrix
C in global memory (line 17) in row-major form for Sable.
However, in Florete, they are changed to column-major.

C. Implementation of Florete and Sable Based on Tensor
Cores

The parameter sets in Florete, Sable, and Espada require
a modulus of q = (210, 211, and 215), respectively. This
allows polynomial coefficients to be expressed in a 16-bit
floating point (FP16) representing a maximum of the 12-bit
integer value. However, in the mentioned schemes, one of the
polynomials is ternary (i.e., -1, 0, 1). Considering the worst
case in which the element size is 11-bit, multiplication of the
two numbers generates only an 11-bit result at maximum,
i.e., (211 − 1) × 1 = 211 − 1 and (211 − 1) × (−1) =

IEEE INTERNET OF THINGS JOURNAL 7

a0

Matrix A Matrix B Matrix C

a3 a2 a1

a1 a0 a3 a2

a2 a1 a0 a3

a3 a2 a1 a0

b0 ? ? ?

b1 ? ? ?

b2 ? ? ?

b3 ? ? ?

c0 ? ? ?

c1 ? ? ?

c2 ? ? ?

c3 ? ? ?

b3 b2 b1 b0

a3 a2 a1 a0

a0b0a1b0a3b0 a2b0

a3b1a0b1a2b1 a1b1

a2b2a3b2a1b2 a0b2

a1b3a2b3a0b3 a3b3

c0c1c2c3

Fig. 2. The GEMM polynomial convolution technique proposed in [23]. In Matrix B, ”?” indicates non-constant polynomials.

a1b3

a0b0
a0

Matrix A

Matrix B

Matrix C

-a3 -a2 -a1

a2 a1 a0 -a3

b0 b1

b1 b2

b2 b3

b3 -b0

c0 c1

c2 c3

b3 b2 b1 b0

a3 a2 a1 a0

a2b1 a2b0

a3b1a3b2a1b2 a1b1

a2b2a2b3a0b3 a0b2

a1b0a3b0

c0c1c2c3

b3 b2 b1 b0

a3 a2 a1 a0

a0b0a1b0a3b0 a2b0

a3b1a0b1a2b1 a1b1

a2b2a3b2a1b2 a0b2

a1b3a2b3a0b3 a3b3

c0c1c2c3

a0b1

a3b3

Orignal Form

Rearrange
Intermediate

Term

Rearranged Form

Parallel
Computation

Fig. 3. Polynomial convolution using the proposed re-structuring technique [43].

a0

Matrix A Matrix B Matrix C

-a3 -a2 -a1

a2 a1 a0 -a3

x0 -x3 -x2 -x1

x2 x1 x0 -x3

b0 b1 y0 y1

b1 b2 y1 y2

b2 b3 y2 y3

b3 -b0 y3 -y0

c0 c1 ? ?

c2 c3 ? ?

? ? z0 z1

? ? z2 z3

Fig. 4. Packing multiple polynomials a and b into matrix form.

−211 +1. The accumulated value can grow to a maximum of
L×N × 211 − 1 during the polynomial convolution process.
Considering that N in Florete and Sable for the selected
parameter sets are 768 and 256, respectively, and L is 1 and
3, respectively, the accumulator must hold at least 21-bit data
for Florete, log2(1 × 768 × (211 − 1)), and 22-bit data for
Sable, log2(3 × 256 × (211 − 1)). Nevertheless, the Tensor
cores single precision accumulator may store 24-bit data at a
maximum which is larger than the required threshold. Hence,
the GEMM from Tensor cores can produce correct polynomial
convolution in both schemes.

In Espada, the selected N and L parameters are 64 and 12, so
the accumulator must hold at least 25-bit data, log2(64×12×

(215 − 1)), which is larger than the limit of the accumulator.
Thus, Espada cannot be evaluated using Tensor cores.

1) Polynomial Convolution of Sable using Tensor Cores:
Polynomial convolution is essentially the polynomial multipli-
cation by two polynomials followed by a reduction process.
It can be parallelized efficiently on a GPU using Tensor cores
if the reduction process does not have any data dependen-
cies [23]. This is the case for many existing lattice-based
schemes like Saber [13] and Sable [12].

The proposed technique to perform parallel polynomial con-
volution is described in Algorithm 5. Note that this is different
from TensorCrypto [23] because our approach restructures and
packs the polynomials in a different way so it can process

IEEE INTERNET OF THINGS JOURNAL 8

Fig. 5. Matrix multiplication in Tensor cores: warps are executed in parallel in a matrix of 32× 32; the arrow denotes the computation sequence.

Algorithm 4 Tensor cores: parallel polynomial convolutions.
Input: Matrix A (N ×N) and matrix B (N ×N) with non-
constant polynomials b, where N is a multiple of 16.
Output: N × N matrix C holds the nega-cyclic convolution
of distinct polynomials a and b.

// 16 × 16 with precision FP16 initializa-
tion of fragment A & B

1: fragment < A, 16, 16, 16, half, row major > a frag
2: fragment < B, 16, 16, 16, half, col major > b frag

// 16 × 16 with precision FP32 initializa-
tion of fragment C

3: tid = thread ID
4: bid = block ID
5: blockDim = block dimension
6: IDwarp = (bid× blockDim+ tid)/32
7: rowidx = (IDwarp%(N/16))× 16
8: colidx = (IDwarp/(N/16))× 16
9: accuidx = rowidx + colidx ×N

10: for i from 0 to (N/16) do
11: Aid = rowidx ×N + i× 16
12: Bid = colidx ×N + i× 16
13: load matrix sync(a frag,A+Aid, N)
14: load matrix sync(a frag,A+Bid, N)
15: mma sync(c frag, a frag, b frag, c frag)
16: end for

// Store c frag output in C
17: store matrix sync(C + accuidx, c frag, N, row major)

multiple unique polynomials a. Referring to Algorithm 5, lines
1 and 2 calculate the number of blocks launched for the
Tensor cores. Polynomials a and b are packed and rearranged
into decomposed matrices (lines 4 and 5) as illustrated in
Figure 4. After packing the polynomials into matrix form,
the polynomial coefficients in unsigned 16-bit integer (U16)
format are also converted to FP16 to allow computation in
Tensor cores. In line 6, Tensor cores are launched to perform
the polynomial convolution, where the nega-cyclic even terms
are stored in matrix fp32 c with 32-bit floating point (FP32)
precision. Finally, the output from Tensor cores is transformed
from FP32 to U16 in Line 7. The number of threads launched
in lines 4, 5, and 7 is determined by the number of polynomials
a we required to pack, which is denoted as Poly a.

Algorithm 5 Tensor core implementation of Sable polynomial
convolution in parallel on the GPU
Input: Polynomial a (constant), polynomial b (non-constant),
modulus q
Output: M×M Matrix c holds the nega-cyclic convolution of
polynomial a with polynomial b.

// Calc. total number of threads
required

1: threads tot = 32× (N/16)2

// Calc. number of blocks
2: tc blocks = threads tot/max threads

// Number of thread
3: tc threads = max threads
4: ParNegCycA< N,N/Poly a > (fp16 A, a) ▷ Alg.6
5: ParNegCycB< N,N/Poly a > (fp16 B, b) ▷ Alg.7
6: TensorCore< tc blocks, tc threads >

(fp16 A, fp16 B, fp32 C) ▷ Alg.4
7: SableFP32toU16< N,N/Poly a > (c, fp32 C) ▷ Alg.8

To perform polynomial convolution in Sable, we first rear-
range polynomials a into a nega-cyclic pattern by skipping
the odd rows, as shown in Matrix A in Figure 3. After
rearranging a, a small polynomial b is also rearranged in
the nega-cyclic pattern to construct the matrix in a multiple
of 16 × 16 to perform polynomial convolution in the Tensor
cores. This process is described in Algorithm 6, where input
polynomial in (representing a) is read in parallel by N/Poly a
threads and N blocks. This is followed in Line 3 by modulo
2 × tid − bid to obtain the rearranged terms according to
the required nega-cyclic pattern to generate Matrix A seen in
Figure 4, for polynomial convolution. Line 3 of Algorithm
6 is essential since it arranges polynomials in cyclic order
and determines the intermediate values during rearrangement.
Lines 5-9 describe two cases, first, when idx < 0, the terms
are rearranged into nega-cyclic form (Line 6); second, when
idx ≥ 0 they are rearranged in a cyclic way (Line 8).
The terms are added to the output matrix (out). Each block
of the GPU arranges polynomials in a unique set of nega-
cyclic patterns in which rows start with an even number of
polynomials, which are arranged to achieve a high degree of
parallelism.

Algorithm 7 is similar to Algorithm 6. First, input poly-

IEEE INTERNET OF THINGS JOURNAL 9

Algorithm 6 ParNegCycA: parallel algorithm to arrange poly-
nomial A in rearranged nega-cyclic pattern
Input: N-length polynomial in
Output: Matrix out of N×N dimensions, with a polynomial
arranged in a nega-cyclic form.

1: tid = thread ID
2: bid = block ID
3: idx = 2× tid− bid

// Launch N blocks and N/Poly a threads
// in parallel
// Poly a represents the number of Poly-
// nomials a we packed

4: if tid < N then
5: if idx < 0 then
6: out[bid+ tid×N] = in[(idx)%N] × (−1)
7: else
8: out[bid+ tid×N] = in[(idx)%N]
9: end if

10: else
11: out[bid+ tid×N] = 0
12: end if

nomial in is read in parallel by N threads and N/Poly a
blocks, followed by modulo tid − bid to yield the arranged
terms in nega-cyclic form as depicted by Matrix B of Figure
4. In Line 5, if threads − blocks is higher than (N − 1), it
represents rotating rows in the nega-cyclic form to make it
different from Algorithm 6, where nega-cyclic even terms are
rearranged. The terms are then moved to the output matrix
(out) in FP16 format.

In reference to Algorithm 8, operations in Line 4 depend
on the number of polynomials used (a). To maintain the
prior degree of precision, Algorithm 8 first transforms FP32
elements to the INT32 format, then performs modulo q, and
stores the final results in U16 format.

2) Polynomial Convolution of Florete using Tensor Core:
Florete [12] uses three different reduction patterns to reduce
the multiplication result between two polynomials. In other
words, the reduction pattern in Florete is fragmented into three
parts, as shown in Figure 6. For instance, polynomials A and B
in Figure 6 are first multiplied and produce polynomials C as
output, which are reduced to polynomials P . During reduction,
polynomial P1 uses a nega-cyclic rounding pattern, while
polynomial P2 uses a simple nega-cyclic pattern. The patterns
for polynomials P3 and P4 are distinct from the preceding
patterns. Therefore, parallelizing three different patterns for
polynomial convolution in Florete is not possible, unlike Sable,
which has only one reduction pattern.

Since we cannot perform parallel polynomial convolution
in Florete due to the data dependency issue in the reduction
process, we need to perform multiplication first, followed by
the reduction process. Referring to Algorithm 9, the number
of warps doubles from (N/16)2 to 2 × (N/16)2, thereby
doubling the blocks required for matrix multiplication in
Florete. Packing of polynomial a is done in two parts (lines 4
and 5). The Tensor cores are then used for polynomial matrix
multiplication, resulting in Matrix fp32 C being represented

Algorithm 7 ParNegCycB: parallel algorithm to arrange small
polynomial b in nega-cyclic pattern
Input: N-length polynomial in
Output: Matrix out of N×N dimensions, with a polynomial
arranged in a nega-cyclic pattern.

1: tid = thread ID
2: bid = block ID
3: idx = tid+ bid

// Launch N/Poly a blocks and N threads
// in parallel
// Poly a represents the number of Poly-
// nomials a we packed

4: if tid < N then
5: if idx > (N − 1) then
6: out[bid+ tid×N] = in[(idx)%N] × (−1)
7: else
8: out[bid+ tid×N] = in[(idx)%N]
9: end if

10: else
11: out[bid+ tid×N] = 0
12: end if

Algorithm 8 SableFP32toU16: parallel algorithm to convert
polynomial coefficients from FP32 to U16 and perform mod-
ulo p

Input: N ×N matrix in with elements in FP32 format.
Output: N ×N matrix in with elements in U16 format and
modulo p.

1: tid = thread ID
2: bid = block ID

// Launch N blocks and N/Poly a threads
// in parallel
// Poly a represents the number of Poly-
// nomials a we packed

3: while i = Poly a do
4: out[bid×N+(N/Poly a) × i + tid] =

(int32 t)in[bid×N +N × i+ tid]%p
5: end while

in the FP32 format (Line 7). In addition to accomplishing
the reduction, the algorithm applied at Line 8 transforms the
output of Matrix C into U16 format with modulo p||q.

Therefore, we propose performing polynomial multiplica-
tion first and then reduction, as depicted in Figure 7, to tackle
the data dependency issue. For multiplication, the polynomial
a is arranged in sequence as seen in Matrix A of Figure 7.
In contrast, polynomial b is packed into column-major form.
Matrix multiplication of Matrix A and Matrix B using Tensor
cores produces Matrix C, which is reduced to Matrix D by
performing a reduction on Matrix C.

The polynomial length in Florete is 768, so the resulting
polynomial, after multiplying two polynomials, has a length
of 1535. This indicates that polynomial a should be packed
into 1535 rows in sequential order. However, one block in
a GPU can only launch a maximum of 1024 threads, which
cannot cover all the rows. Hence, we propose processing the

IEEE INTERNET OF THINGS JOURNAL 10

Fig. 6. Example of reduction patterns in Florete for four polynomials

Algorithm 9 Tensor core implementation of Florete polyno-
mial convolution in parallel on the GPU
Input: Polynomial a, polynomial b, modulus p||q
Output: 2M×M Matrix c holds the nega-cyclic convolution
of polynomial a with polynomial b.

// Calculate total number of threads
// required

1: threads tot = 32× 2× (N/16)2

// Calc. number of blocks
2: tc blocks = threads tot/max threads

// Number of thread
3: tc threads = max threads
4: ParFirsthalf< N,N > (fp16 A, a) ▷ Alg.10
5: ParLasthalf< N,N > (fp16 A, a) ▷ Alg.11
6: ParU16toFP16< N,N > (fp16 B, b) ▷ Alg.12
7: TensorCore< tc blocks, tc threads >

(fp16 A, fp16 B, fp32 C) ▷ Alg.4
8: FloreteFP32toU16< N,N > (c, fp32 C) ▷ Alg.13

rows in two parts, each part processing half of the rows in
polynomial a. Algorithm 10 packs the first half of polynomial
a in ascending consecutive sequence, whereas Algorithm 11
packs the second half in descending sequential order.

In Algorithm 10, N blocks and threads are launched in par-
allel. Lines 5-9 arrange the polynomial in ascending sequential
order. Line 6 generates zero output when (idx < 0), but, Line
8 packs the polynomials in the required sequence on output.
Algorithm 11 works the same way as Algorithm 10 but in the
opposite direction. In Line 6, when idx < 0, polynomials are

packed on output in descending sequential order. Otherwise,
the output is zero.

Algorithm 10 ParFirsthalf: Parallel algorithm to arrange poly-
nomial A in ascending sequential order
Input: N -length polynomial in
Output: Matrix out with N× N dimension, with a polyno-
mial arranged in consecutive sequence.

1: tid = thread ID
2: bid = block ID
3: idx = tid− bid

// Copy polynomials into shared memory
// in parallel

4: if tid < N then
5: if idx < 0 then
6: out[bid+ tid× (2×N)] = 0
7: else
8: out[bid+ tid× (2×N)] = in[(idx)%N]
9: end if

10: else
11: out[bid+ tid×N] = 0
12: end if

Algorithm 12 explains the conversion of U16 polynomial
elements to FP16 format. Lines 5-8 are only required if we
are working with ternary numbers; it converts −1 in integer
format (i.e., 1023 or 511 depending on the moduli, we use q
or p) to FP16 format.

Referring to Algorithm 13, lines 3-7 perform nega-cyclic re-
duction with rounding followed by a simple nega-cyclic reduc-
tion pattern in lines 8-12 for only one polynomial coefficient,
while lines 13-17 rovide a cyclic rounding pattern. Hence, we
can see that the reduction process is fragmented into three
different parts, so it can only be partially parallelized. The
multiplication results in FP32 format are converted to U16
by first transforming them to INT32 format and then reducing
them through modulo p or q, depending on the algorithm. Even
though we cannot fully parallelize polynomial convolution in
Florete, we can still achieve relatively high throughput using
the method we developed in this section.

D. Polynomial Convolution Using CUDA Cores

In addition to the Tensor cores based approaches, we
analyzed multiplication using the conventional CUDA cores to
achieve efficient polynomial convolution. Algorithm 14 shows
that the schoolbook method for polynomial multiplication
exhibits a high amount of parallelism. It can be parallelized
by dividing the two polynomials into smaller sections and as-
signing each section to a separate thread (index j) to calculate
the product.

Multiplying two polynomials of length N requires (2N-1)
threads to compute the output. However, if a particular pattern
is followed during reduction, the required threads reduce to
N, and the entire polynomial convolution can be parallelized
easily. This is found in Saber [13] and its previous GPU
implementation [16]. In Florete, there are several reduction
patterns, which makes it impossible to parallelize the entire

IEEE INTERNET OF THINGS JOURNAL 11

Fig. 7. Proposed solution for polynomial convolution in Florete

Algorithm 11 ParLastHalf: Parallel algorithm to arrange poly-
nomial A in descending sequential order
Input: N -length polynomial in
Output: Matrix out with N× N dimension, with a polynomial
arranged in consecutive sequence.

1: tid = thread ID
2: bid = block ID
3: idx = tid+ bid

// Copy polynomials into shared memory
// in parallel

4: if tid < N then
5: if idx < 0 then
6: out[bid+ tid×N] = in[(idx)%N]
7: else
8: out[bid+ tid×N] = 0
9: end if

10: else
11: out[bid+ tid×N] = 0
12: end if

polynomial convolution. In this paper, we propose performing
the multiplication and reduction separately. The polynomial
length of Florete is 768 which produces an output of 1535.
This means we need 1535 threads to compute the output, but
in a GPU, we can launch a maximum of 1024 threads. To
resolve this issue, we divide the polynomials into two halves,
each with 768 coefficients. Referring to Algorithm 15, lines
5-7 compute the first part of the output (768), while lines 8-10
compute the remaining 767. In the end, we return the output
in Line 14 performing the modulus.

In the case of Sable, the reduction pattern is known (i.e.,
nega-cyclic). Therefore, parallel polynomial convolution can
be performed in a more straightforward way. In convolution,
multiplying two polynomials of length N uses N threads
rather than 2N − 1 threads, as in multiplication. Algorithm
16 illustrates the parallel form of polynomial convolution in
Sable that can be done on a GPU. This approach exploits
N GPU blocks to produce N polynomial convolutions, where
each GPU block computes one polynomial convolution using
N threads. To decrease read/write latency, polynomials are first

Algorithm 12 ParU16toF16: Parallel algorithm to convert
polynomial B from U16 to FP16.
Input: N -length polynomial in in U16 format.
Output: Matrix out with N with different polynomials of
length N in F16 format.

1: tid = thread ID
2: bid = block ID
3: temp = 0

// Launch N blocks and N threads
// in parallel

4: temp = in[bid×N] + tid
5: if temp = p||q then
6: out[bid×N + tid] = −1
7: else
8: out[bid×N + tid] = temp
9: end if

loaded from global memory and cached in shared memory, as
done in Algorithm 6 from [16].

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section describes the findings of our proposed method-
ology when applied to other techniques. Experiments were
conducted on a PC equipped with a 2.10GHz Intel Core i7-
12700F CPU and 16GB of RAM. Performance was evaluated
using an NVIDIA RTX3060 Ti GPU. The implementation
results were validated against the test vectors obtained from
the original Scabbard implementation [12].

A. performance Evaluation of Tensor Cores based Polynomial
Multiplication and Convolution

This experiment evaluated the performance of proposed
Tensor cores approach versus conventional techniques based
on CUDA cores. (N/16)2 and 2 × (N/16)2 warps were
launched for polynomial convolution and multiplication, re-
spectively, based on the proposed Tensor cores implementa-
tion. Referring to Table II, we see that the CUDA cores based
method performed better than the proposed Tensor cores based
technique when the batch sizes were small. This is because
Tensor cores have additional steps for rearranging poly a and

IEEE INTERNET OF THINGS JOURNAL 12

Algorithm 13 FloreteFP32toU16: Partial parallel algorithm
to convert polynomial coefficients from FP32 to U16 while
performing reduction and modulo p or q
Input: 2N×N matrix in with elements in FP32 format
Output: Matrix out with N× N dimension, with elements in
U16 format and modulo (p or q).

1: tid = thread ID
2: bid = block ID

// Launching N blocks and N/2 threads
at
// maximum

3: if tid < (M/2− 1) then
4: out[bid + tid] = (int32 t) (in[bid + tid] − in[bid +

N + tid]− in[bid+N +N/2 + tid])%(p||q)
5: else
6: out[bid+ tid] = 0
7: end if
8: if tid < 1 then
9: out[bid + (N/2 − 1) + tid] = (int32 t) (in[bid +

(N/2− 1)+ tid]− in[bid+(N/2− 1)+N + tid]%(p||q)
10: else
11: out[bid+ (N/2− 1) + tid] = 0
12: end if
13: if tid < N/2 then
14: out[bid+N/2 + tid] = (int32 t) (in[bid+ (N/2) +

tid] + in[bid+N + tid]%(p||q)
15: else
16: out[bid+N/2 + tid] = 0
17: end if

Algorithm 14 Serial schoolbook polynomial multiplication
Input: N-length polynomial a, N-length polynomial b, and q-
modulus.
Output: (2N − 1)-length polynomial c, which is the multipli-
cation of a and b.

// Accumulating each polynomial serailly
1: for i from 0 to N do
2: for j from 0 to N do
3: c[i+ j] = c[i+ j] + (a[i]× b[j])
4: end for
5: end for
6: return c%(p||q)

poly b into nega-cyclic form and converting poly b from
integer to floating point.

However, the advantage with Tensor cores becomes clear
when N exceeds 64 in Sable. This is illustrated in Figure 8; we
can see that the proposed Tensor cores technique surpassed the
CUDA cores method for batch sizes between 26 < K < 27.
At a batch size of 210, Tensor cores outperformed the CUDA
cores and recorded the best performance. We can see that the
proposed Tensor cores based technique experienced a steady
increase in throughput. Note that we do not report performance
beyond 210 because throughput is saturated at this point and
does not increase any further.

In the case of Florete, the scenario is different. The Flo-

Algorithm 15 Parallel schoolbook polynomial multiplication
in Florete using CUDA cores.
Input: N-length polynomial a, N-length polynomial b, and q-
modulus.
Output: (N-length polynomial c polynomial, which is the
cyclic convolution of a and b.

1: tid = thread ID
2: bid = block ID
3: if tid < N then
4: c[2× bid+ tid] = 0
5: for i from 0 to tid do
6: c[bid+ tid] += (a[i]× b[tid− i])
7: end for
8: for i from 1 to (N− tid) do
9: c[bid+N + tid] += (a[N − i]× b[tid+ i])

10: end for
11: else
12: c[2× bid+ tid] = 0
13: end if
14: return c[2× bid+ tid] = c[2× bid+ tid]%(p||q)

Algorithm 16 Parallel schoolbook polynomial convolution in
Sable using CUDA cores.
Input: N-length polynomial a, N-length polynomial b, and q-
modulus.
Output: (N-length polynomial c polynomial, which is the
cyclic convolution of a and b.

1: tid = thread ID
2: bid = block ID

// Parallel copying polynomials into
// shared memory

3: ashared[tid] = a[bid× N + tid]
4: bshared[tid] = b[bid× N + tid]
5: sum=0 ▷ Using register to accumulate
6: for i from 0 to tid do
7: sum = sum+ (ashared[tid− i]× bshared[i])
8: end for
9: for i from 1 to (N− tid− 1) do

10: sum = sum− (ashared[tid+ i]× bshared[N− I])
11: end for
12: return c[bid× N + tid] = sum%q

rete Tensor cores implementation surpassed the CUDA cores
method at batch sizes between 28 < K < 29. This is
because packing of poly a in Florete is completed in two parts
due to the large polynomial length, as explained in detail in
Section III-C2. Therefore, as illustrated in Figure 9, Florete’s
Tensor cores implementation outperformed CUDA cores based
multiplication at a batch size of 29 and recorded the best
performance at a batch size of 210.

We observed that the performance of the CUDA cores
based implementation in Florete was worse than Sable. This
is because we performed multiplication and reduction in Sable
simultaneously (see Algorithm 16), but these two operations
are performed separately in Florete. Furthermore, due to the
large polynomial length and the restriction on the maximum

IEEE INTERNET OF THINGS JOURNAL 13

TABLE II
PERFORMANCE EVALUATION OF POLYNOMIAL MULTIPLICATION/CONVOLUTION IN FLORETE AND SABLE

Batch size (K)
Florete Sable

Throughput (1000 multiplications per second)

CUDA cores Tensor cores CUDA cores Tensor cores

1 8.59 0.901 41.61 15.186
16 137.10 13.79 655.21 241.546
32 273.90 26.43 1283.08 483.749
64 315.01 52.46 1451.25 957.940
128 343.71 110.01 1509.99 1909.878
256 389.89 211.36 1722.63 3745.976
512 397.25 418.38 1791.75 6465.98

Fig. 8. Comparing throughput of GPU implementation of Sable with different
techniques using various batch sizes

Fig. 9. Comparing the throughput of GPU implementation of Florete with
different techniques using various batch sizes

number of threads per block (1024), we have to perform the
polynomial convolution in Florete in two loops. This explains
why CUDA cores are faster for Sable.

B. Performance Breakdown for Tensor Cores based Imple-
mentation

Table III provides the performance breakdown of poly-
nomial convolution in Florete and Sable from utilizing the
proposed Tensor cores technique. The outcomes were obtained
by analyzing execution times at a batch size of K = 128. In
Florete, organizing poly a takes up about 8% of the overall
time, whereas arranging poly b takes up very little time.

Polynomial convolution is still the most time-consuming step
(≈ 90%), although it is accelerated by the Tensor cores.
Converting from FP32 format to U16 and simultaneously
performing reduction requires time. The performance break-
down for Sable shows that rearranging poly a in nega-cyclic
intermediate form consumed the most time (≈ 37%), whereas
the arrangement of poly b took only 13% of the total time.
Multiplication in Tensor cores consumes almost the same time
as packing poly a. Performing modulo consumes nearly 13%
of the entire time.

From the above discussion, we conclude that the compu-
tation of polynomial multiplication/convolution using Tensor
cores took most of the time. For the case of Sable, elements are
already arranged in order before performing the convolution.
Arranging elements in a particular order for convolution cre-
ated overhead. However, it reduced multiplications operations
from 2N ×N to N ×N in Tensor cores, which is the main
reason Tensor cores consumed less time for multiplication in
Sable compared to the Florete.

In Florete due to the data interdependence of the reduction
pattern, it is challenging to fully parallelize it for convolution.
As a result, we performed multiplication in Florete, and for
multiplication, while packing poly a, there were 0 redundant
operations, as shown in Figure 7. These redundant operations
slow the matrix multiplication process in the Tensor cores.
This is the reason the Tensor cores required 90% of the overall
time in Florete. This problem will need to be addressed in
further research.

C. Performance breakdown of Florete and Sable KEX on
GPUs and CPUs

Table IV summarizes the fundamental computations from
encryption and decryption under Florete and Sable KEX
schemes. The analysis considers the percentage of time spent
for different operations on both the CPU and the GPU. In
the GPU implementation of Florete, polynomial convolution
consumed 94% and 96% of the overall time during encryp-
tion and decryption respectively. This shows that even after
heavy optimization using the proposed Tensor cores approach,
polynomial convolution remains the main bottleneck. This is
due to the reduction patterns, where speeding them up is non-
trivial. On the other hand, other operations that consume a
significant amount of time in a CPU implementation, become
insignificant compared to overall performance in the GPU

IEEE INTERNET OF THINGS JOURNAL 14

TABLE III
PERFORMANCE BREAKDOWN OF FLORETE AND SABLE FOR POLYNOMIAL MULTIPLICATION AND CONVOLUTION AT K=128

Operation Florete Sable
Time (µs) % Time (µs) %

FirstHalf (Poly a → Algorithm 10) 49.22 4.09 - -
LastHalf (Poly a → Algorithm 11) 48.63 4.04 - -
Negcyc-InterArr (Poly a → Algorithm 6) - - 25.26 37.69
Negcyc-Arr (Poly b → Algorithm 7) - - 8.55 12.76
U16-FP16 (Poly b → Algorithm 12) 11.68 0.97 - -
Tensor cores based polynomial convolution → Algorithm 4 1090 90.51 24.09 35.94
FP32-U16 → Algorithm 8 & 13 4.74 0.39 9.12 13.61
Total 1204.27 100 67.02 100

implementation. In the Sable GPU implementation, the com-
putations were more evenly distributed for encryption between
GenPoly/GenSecret (52%) and polynomial convolution (39%),
which is similar to the CPU implementation. For decryption,
the dominant computation comes from polynomial convolu-
tion, consuming up to 67% of the total execution time. In
contrast to Florete, the proposed Tensor cores approach can
speed up the polynomial convolution more effectively, due to
the consistent reduction pattern. Note that the memory copy
operation between the CPU and GPU had a minimal effect on
the overall performance.

TABLE IV
PERFORMANCE BREAKDOWN OF FLORETE AND SABLE KEX SCHEMES

Florete RTX 3060 TI CPU

Encryption

Mem. copy b/t CPU and GPU 1% -

GenPoly/GenSecret 2% 10%

Polynomial convolution 94% 50%

Packing/unpacking 2% 23%

Others 1% 17%

Decryption

Mem. copy b/t CPU and GPU 1% -

Polynomial convolution 96% 79%

Packing/unpacking 2% 13%

Others 1% 8%

Sable

Encryption

Mem. copy b/t CPU and GPU 2% -

GenPoly/GenSecret 52% 21%

Polynomial convolution 39% 65%

Packing/unpacking 5% 10%

Others 2% 4%

Decryption

Mem. copy b/t CPU and GPU 14% -

Polynomial convolution 67% 72%

Packing/unpacking 13% 19%

Others 6% 9%

D. Comparing KEX and KEM Performance on GPU and CPU

This section presents the experimental results from both
KEX and KEM under Florete and Sable with different batch
sizes (K) and using two types of GPU cores: CUDA and
Tensor. Table V provides the performance of KEX for both

schemes. At a batch size of 16, the Florete implementation on
CUDA cores achieved 62, 003 encryption/s and 142, 490 de-
cryption/s, while the Tensor cores achieved 7, 533 encryption/s
and 15303 decryption/s. Our approach was 8.2× and 9.3×
slower, respectively, than on CUDA cores based implementa-
tion. As the batch size increased, the throughput of both im-
plementations also increased, achieving the highest throughput
when K = 512. The Tensor cores approach records 240, 202
encryption/s and 482, 227 decryption/s, which are 1.1× and
1.07× times faster, respectively, than the CUDA cores im-
plementation. Similar performance was also observed for our
implementation with Sable. When batch size K = 16, the
CUDA cores implementation provided throughput of 52, 609
encryption/s 400, 641 decryption/s, while the Tensor cores
only achieved 45, 553 encryption/s and 229, 990 decryption/s.
However, the performance from Tensor cores surpassed the
CUDA cores when K ≥ 128. The Tensor cores approach
recorded 456, 204 encryption/s and 5, 572, 971 decryption/s,
which are 1.7× and 3.1× times faster, respectively, than the
CUDA cores implementation.

From these results, we can see that the throughput with the
Tensor cores approach was generally lower than the CUDA
cores for small batch sizes. However, at larger batch sizes,
Tensor cores approach gained the upper hand, so it is beneficial
to use our method when the KEX/KEM workload is high.

Table VI shows the throughput from Florete and Sable
KEMs on a GPU and a CPU supporting AVX2. Note that
KEM is built on top of the KEX scheme; it has additional
operations (e.g., hashing) in addition to the KEX. Hence, the
throughput achieved by KEM is always lower than KEX.
At batch size K = 512, the throughput of Florete with the
proposed Tensor cores technique is 5.6× faster (encapsulation)
and 6.4× faster (decapsulation) than AVX2 implementation.
For Sable, the throughput for encapsulation and decapsulation,
respectively, was 8.3× higher and 13.3× higher than the AVX2
implementation.

Similarly, the throughput of CUDA cores based multipli-
cation at a batch size of 512 for encapsulation and decapsu-
lation in Florete outperformed the AVX2 implementation by
5.4× and 6.1×, respectively. Sable outperformed the AVX2
implementation by factors of 7.1× and 8.3× respectively.
However, at smaller batch sizes, AVX2 performed better than
the GPU implementation because a GPU is better suited for
batch processing large KEX/KEM workloads. At the same
time, AVX2 can improve the latency of a single operation

IEEE INTERNET OF THINGS JOURNAL 15

TABLE V
PERFORMANCE BREAKDOWN OF FLORETE AND SABLE KEX WITH DIFFERENT BATCH SIZES

Batch Size (K)

Florete Sable

Throughput (encryptions/decryptions per second)

CUDA cores Tensor cores CUDA cores Tensor cores

Encrypt Decrypt Encrypt Decrypt Encrypt Decrypt Encrypt Decrypt

16 62003 142490 7533 15303 52609 400641 45553 229990
32 12114 276166 14999 30616 99522 771604 86805 439174
64 155086 340483 30120 61282 157035 1050972 155086 898876
128 176056 369925 59780 122264 212224 1319261 263157 1747488
256 211327 438813 118821 242204 254323 1628333 374812 3116713
512 218066 452194 240202 482227 267379 1752656 456204 5572971

by utilizing specialized SIMD instructions. In short, the GPU
can be regarded as a throughput-oriented accelerator, while a
CPU supporting AVX2 is helpful in improving the latency in
individual operations.

E. Comparison with State-of-the-Art: DPSaber [16]

The Sable KEM is an improvement over Saber. Similar to
Saber, polynomial convolution in Sable is used to compute
inner product and matrix-vector multiplication. In 2022, Lee
et al. presented DPSaber [16] which implemented Saber us-
ing dot-product instructions available in a GPU. Table VII
comapres throughput from our work and from DPSaber [16].
Since the source code of DPSaber is open, we utilized their
codes and re-performed the experiment on our GPU for a fair
comparison.

Referring to the case of matrix-vector multiplication, when
K ≤ 128, DPSaber showed a higher throughput than our
approach. When K > 128, the Tensor cores approach
outperformed DPSaber, achieving 1.36× higher throughput.
Similarly, when K = 256, the Tensor cores approach can
achieve at least 1.44× higher throughput for the inner product.
This shows that our approach is more advantageous than
the dor-product method when the batch size is large enough
because of the Tensor cores’ higher instruction throughput,
compared to dot-product instructions [44].

F. Discussion of the proposed technique to IoT applications

IoT systems are becoming more widespread and increas-
ingly used for critical applications, such as industrial control
systems, healthcare devices, and smart homes. IoT sensor
nodes often collect and transmit sensitive information, making
it crucial to secure communication and data against potential
threats, including those posed by quantum computers. PQC of-
fers a promising solution for securing communication and data
against potential threats, but it is computationally intensive and
requires significant resources to process cryptographic opera-
tions efficiently. Hence, accelerating the execution of these
PQC algorithms ensures the security of IoT communication in
the post-quantum era, at the same time, allowing IoT systems
to handle a large number of connections to meet the need
for growing communication in the future. In particular, the
encryption keys used for encrypting the IoT sensor data are
refreshed from time to time to ensure confidentiality. KEX

or KEM can be used to exchange these encryption keys
between sensor nodes, gateway and cloud server. The proposed
acceleration methodologies presented in this article is able to
produce high throughput implementations of PQC KEX and
KEM, which fit the IoT systems very well. This can resolve
the security issue in IoT communication while minimizing the
impact on communication performance.

V. CONCLUSION

With a growing number of IoT sensor nodes, there is a need
to accelerate the execution of KEM/KEX to ensure system
performance and security. In this article, we proposed several
techniques to showcase the ability of GPU and Tensor cores
in achieving high throughput KEX and KEM. The proposed
polynomial re-structuring technique allows distinct public keys
to be handled by the Tensor cores based polynomial convolu-
tion. This approach can be used to implement high throughput
KEX, which is useful in securing IoT applications. We also
proposed a technique to enable parallel implementation of
polynomial convolution with different reduction patterns. The
proposed techniques are applied to two post-quantum KEMs,
Sable and Florete. Compared to a traditional implementation
using CUDA cores, the proposed Tensor cores based imple-
mentation achieved at least 1.1× and 1.07× faster encryption
and decryption, respectively, in Florete. It also achieved 1.7×
and 3.1× higher KEX throughput for encryption and decryp-
tion, in Sable. The proposed Tensor cores based polynomial
re-structuring is a general approach that can be used for
polynomial convolution and multiplication of different lengths.

In future work, we intend to explore the possibility of
applying Tensor cores based techniques to other lattice-based
cryptographic schemes that use number theoretical trans-
form (NTT). One particularly interesting direction is fully
homomorphic encryption [45] that needs to perform many
polynomial convolutions with a large N. Such applications
may benefit from the high computational performance of
Tensor cores based polynomial convolution which has higher
throughput than the CUDA cores.

ACKNOWLEDGMENT

The work of Muhammad Asfand Hafeez and Seong Oun
Hwang was supported by the Gachon University research
fund under Grant GCU-202110270001. The work of Wai-
Kong Lee was supported by the Brain Pool Program through

IEEE INTERNET OF THINGS JOURNAL 16

TABLE VI
PERFORMANCE BREAKDOWN OF FLORETE AND SABLE KEM WITH DIFFERENT BATCH SIZES

Batch Size (K)

Florete Sable

Throughput (encapsulation/decapsulation per second)

AVX2 CUDA cores Tensor cores AVX2 CUDA cores Tensor cores

Encap Decap Encap Decap Encap Decap Encap Decap Encap Decap Encap Decap

16

29885 26804

36179 37466 6899 7003

27368 29213

33179 37500 27847 31830
32 50520 51458 13623 11945 59463 70722 50286 60430
64 100275 105566 27144 27360 99432 121038 87885 116959
128 127262 132782 52717 46738 140260 172362 137831 211416
256 152491 159509 97900 99192 169970 217458 183070 331166
512 162367 163566 167748 172757 194615 242902 228699 390775

TABLE VII
COMPARISON OF THE PROPOSED TENSOR CORES IMPLEMENTATION FOR INNER PRODUCT AND MATRIX-VECTOR MULTIPLICATION IN THE SABLE KEM

VERSUS DPSABER [16]

Inner Product (thousand of operations per second) Matrix-Vector (thousand of operations per second)

K Tensor core DPSaber [16] Sp-up Tensor core DPSaber [16] Sp-up

64 958 1161 0.82 353 445 0.79
128 1910 1926 0.99 711 734 0.97
256 3746 2598 1.44 1362 1001 1.36

the National Research Foundation of Korea (NRF) funded
by the Ministry of Science and Information Communication
Technology (ICT) under Grant 2019H1D3A1A01102607. The
work of Angshuman Karmakar was supported by Research
Foundation-Flanders (FWO) as a Junior Post-Doctoral Fellow
under Grant 203056/1241722N LV and C3I Center-Cyber
Security Center, IIT Kanpur, India.

REFERENCES

[1] P. Shor, “Algorithms for quantum computation: discrete logarithms and
factoring,” in Proceedings 35th Annual Symposium on Foundations of
Computer Science, 1994, pp. 124–134.

[2] J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algorithm for
elliptic curves,” Quantum Info. Comput., vol. 3, no. 4, p. 317–344, jul
2003.

[3] I. T. L. Computer Security Division, “Post-quantum
cryptography standardization - post-quantum cryptography:
Csrc.” [Online]. Available: https://csrc.nist.gov/projects/post-quantum-
cryptography/post-quantum-cryptography-standardization

[4] P. He, T. Bao, J. Xie, and M. Amin, “Fpga implementation of
compact hardware accelerators for ring-binary-lwe based post-quantum
cryptography,” ACM Trans. Reconfigurable Technol. Syst., oct 2022,
just Accepted. [Online]. Available: https://doi.org/10.1145/3569457

[5] H. Becker, V. Hwang, M. J. Kannwischer, B.-Y. Yang, and S.-Y. Yang,
“Neon ntt: faster dilithium, kyber, and saber on cortex-a72 and apple
m1,” Cryptology ePrint Archive, 2021.

[6] J. Lablanche, L. Mortajine, O. Benchaalal, P.-L. Cayrel, and
N. E. Mrabet, “Optimized implementation of the nist pqc
submission rollo on microcontroller,” Cryptology ePrint Archive, Paper
2019/787, 2019, https://eprint.iacr.org/2019/787. [Online]. Available:
https://eprint.iacr.org/2019/787

[7] “Crystals-kyber,” 2017. [Online]. Available: https://pq-
crystals.org/kyber/

[8] “Crystals,” 2017. [Online]. Available: https://pq-crystals.org/dilithium/
[9] P.-A. Fouque, J. Hoffstein, and P. Kirchner, 2017. [Online]. Available:

https://falcon-sign.info/
[10] J.-P. Aumasson, D. J. Bernstein, and C. Dobraunig, 2017. [Online].

Available: https://sphincs.org/
[11] I. T. L. Computer Security Division, “Round 2 submis-

sions - post-quantum cryptography: Csrc.” [Online]. Avail-
able: https://csrc.nist.gov/Projects/post-quantum-cryptography/post-
quantum-cryptography-standardization/round-2-submissions

[12] J. M. Bermudo Mera, A. Karmakar, S. Kundu, and I. Verbauwhede,
“Scabbard: a suite of efficient learning with rounding key-encapsulation
mechanisms,” IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, vol. 2021, no. 4, p. 474–509, Aug. 2021.

[13] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Ver-
cauteren, SABER: Mod-LWR based KEM. National Institute
of Standards and Technology, 2022. [Online]. Available:
https://www.esat.kuleuven.be/cosic/publications/article-2953.pdf

[14] Z. Liang, B. Fang, J. Zheng, and Y. Zhao, “Compact and
efficient kems over ntru lattices,” 2022. [Online]. Available:
https://arxiv.org/abs/2205.05413

[15] C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, J. M. Schanck,
P. Schwabe, W. Whyte, and Z. Zhang, “NTRU algorithm specifications
and supporting documentation,,” Online, 2020. [Online]. Available:
https://ntru.org/release/NIST-PQ-Submission-NTRU-20201016.tar.gz

[16] W.-K. Lee, H. Seo, S. O. Hwang, R. Achar, A. Karmakar, and J. M. B.
Mera, “Dpcrypto: Acceleration of post-quantum cryptography using
dot-product instructions on gpus,” IEEE Transactions on Circuits and
Systems I: Regular Papers, 2022.

[17] Y. Kim, J. Song, and S. C. Seo, “Accelerating falcon on armv8,” IEEE
Access, vol. 10, pp. 44 446–44 460, 2022.

[18] Y. Zhao, R. Xie, G. Xin, and J. Han, “A high-performance domain-
specific processor with matrix extension of risc-v for module-lwe
applications,” IEEE Transactions on Circuits and Systems I: Regular
Papers, 2022.

[19] M. Schöffel, F. Lauer, C. C. Rheinländer, and N. Wehn, “On the
energy costs of post-quantum kems in tls-based low-power secure iot,”
in Proceedings of the International Conference on Internet-of-Things
Design and Implementation, 2021, pp. 158–168.

[20] P. Sajimon, K. Jain, and P. Krishnan, “Analysis of post-quantum cryp-
tography for internet of things,” in 2022 6th International Conference
on Intelligent Computing and Control Systems (ICICCS). IEEE, 2022,
pp. 387–394.

[21] J. Xie, K. Basu, K. Gaj, and U. Guin, “Special session: The recent
advance in hardware implementation of post-quantum cryptography,” in
2020 IEEE 38th VLSI Test Symposium (VTS). IEEE, 2020, pp. 1–10.

[22] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and
J. S. Vetter, “NVIDIA tensor core programmability, performance &
precision,” CoRR, vol. abs/1803.04014, 2018. [Online]. Available:
http://arxiv.org/abs/1803.04014

[23] W.-K. Lee, H. Seo, Z. Zhang, and S. O. Hwang, “Tensorcrypto: High
throughput acceleration of lattice-based cryptography using tensor core
on gpu,” IEEE Access, vol. 10, pp. 20 616–20 632, 2022.

[24] L. Wan, F. Zheng, G. Fan, R. Wei, L. Gao, Y. Wang, J. Lin, and J. Dong,
“A novel high-performance implementation of crystals-kyber with ai

IEEE INTERNET OF THINGS JOURNAL 17

accelerator,” in European Symposium on Research in Computer Security.
Springer, 2022, pp. 514–534.

[25] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” J. Cryptol., vol. 26, no. 1, pp. 80–101,
2013. [Online]. Available: https://doi.org/10.1007/s00145-011-9114-1

[26] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehle, “Crystals - kyber: A cca-secure
module-lattice-based kem,” in 2018 IEEE European Symposium on
Security and Privacy (EuroS&P), 2018, pp. 353–367.

[27] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly
efficient architecture of newhope-nist on fpga using low-complexity
ntt/intt,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2020, no. 2, p. 49–72, Mar. 2020. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/8544

[28] A. Jati, N. Gupta, A. Chattopadhyay, and S. K. Sanadhya, “Spqcop:
Side-channel protected post-quantum cryptoprocessor,” Cryptology
ePrint Archive, Paper 2019/765, 2019, https://eprint.iacr.org/2019/765.
[Online]. Available: https://eprint.iacr.org/2019/765

[29] J. Lablanche, L. Mortajine, O. Benchaalal, P.-L. Cayrel, and
N. E. Mrabet, “Optimized implementation of the nist pqc
submission rollo on microcontroller,” Cryptology ePrint Archive, Paper
2019/787, 2019, https://eprint.iacr.org/2019/787. [Online]. Available:
https://eprint.iacr.org/2019/787

[30] Y. Gao, J. Xu, and H. Wang, “cunh: Efficient gpu implementations
of post-quantum kem newhope,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 3, pp. 551–568, 2022.

[31] W. K. Lee and S. O. Hwang, “High throughput implementation of post-
quantum key encapsulation and decapsulation on gpu for internet of
things applications,” IEEE Transactions on Services Computing, pp. 1–
1, 2021.

[32] S. C. Seo and S. An, “Parallel implementation of crystals-
dilithium for effective signing and verification in autonomous
driving environment,” ICT Express, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405959522001126

[33] Y. O. A. Karatsuba, “Sike on gpu: Accelerating supersingular isogeny-
based key encapsulation mechanism on graphic processing units,” IEEE
Access, vol. 9, pp. 116 731–116 744, 2021.

[34] F. Farahmand, D. T. Nguyen, V. B. Dang, A. Ferozpuri, and K. Gaj,
“Software/hardware codesign of the post quantum cryptography algo-
rithm ntruencrypt using high-level synthesis and register-transfer level
design methodologies,” in 2019 29th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 2019, pp. 225–
231.

[35] V. Kostalabros, J. Ribes-González, O. Farràs, M. Moretó, and C. Her-
nandez, “Hls-based hw/sw co-design of the post-quantum classic
mceliece cryptosystem,” in 2021 31st International Conference on Field-
Programmable Logic and Applications (FPL). IEEE, 2021, pp. 52–59.

[36] S. Patranabis, N. Datta, D. Jap, J. Breier, S. Bhasin, and D. Mukhopad-
hyay, “Scadfa: Combined sca+ dfa attacks on block ciphers with
practical validations,” IEEE Transactions on Computers, vol. 68, no. 10,
pp. 1498–1510, 2019.

[37] W.-K. Lee and S. O. Hwang, “High throughput implementation of post-
quantum key encapsulation and decapsulation on gpu for internet of
things applications,” IEEE Transactions on Services Computing, vol. 15,
no. 6, pp. 3275–3288, 2021.

[38] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom functions and
lattices,” in Advances in Cryptology–EUROCRYPT 2012: 31st Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings
31. Springer, 2012, pp. 719–737.

[39] Y. Zhu, M. Zhu, B. Yang, W. Zhu, C. Deng, C. Chen, S. Wei, and L. Liu,
“Lwrpro: An energy-efficient configurable crypto-processor for module-
lwr,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 68, no. 3, pp. 1146–1159, 2021.

[40] H. Seo, P. Sanal, A. Jalali, and R. Azarderakhsh, “Optimized imple-
mentation of sike round 2 on 64-bit arm cortex-a processors,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 67, pp.
2659–2671, 2020.

[41] S. An and S. C. Seo, “Efficient parallel implementations of
lwe-based post-quantum cryptosystems on graphics processing
units,” Mathematics, vol. 8, no. 10, 2020. [Online]. Available:
https://www.mdpi.com/2227-7390/8/10/1781

[42] K. Lee, M. Gowanlock, and B. Cambou, “Saber-gpu: A response-based
cryptography algorithm for saber on the gpu,” in 2021 IEEE 26th Pacific
Rim International Symposium on Dependable Computing (PRDC), 2021,
pp. 123–132.

[43] J.-C. See, H.-F. Ng, H.-K. Tan, J.-J. Chang, K.-M. Mok, W.-K. Lee, and
C.-Y. Lin, “Cryptensor: A resource-shared co-processor to accelerate
convolutional neural network and polynomial convolution,” 2022.

[44] C. NVIDIA, “CUDA C programming guide, version 11.6,” NVIDIA
Corp, 2022.

[45] A. Al Badawi, Y. Polyakov, K. M. M. Aung, B. Veeravalli, and
K. Rohloff, “Implementation and performance evaluation of rns variants
of the bfv homomorphic encryption scheme,” IEEE Transactions on
Emerging Topics in Computing, vol. 9, no. 2, pp. 941–956, 2021.

Muhammad Asfand Hafeez received a B.S. de-
gree in electrical engineering from the University
of Management and Technology in 2021. He is
currently pursuing his master’s degree in IT con-
vergence engineering at Gachon University, South
Korea. His research pursuits center on cryptography,
GPU computing, deep learning, and hardware imple-
mentations.

Wai-Kong Lee received a B.Eng. in electronics and
an M.Eng.Sc. from Multimedia University, Malaysia
in 2006 and 2009, respectively. He received a Ph.D.
in engineering from Universiti Tunku Abdul Rah-
man, Malaysia in 2018. He was a Visiting Scholar
with Carleton University, Canada, in 2017, Feng
Chia University, Taiwan, in 2016 and 2018, and
OTH Regensburg, Germany, in 2015, 2018, and
2019. Prior to joining academia, he worked in
several multi-national companies including Agilent
Technologies (Malaysia) as an R&D engineer. His

research interests are in the areas of cryptography, numerical algorithms, GPU
computing, the Internet of Things, and energy harvesting. He is currently a
post-doctoral researcher at Gachon University, South Korea.

Angshuman Karmakar received the B.E. degree
in computer science and engineering from Jadavpur
University, Kolkata, India, the M.Tech. degree in
computer science and engineering from the Indian
Institute of Technology, Kharagpur, India, and the
Ph.D. degree from Katholieke Universiteit Leu-
ven (KU Leuven), Belgium, for his dissertation
titled “Design and Implementation Aspects of Post-
Quantum Cryptography.” He is one of the primary
designers of the post-quantum Saber KEM scheme
which is one of the finalists in the NIST’s post-

quantum standardization procedure. He is currently working as an assistant
professor at the Indian Institute of Technology, Kanpur, in India. Earlier he
was an FWO Post-Doctoral Fellow with the COSIC Research Group, KU
Leuven. His research interest spans different aspects of lattice-based post-
quantum cryptography and computation on encrypted data.

Seoung Oun Hwang received a B.S. degree in math-
ematics from Seoul National University, in 1993,
the M.S.degree in information and communications
engineering from the Pohang University of Science
and Technology, in 1998, and a Ph.D. degree in
computer science from the Korea Advanced Institute
of Science and Technology, South Korea. He worked
as a Software Engineer with LG-CNS Systems, Inc.,
from 1994 to 1996. He also worked as a Senior
Researcher with the Electronics and Telecommu-
nications Research Institute (ETRI), from 1998 to

2007. He worked as a Professor at the Department of Software and Commu-
nications Engineering, Hongik University, from 2008 to 2019. He is currently
a Professor at the Department of Computer Engineering, at Gachon University.
He is also an Editor of the ETRI Journal. His research interests include
cryptography, cybersecurity, and artificial intelligence.

