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Abstract In this paper, we introduce Saber, a package of cryptographic
primitives whose security relies on the hardness of the Module Learning
With Rounding problem (Mod-LWR). We first describe a secure Diffie-
Hellman type key exchange protocol, which is then transformed into an
IND-CPA encryption scheme and finally into an IND-CCA secure key
encapsulation mechanism using a post-quantum version of the Fujisaki-
Okamoto transform. The design goals of this package were simplicity,
efficiency and flexibility resulting in the following choices: all integer
moduli are powers of 2 avoiding modular reduction and rejection sam-
pling entirely; the use of LWR halves the amount of randomness re-
quired compared to LWE-based schemes and reduces bandwidth; the
module structure provides flexibility by reusing one core component for
multiple security levels. A constant-time AVX2 optimized software im-
plementation of the KEM with parameters providing more than 128 bits
of post-quantum security, requires only 111K, 138K and 141K cycles for
key generation, encapsulation and decapsulation respectively on a Dell
laptop with an Intel i7-Haswell processor.

1 Introduction

The threat of quantum computers, which break most widely used public key
cryptographic primitives, has sparked a rising interest in post-quantum cryp-
tography. This is emphasized by organizations such as ETSI and NIST that
are looking towards standardization of post-quantum cryptography [18]. Lattice
based cryptography is one of the most promising candidates that are resilient to
all known quantum attacks. Examples include NTRU based schemes [25,37,11]
and protocols based on the (ring)-Learning With Errors (LWE) problem: Alkim
et al. [4] presented ‘A New Hope’, based on the ring-LWE problem; Bos et al. [17]
introduced an alternative scheme called ‘Frodo’ based solely on LWE, but suffers
from higher bandwidth and computational complexity; Bhattacharya et al. [12]
improved upon the bandwidth of ‘Frodo’, by basing their protocol on LWR whilst
still avoiding the use of rings; Bos et al. [16] presented a CCA-secure Mod-LWE
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based key exchange called ‘Kyber’ which takes the middle road between ‘Frodo’
and ’a New Hope’ by using modules. Concurrently to our work, Jin et al. de-
scribed a generic key exchange for Ring-LWE, Mod-LWE, LWE and LWR in [29],
and Baan et al. [8] described a LWR, Ring-LWR key exchange.

In this paper, we introduce Saber, a suite of cryptographic primitives based
on the Mod-LWR problem. The choices we made for the underlying hard prob-
lem and also the actual parameters of the scheme were motivated by three design
principles: simplicity of the scheme and its implementation, efficiency and flexi-
bility:

– Learning with Rounding (LWR) [10]: schemes based on (variants of) LWE
require sampling from noise distributions which needs randomness. Further-
more, the noise is included in public keys and ciphertexts resulting in higher
bandwidth. LWR based schemes naturally reduce the bandwidth while not
needing additional randomness for the noise since it is deterministically ob-
tained.

– Choice of moduli: we choose all integer moduli in the scheme to be powers of
2. This eliminates the need for explicit modular reduction and complicated
sampling routines such as rejection sampling. We also proof that using pow-
ers of two, the keys are unbiased and that there is no need for steps such
as uplifting and randomization or decoding of the exchanged information.
These advantages contribute to the simplicity of our design, and facilitate
constant time implementations. The main disadvantage of using such mod-
uli is that it excludes the use of the number theoretic transform (NTT) to
speed up polynomial multiplication. We propose the use of a combination
of Toom-Cook and Karatsuba polynomial multiplication to mitigate this
disadvantage.

– Modules [31,16]: the module versions of the problems (see Section 2) allow
to interpolate between the original pure LWE/LWR problems and their ring
versions, lowering computational complexity and bandwidth compared to
LWE/LWR, while introducing protection against attacks on the ring struc-
ture of Ring-LWE/LWR and flexibility to move to higher security levels
without any need to change the underlying arithmetic.

A high-level constant-time software implementation of Saber is provided and
has been placed in the public domain as part of the submission to the NIST
competition. The implementation has been optimized using AVX2 instructions
available in modern Intel processors and uses a combination of Toom-Cook and
Karatsuba polynomial multiplication algorithms.

The remainder of the paper is organised as follows: in Section 2 we review
the necessary background; we present a secure Diffie-Hellman type key exchange
scheme in Section 3, a CPA secure encryption scheme in Section 4 and a CCA
secure key encapsulation mechanism in Section 5. A security analysis of the
hardness on the underlying mod-LWR problem is given in Section 6.1, based on
which three parameter sets are chosen in Section 6.2. Finally, specific implemen-
tation choices that speed up our protocols are discussed in Section 7 and our
implementation results are compared with the state of the art in Section 8.
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2 Preliminaries

2.1 Notation

We denote with Zq the ring of integers modulo an integer q with representants in
[0, q) and for an integer z, we denote z mod q the reduction of z in [0, q). Rq is the
quotient ring Zq[X]/(Xn + 1) with n a fixed power of 2 (we only need n = 256).
For any ring R, Rl×k denotes the ring of l × k-matrices over R. For p | q, the
mod p operator is extended to (matrices over) Rq by applying it coefficient-wise.
Single polynomials are written without markup, vectors are bold lower case and
matrices are denoted with bold upper case. U denotes the uniform distribution
and βµ is a centered binomial distribution with parameter µ and corresponding

standard deviation σ =
√
µ/2. If χ is a probability distribution over a set S,

then x ← χ denotes sampling x ∈ S according to χ. If χ is defined on Zq,
XXX ← χ(Rl×kq ) denotes sampling the matrix XXX ∈ Rl×kq , where all coefficients of
the entries in XXX are sampled from χ.

The bitwise shift operations � and � have the usual meaning when ap-
plied to an integer and are extended to polynomials and matrices by apply-
ing them coefficient-wise. We use the part selection function bits(x, i, j) with
j ≤ i to access j consecutive bits of a positive integer x ending at the i-th in-
dex, producing an integer in Z2j ; i.e., written in C code the function returns
(x � (i − j))&(2j − 1). The part selection function is extended to polynomials
and matrices by applying it coefficient-wise. Finally let be denote rounding to the
nearest integer, which can be extended to polynomials and matrices coefficient-
wise.

2.2 Cryptographic definitions

Public parameters P

Alice Bob

Choose secret a

Compute A as function of P and a A - Choose secret b

Compute B as function of P and b

� B

k = Derive key from P, a,B k′ = Derive key from P, b,A

Protocol 1: Diffie-Hellman type key exchange protocol

Let KE be a Diffie-Hellman type key exchange protocol between two parties
as illustrated in Protocol 1. KE is called (1 − δ)-correct if after execution of
the protocol Pr[k′ = k] > 1 − δ, where the probability is computed over the
random coins used in Protocol 1. KE is called IND-RND secure if it is hard for
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an adversary to distinguish the real shared secret from random. More formally,
we define the advantage of an adversary in distinguishing the key k from a
uniformly random key k̂ ← U(K) as follows:

Advind-rnd
KE (A) =

∣∣∣Pr[A(P,A,B, k) = 1
]
− Pr

[
A(P,A,B, k̂) = 1

]∣∣∣ .
A public key encryption scheme consists of a triple of functions PKE =

(KeyGen, Enc, Dec), where KeyGen returns a secret key sk and a public key pk;
Enc takes a public key pk and a message m ∈M to produce a ciphertext c ∈ C,
and Dec takes the secret key sk together with ciphertext c to output a message
m′ ∈ M or the symbol ⊥ to denote rejection. The PKE is said to be (1 − δ)-
correct if Pr[Dec(sk, Enc(pk,m)) = m] > 1 − δ, where the probability is taken
over (pk, sk) ← KeyGen and the random coins of Enc. We use the notion of
indistinguishability under chosen plaintext attacks (IND-CPA) and define the
advantage of an adversary A by:

Advind-cpa
enc (A) =

∣∣∣∣∣∣Pr
b′ = b :

(pk, sk)← KeyGen();
(m1,m2)← AEnc(pk); b← U({0, 1});
c← Enc(pk,mb); b

′ ← AEnc(pk, c);

− 1

2

∣∣∣∣∣∣ .
The weaker notion of one-wayness under chosen plaintext attacks (OW-CPA) is
defined as:

Advow-cpa
enc (A) =

∣∣∣∣∣∣Pr
m′ = m :

(pk, sk)← KeyGen();
m←M; c← Enc(pk,m);

m′ ← AEnc(pk, c);

− 1

2

∣∣∣∣∣∣ .
A key-encapsulation mechanism KEM = (KeyGen, Encaps, Decaps) is a triple

of probabilistic algorithms, where KeyGen returns a secret key sk and a public
key pk, where Encaps takes a public key pk and produces a ciphertext c and a
key k ∈ K, and where Decaps takes the secret key sk, the public key pk and
ciphertext c to return a key k ∈ K or the symbol ⊥ to denote rejection. The KEM
is said to be (1−δ)-correct if Pr[Decaps(sk, c) = k : (c, k)← Encaps(pk)] > 1−δ,
where the probability is taken over (pk, sk)← KeyGen and the random coins of
Encaps. We use the notion of indistinguishability under chosen ciphertext attacks
(IND-CCA) to define the advantage of an adversary A by:

Advind-cca
KEM (A) =

∣∣∣∣∣∣Pr
b′ = b :

(pk, sk)← KeyGen(); b← U({0, 1});
(c, d, k0)← Encaps(pk);

k1 ← K; b′ ← ADecaps(pk, c, d, kb);

− 1

2

∣∣∣∣∣∣ .
The advantage of an adversary A in distinguishing a pseudorandom generator

gen() with seed seedAAA ← U({0, 1}256) from a uniformly random distribution is
defined as follows:

Advprf
gen()(A) =

∣∣∣∣∣∣∣∣
Pr

[
b′ = 1 :

seedAAA ← U({0, 1}256)
AAA← gen(seedAAA) ∈ Rl×lq ; b′ = A(AAA);

]
.

−Pr
[
b′ = 1 : AAA← U(Rm×lq ); b′ = A(AAA);

]
∣∣∣∣∣∣∣∣ (1)
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2.3 LWE, LWR and Mod-LWR problems

The learning with errors (LWE) problem was introduced by Regev [34] and its
decisional version states that it is hard to distinguish uniform random samples
(aaa, u)← U(Zl×1q × Zq) from LWE-samples of the form(

aaa, b = aaaTsss+ e
)
∈ Zl×1q × Zq , (2)

where the secret vector sss ← βµ(Zl×1q ) is fixed for all samples, aaa ← U(Zl×1q )
and e ← βµ(Zq) is a small error. A module version of LWE, called Mod-LWE,
was analyzed by Langlois and Stehlé [31] and essentially replaces the ring Zq in
the above samples by a quotient ring of the form Rq with corresponding error
distribution βµ(Rl×1q ). The rank of the module is l and the dimension of the ring
Rq is n. The case l = 1 corresponds to the ring-LWE problem introduced in [32].

The LWR problem was introduced by Banerjee et al. [10] and is a derandom-
ized version of the LWE problem. In contrast to the LWE problem, the “noise”
in the LWR problem is generated deterministically by scaling and rounding co-
efficients modulo q to modulo p (with p < q). In detail, an LWR sample is given
by (

aaa, b =
⌊p
q

(aaaTsss)
⌉)
∈ Zl×1q × Zp (3)

for a fixed sss← βµ(Zl×1q ) and uniform random aaa← U(Zl×1q ). The decisional LWR
problem states that is it hard to distinguish samples from the LWR distribution
from that of the uniform distribution. A reduction from the LWE problem to
the LWR problem was given by Banerjee et al. [10], and further improved by
Alwen et al. [6], Bogdanov et al. [15] and, Alperin-Sheriff and Daniel Apon [5].

The security of our protocol relies on the hardness of the module version of
LWR (Mod-LWR), which is a straightforward generalization of Mod-LWE. A
Mod-LWR sample is given by(

aaa, b =
⌊p
q

(aaaTsss)
⌉)
∈ Rl×1q ×Rp (4)

where the secret sss← βµ(Rl×1q ) is fixed for all samples and aaa← U(Rl×1q ).

The advantage of an adversary A in distinguishing m samples from an Mod-
LWR distribution from that of a uniform distribution is defined as follows, where
m, k, µ, q and p are positive integers with q > p:

AdvMod-LWR
m,l,µ,q,p (A) =

∣∣∣∣∣∣∣∣∣∣
Pr

(
b′ = 1 :

AAA← U(Rm×lq ); sss← βµ(Rl×1q );
b′ = A(AAA, b(p/q)AAAssse);

)

−Pr
(
b′ = 1 :

AAA← U(Rm×lq ); uuu← U(Rl×1p );
b′ = A(AAA,uuu);

)
∣∣∣∣∣∣∣∣∣∣
. (5)
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3 Key Exchange

In Protocol 2 we describe a Diffie-Hellman type key exchange scheme Saber.KE
based on the hardness of Mod-LWR problem. Unlike the Diffie-Hellman key
exchange [22], in our scheme the two communicating parties sometimes fail to
agree on the same key. As in previous works [23,33,12], we can make this failure
probability negligibly small by sending some additional reconciliation data.

Alice Bob

1 seedAAA ← U({0, 1}256)

2 AAA← gen(seedAAA) ∈ Rl×lq

3 sss← βµ(Rl×1
q ) sss′ ← βµ(Rl×1

q )

4 bbb = bits(AAAsss+ hhh, εq, εp) ∈ Rl×1
p

bbb, seedAAA- AAA← gen(seedAAA) ∈ Rl×lq

5 bbb′ = bits(AAATsss′ + hhh, εq, εp) ∈ Rl×1
p

6 v′ = bbbT bits(sss′, εp, εp) ∈ Rp
7 v = bbb′T bits(sss, εp, εp) ∈ Rp �b

bb′, c c = bits(v′ + h1, εp − 1, εt) ∈ Rt
8 k = bits(v − 2εp−εt−1c+ h2, εp, 1) k′ = bits(v′ + h1, εp, 1)
9 keyAlice = kdf(k) keyBob = kdf(k′)

Protocol 2: Saber.KE key exchange

All moduli involved in the scheme are chosen to be powers of 2, in particular
we choose q = 2εq , p = 2εp and t = 2εt with εq > εp > (εt+1), so we have 2t | p | q.
In practice, our main parameter set will correspond to the case εq = 13, εp = 10
and εt = 3. The secret vectors sss and sss′ are sampled from βµ(Rl×1q ), with µ < p,

while the matrix AAA ∈ Rl×lq is sampled using a pseudorandom generator gen()
initialized with seedA. The session key is obtained by feeding the common secret
k = k′ ∈ R2 into a key derivation function kdf(). The algorithm also uses three
constants: a constant vector hhh ∈ Rl×1q consisting of polynomials all coefficients
of which are set to the constant 2εq−εp−1, a constant polynomial h1 ∈ Rq with
all coefficients equal to 2εq−εp−1, and a constant polynomial h2 ∈ Rq with all
coefficients set equal to (2εp−2 − 2εp−εt−2 + 2εq−εp−1). These constants are used
to replace rounding operations by a simple bit select, or to TODO.

Note that the operations bits(sss, εp, εp) in line 6 and bits(sss′, εp, εp) in line 7
simply mean we are considering sss mod p and s′s′s′ mod p as elements in Rp which
is well defined since p | q.

Correctness: Using Saber.KE two communicating parties agree on a com-
mon random key with overwhelming probability. A tight bound on the failure
probability can be obtained using following observations from Bos et al. [17]: the
reconciliation between two integer values vi, v

′
i ∈ Zp is correct if the distance

between vi and v′i is smaller than p/4(1− 1/t), and fails if the distance is bigger
than p/4(1 + 1/t). In between these values, the probability of success decreases
linearly from 1 to 0. Consequently, a tight bound on the failure probability given
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the distribution of ∆vi = v′i − vi can be calculated by adding to ∆vi a discrete
uniformly distributed error er ∈ Zp with range [−p/4t, p/4t]. The success prob-
ability of the reconciliation between vi and v′i then equals Pr[|∆vi + er| < p/4].
Using the above observation we can estimate a bound on the error probability:

Theorem 1. Let AAA be a matrix in Rl×lq and sss,sss′ two vectors in Rl×1q sampled
as in Protocol 2. Define eee and eee′ as the rounding errors introduced by scaling
and rounding AAAsss and AAATsss′, i.e. bits(AAAsss+hhh, εq, εp) = p

qAAAsss+eee and bits(AAATsss′+

hhh, εq, εp) = p
qAAA

Tsss′ + e′e′e′. Let er ∈ Rq be a polynomial with uniformly distributed

coefficients with range [−p/4t, p/4t]. If we set

δ = Pr[||(sss′Teee− eee′Tsss+ er) mod p||∞ > p/4]

then after executing the Saber.KE protocol, both communicating parties agree on
a n-bit key with probability 1− δ.

Proof. The polynomials v′ and v calculated by Bob and Alice respectively in
Protocol 2 are given as: v′ = (pqsss

′TAAAsss + sss′Teee mod p) and v = (pqsss
′TAAAsss + eee′Tsss

mod p). Here, the coefficients of eee,eee′ are the rounding errors and so are in
(−1/2, 1/2]. It can be easily seen that the values calculated by the communi-
cating parties differ by ∆v = ||(sss′Teee− eee′Tsss) mod p||. Therefore, Bob and Alice
agree on the same secret if ||∆v+er||∞ ≤ p

4 . Hence, for δ = Pr[||(sss′Teee−eee′Tsss+er)
mod p||∞ > p/4] the Saber.KE protocol is (1− δ) correct.

Similar to Bos et al. [16], a tight upper bound on the value of δ is calculated
using a Python script. To be able to practically compute the distribution of
∆v = v′ − v ∈ Rp, Bos et al. assume independence between the terms sss′Teee
and eee′Tsss, which is not necessarily the case. Analogous to Theorem 5.2 from
Jin and Zhao [29], one could argue that they are independent if conditioned
on sss′TAAAsss ≡ a mod q/p, where a ∈ Rq/p. The recommended parameter set
described in Section 6.2 yields δ < 2−136.

Unbiased keys: Since our moduli are powers of 2 and as such non-prime,
there exists (negligibly small) exceptional sets for sss and s′s′s′ such that the common
key is biased. The intuition is that if all coefficients of the polynomials in sss or s′s′s′

are divisible by a high power of 2, the same property will hold for AAAsss or AAATs′s′s′,
and their scaled versions. The following theorem however shows that outside
these sets, uniformity is attained.

Theorem 2. Let Sbad denote the set of elements in Rl×1q for which none of the
coefficients w satisfies gcd(w, q)|(q/p) and let S′bad denote the set of elements in
Rl×1q for which none of the coefficients w satisfies gcd(w, p)|(p/2). Let sss,sss′ ←
βµ(Rl×1q ) and let AAA← U(Rl×lq ) and determine k as follows:

1. bbb = bits(AAAsss+ hhh, εq, εp)
2. k = bits(bbbT (sss′ mod p) + h1, εp, 1)

For sss /∈ Sbad and sss′ /∈ S′bad, k is distributed uniformly for AAA ← U(Rl×lq ). This
occurs with a probability Pr[sss /∈ Sbad]Pr[sss′ /∈ S′bad].
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Proof. Note that the multiplication of a uniformly distributed coefficient of AAA,
by a coefficient w of sss, is uniformly distributed in its εp most significant bits if
gcd(w, q)|(q/p), which is equivalent to stating that bpw/qe is invertible in Zp.

The distribution of the coefficients of bbb = bits(AAAsss + hhh, εq, εp) is as follows:
since convolution of any distribution with a uniform distribution in Zp results
again in a uniform distribution in Zp, we need only one term of the summation
step to be uniform in its p most significant bits. Therefore, the coefficients of bbb
will be uniformly distributed if sss /∈ Sbad.

Finally note that the distribution of k′ = bits(bbbT (sss′ mod p) + h1, εp, 1) is
uniform if bbb has a uniform distribution and if sss′ /∈ s′bad. As above, a multiplication
of a uniformly distributed coefficient of bbb, with a coefficient w′ of sss is uniformly
distributed in its most significant bit if gcd(w′, p)|(p/2). Therefore, k will be
uniform if the coefficients of bbb are uniformly distributed and if sss′ /∈ S′bad. The
probability of a sampling sss and sss′ so that k has a uniform distribution is thus
Pr[sss /∈ Sbad]Pr[sss′ /∈ S′bad].

Since in our setting sss,s′s′s′ are sampled from βµ(Rq), the coefficients are small
and thus the only sampleable vector in Sbad and S′bad is the all zero vector
which occurs with probability 2−1436. In the rest of the paper, we assume that
the secret vectors are not in the vector sets: sss /∈ Sbad and sss′ /∈ S′bad.

Security: The security of Saber.KE can be reduced to the decisional Mod-
LWR problem as shown by the following theorem.

Theorem 3. For any adversary A, there exist three adversaries B0, B1 and B2

such that Advind-rndSaber.KE(A) 6 Advprf
gen()(B0)+Advmod-lwr

l,l,ν,q,p (B1)+Advmod-lwr
l+1,l,ν,q,q/ζ(B2),

where ζ = min ( qp ,
p
2t ).

Proof. The IND-RND security of our key exchange can be expressed as the
probability that an adversary A can distinguish between k and a uniformly
random key k̂ ← U(K), given the public information AAA,bbb,bbb′ and c. The proof
proceeds by a sequence of games Gi, where AdvGi(A) = |Pr[SA,i] − 1/2|, in
which SA,i is the event that the adversary guesses correctly in game Gi. The
sequence of games is depicted in Figure 1.

The first game G0 is the original game. In game G1, the public matrix is
no longer generated using the pseudorandom generator gen(), but is sampled
from a uniformly random distribution. An adversary that can distinguish these
two games, can also distinguish the matrix generated through the pseudorandom
generator from a uniformly random matrix, and therefore |Pr[SA,0]−Pr[SA,1]| 6
Advprf

gen()(B0).

During the second game G2, the vector bbb is generated uniformly random,
so that (AAA,bbb) is a uniformly distributed sample, in contrast to the first game
G1, where (AAA,bbb) forms a Mod-LWR sample. An adversary that can distinguish
between game G1 and G2 has also solved the decisional Mod-LWR problem on
this sample, and therefore |Pr[SA,1]− Pr[SA,2]| 6 Advmod-lwr

l,l,µ,q,p (B1).
In game G2, the number of bits dropped in the calculation of bbb′ and c is εq−εp

and εp − εt − 1 respectively. The number of bits dropped is reduced to εq − εp
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Game G0:

1. seedAAA ← U({0, 1}256)
2. AAA← gen(seedAAA)

3. sss,sss′ ← βη(Rl×1
q )

4. bbb = bits(
AAA · sss+ hhh, εq, εp)

5. bbb′ = bits(

AAAT · sss′ + hhh, εq, εp)

6. v′ = bbbT · bits(sss′, εp, εp) +
h1

7. c = bits(v′, εp − 1, εt)
8. k′ = bits(v′, εp, 1)

9. k̂ ← U(R2)
10. u← U({0, 1})
11. if u = 0:

return(AAA,bbb, bbb′, c, k′)
12. else:

return(AAA,bbb, bbb′, c, k̂)

Game G1:

1.
2. AAA← U(Rl×lq )

3. sss,sss′ ← βη(Rl×1
q )

4. bbb = bits(
AAA · sss+ hhh, εq, εp)

5. bbb′ = bits(

AAAT · sss′ + hhh, εq, εp)

6. v′ = bbbT · bits(sss′, εp, εp) +
h1

7. c = bits(v′, εp − 1, εt)
8. k′ = bits(v′, εp, 1)

9. k̂ ← U(R2)
10. u← U({0, 1})
11. if u = 0:

return(AAA,bbb, bbb′, c, k′)
12. else:

return(AAA,bbb, bbb′, c, k̂)

Game G2:

1.
2. AAA← U(Rl×lq )

3. sss′ ← βη(Rl×1
q )

4. bbb← U(Rl×1
p )

5. bbb′ = bits(

AAAT · sss′ + hhh, εq, εp)

6. v′ = bbbT · bits(sss′, εp, εp) +
h1

7. c = bits(v′, εp − 1, εt)
8. k′ = bits(v′, εp, 1)

9. k̂ ← U(R2)
10. u← U({0, 1})
11. if u = 0:

return(AAA,bbb, bbb′, c, k′)
12. else:

return(AAA,bbb, bbb′, c, k̂)

Game G3:

2. AAA← U(Rl×lq )

3. sss′ ← βη(Rl×1
q )

4. bbb← U(Rl×1
p )

5. bbb′ = bits(

AAAT · sss′ + hhh, εq, εp)
6. v′ = bbbT · bits(sss′, εp, εp) +

h1
7. c = bits(

v′, εq − 1, εp − 1)
8. k′ = bits(v′, εp, 1)
9. k̂ ← U(R2)

10. u← U({0, 1})
11. if u = 0:

return(AAA,bbb, bbb′, c, k′)
12. else:

return(AAA,bbb, bbb′, c, k̂)

Game G4:

2. AAA← U(Rl×lq )

3. sss′ ← βη(Rl×1
q )

4. bbb← U(Rl×1
q )

5. bbb′ = bits(

AAAT · sss′ + hhh, εq, εp)
6. v′ = bits(

bbbT · sss′ + h1, εq, εp)
7. c = bits(

v′, εp − 1, εp − 1)
8. k′ = bits(v′, εp, 1)
9. k̂ ← U(R2)

10. u← U({0, 1})
11. if u = 0:

return(AAA,bbb, bbb′, c, k′)
12. else:

return(AAA,bbb, bbb′, c, k̂)

Game G5:

2. AAA← U(Rl×lq )

4. bbb← U(Rl×1
q )

5. bbb′ ← U(Rl×1
p )

6. v′ ← U(Rl×1
p )

7. c = bits(v′, εp − 1, εp − 1)

8. k′ = bits(v′, εp, 1)

9. k̂ ← U(R2)

10. u← U({0, 1})
11. if u = 0:

return(AAA,bbb, bbb′, c, k′)

12. else:
return(AAA,bbb, bbb′, c, k̂)

Figure 1: Sequence of games that are used in the proof of lemma 3

for all three calculations in game G3. If we compare G3 to G2, since (εq − εp) 6
(εp − εt − 1), the number of dropped bits is the same or less, and therefore the
number of available bits to the adversary is at least the same. From this we
conclude that G2 is as least as hard as G3: ∀A,∃A′ : AdvG2

(A) 6 AdvG3
(A′).

Up to game G3, the coefficients of the inputs for the generation of bbb′ and c
are in Zq and Zp respectively. This is evened up to coefficients in Zq for all of
the calculations in game G4. Using sss′ instead of bits(sss′, εp, εp) does not change
the result of the multiplication because µ < p. Since p | q, generating bbb from
U(Rl×1q ) instead of U(Rl×1p ) makes the advantage of the adversary in Game G4

at least as big as in game G3, as the adversary in Game G4 can easily calculate
the same value for c as in Game G3. Cutting off the last εζ bits of v′ does not
change the game since they are not used in the rest of the protocol. Thus we can
state: ∀A′,∃A′′ : AdvG3

(A′) 6 AdvG4
(A′′).
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Algorithm 1: Saber.KeyGen()

1 seedAAA ← U({0, 1}256)

2 AAA← gen(seedAAA) ∈ Rl×lq

3 sss← βµ(Rl×1
q )

4 bbb = bits(AAAsss+ hhh, εq, εp) ∈ Rl×1
p

5 return (pk := (bbb, seedAAA), sk := sss)

Algorithm 2: Saber.Enc(pk = (bbb, seedAAA),m ∈M; r)

1 AAA← gen(seedAAA) ∈ Rl×lq

2 s′s′s′ ← βµ(Rl×1
q )

3 bbb′ = bits(AAATsss′ + hhh, εq, εp) ∈ Rl×1
p

4 v′ = bbbT bits(sss′, εp, εp) + h1 ∈ Rp
5 cm = bits(v′ + 2εp−1m, εp, εt + 1) ∈ R2t

6 return c := (cm, b
′b′b′)

Analogous to game G2, bbb′ and c are replaced by a uniform random value in
game G5, so that the Mod-LWR samples (AAA,bbb′) and (bbb, v′), which share secret
key sss′, are replaced by uniformly random variables. Therefore, an adversary that
can distinguish between these two games, can solve the corresponding Mod-LWR
decisional problem and thus |Pr[SA′′,4]− Pr[SA′′,5]| 6 Advmod-lwr

l+1,l,µ,q,q/ζ(B2).

In the resulting game G5, the keys are independent of the values bbb, bbb′ and v′.
Moreover, since v′ is uniformly distributed in Rl×1q/ζ , where q is a power of two,

and since k′ is generated as the first bit of v′, k′ is also uniformly distributed, and
therefore Pr[SA′′,5] = 1/2. Working backwards from the probability of success in
gameG5 to that in gameG0, and using the fact that AdvGi(A) = |Pr[SA,i]−1/2|,
gives the desired result.

4 CPA secure encryption

The key exchange scheme of the previous section can be transformed into a CPA
secure public-key encryption scheme Saber.PKE by using a similar transforma-
tion from Diffie-Hellman key exchange to ElGamal encryption, i.e. the messages
sent by Alice now define her public key, and the encryption simply consists of
an XOR with the common (pre)key.

The message space is M ∈ {0, 1}n and a message m ∈ M is represented
as an element in Rq with coefficients in {0, 1}. Algorithms 1 to 3 describe the
public-key encryption scheme Saber.PKE=(KeyGen,Enc,Dec), where the setup
parameters are the same as in the key-exchange scheme described before. If the
optional parameter r is specified while calling Saber.ENC, it is used as a seed
to generate the secret vector sss′.

10



Algorithm 3: Saber.Dec(sk = sss, cm, b
′b′b′)

1 v = bbb′T bits(sss, εp, εp) ∈ Rp
2 m′ = bits(v − 2εp−εt−1cm + h2, εp, 1) ∈ R2

3 return m′

Security and Correctness: It is easily seen that the security and cor-
rectness of the encryption scheme are equivalent to that of the key exchange
introduced in Section 3.

Theorem 4. For any adversary A against Saber.PKE, there exists an adversary
B against Saber.KE such that Advind-cpaSaber.PKE(A) = Advind-rndSaber.KE(B). Furthermore,
Saber.PKE is (1− δ) correct if and only if Saber.KE is (1− δ) correct.

Proof. The proof proceeds by showing the equivalence between Saber.PKE and
the combination of Saber.KE with a one time pad of the message m with k′KE.
Note that the most significant bit of each coefficient of v′ is equal to the cor-
responding (pre)key bits of k′ in Saber.KE. Therefore, in line 5 of the Alg. 2,
the addition is essentially a one time pad of the message bits m with the co-
efficients of the (pre)key k′ in the key exchange scheme (Protocol. 2). We can
therefore conclude that the security of our encryption equals the security of our
key exchange scheme for the same parameters. Similarly, it can be seen that
Saber.PKE is correct if the keys k and k′ are equal. Hence, the correctness of
the encryption scheme is equivalent to the correctness of the key exchange in
Protocol. 2.

5 CCA secure KEM

The CPA secure encryption scheme can be turned into a CCA secure KEM
Saber.KEM=(Encaps, Decaps) using an appropriate transformation. Recently,
several post-quantum versions [26,38,35,28] of the Fujisaki-Okamoto transform
with corresponding security reductions have been developed. At this point, the
FO 6⊥ transformation in [26] with post-quantum reduction from Jiang et al. [28]
gives the tightest reduction for schemes with non-perfect correctness. However,
other transformations could be used to turn Saber.PKE into a CCA secure KEM.

Saber.KEM is described in detail in Algorithm 4 and 5. The functions G :
{0, 1}∗ → {0, 1}l×n and H : {0, 1}∗ → {0, 1}n are hash functions,z is a secret
random seed used to return a pseudorandom response when the re-encryption
fails, and the Saber.Enc and Saber.Dec functions are from the CPA secure asym-
metric encryption described in Section 4.

Correctness: Following Hofheinz et al. [26], Saber.KEM is (1− δ) correct
if and only if Saber.PKE is (1− δ) correct, and thus also if and only if Saber.KE
is (1− δ) correct.

11



Algorithm 4: Saber.Encaps(pk = (bbb, seedAAA))

1 m← U({0, 1}256)

2 (K̂, r) = G(pk,m)
3 c = Saber.Enc(pk,m; r)

4 K = H(K̂, c)
5 return (c,K)

Algorithm 5: Saber.Decaps(sk = (sss, z), pk = (bbb, seedAAA), c)

1 m′ = Saber.Dec(sss, c)

2 (K̂′, r′) = G(pk,m′)
3 c′ = Saber.Enc(pk,m′; r′)
4 if c = c′ then

5 return K = H(K̂′, c)
6 else
7 return K = H(z, c)

Security: By modeling the hash functions G and H as random oracles, a
lower bound on the CCA security can be proven. We use the security bounds
of Hofheinz et al. [26], which considers a KEM variant of the Fujisaki-Okamoto
transform that can also handle a small failure probability δ of the encryption
scheme. This failure probability should be cryptographically negligibly small for
the security to hold. Using Theorem 3.2 and Theorem 3.4 from [26], we get the
following theorems for the security and correctness of our KEM in the random
oracle model:

Theorem 5 (ROM, Hofheinz et al. [26]). For a IND-CCA adversary B, making
at most qH and qG queries to respectively the random oracle G and H, and qD
queries to the decryption oracle, there exists an IND-CPA adversary A such that:

Advind-ccaSaber.KEM(B) 6 3Advind-cpaSaber.PKE(A) + qGδ +
2qG + qH + 1

2256
.

Jiang et al. [28] also provide a security reduction against a quantum adversary
in the quantum random oracle model from IND-CCA security to OW-CPA secu-
rity. IND-CPA with a sufficiently large message space implies OW-CPA [26,13].
Therefore, we can reduce the IND-CCA security of Saber.KEM to the IND.CPA
security of the underlying public key encryption:

Theorem 6 (QROM, Jiang et al. [28]). For any IND-CCA quantum adversary
B, making at most qH and qG queries to respectively the random quantum oracle
G and H, and qD many (classical) queries to the decryption oracle, there exists
an adversary A such that:

Advind-ccaSaber.KEM(B) 6 2qH
1√
2256

+ 4qG
√
δ + 2(qG + qH)

√
Advind-cpaSaber.PKE(A)
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Multi target protection: As described in [16], hashing the public key into
K̂ has two beneficial effects: it makes sure that K depends on the input of both
parties, and it offers multi-target protection. In this scenario, the adversary uses
Grover’s algorithm to precompute an m that has a relatively high failure proba-
bility. Hashing pk into K̂ ensures that an attacker is not able to use precomputed
‘weak’ values of m.

6 Security analysis and parameter selection

6.1 Security analysis

Our security analysis is similar to the one in ‘a New Hope’ [4]. The hardness of
Mod-LWR is analyzed as an LWE problem, since there are no known attacks
that make use of the Module or LWR structure. A set of l LWR samples given
by with AAA← U(Rl×lq ) and sss← βµ(Rl×1q ), can be rewritten as an LWE problem
in the following way:(

AAA,
⌊p
q

(AAAsss mod q)
⌉

mod p
)

=
(
AAA,

p

q
(AAAsss mod q) + eee mod p

)
.

We can lift this to a problem modulo q by multiplying by q
p :

q

p
bbb = AAAsss+

q

p
eee mod q ,

where q/peee is the random variable containing the error introduced by the round-
ing operation, of which the coefficients are discrete and nearly uniformly dis-
tributed in (−q/2p, q/2p].

BKW type of attacks [30] and linearization attacks [7] are not feasible, since
the number of samples is at most double the dimension of the lattice. Moreover,
the secret vectors sss and sss′ are dense enough to avoid the sparse secret attack
described by Albrecht [2]. These attacks only remain infeasible if the generated
secret vectors are timely refreshed. As a result, we end up with two main type
of attacks: the primal and the dual attack, that make use of BKZ lattice reduc-
tion [19,36].

Weighted Primal Attack The primal attack constructs a lattice that has
a unique shortest vector that contains the noise eee and the secret sss. BKZ, with
block dimension b, can be used to find this unique solution. An LWE sample
(AAA,bbb = AAAsss + eee) ∈ Zm×nq × Zmq can be transformed to the following lattice:
Λ = {vvv ∈ Zm+n+1 : (AAA|IIIm| − bbb)vvv = 0 mod q}, with dimension d = m + n + 1
and volume qm. The unique shortest vector in this lattice is vvv = (sss,eee, 1), and it
has norm λ ≈

√
nσ2

s +mσ2
e . Using heuristic models, the primal attack succeeds

if [4]:

√
nσ2

s +mσ2
e <δ

2b−d−1Vol(Λ)
1
d

where: δ = ((πb)
1
d
b

2πe
)

1
2(b−1)
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However, the vector vvv = (sss,eee, 1) is unbalanced since ||sssi|| is not necessarily equal
to ||eeei||. In our case, ||sssi|| < ||eeei||, which can be exploited by the lattice rescaling
method described by Bai et al. [9], and further analysed in [21]. Analogous to [4],
the primal attack is successful if the projected norm of the unique shortest vector
on the last b Gram-Schmidt vectors is shorter than the (d− b)th Gram-Schmidt
vector, or:

σs
√
b 6 δ2b−d−1

( q
α

)m
d

.

Weighted Dual Attack The dual attack tries to distinguish between an
LWE sample (AAA,bbb = AAAsss+ eee) ∈ Zm×nq × Zmq and a uniformly random sample by

finding a short vector (vvv,www) in the lattice Λ = {(xxx,yyy) ∈ Zm × Zn : AAATxxx = yyy
mod q}. This short vector is used to compute a distinguisher z = vvvbbb. If bbb =
AAAsss+eee, we can write z = vvvAAAsss+vvveee = wwwsss+vvveee, which is small and approximately
Gaussian distributed. If bbb is generated uniformly, z will also be uniform in q.
Since in our case, ||sssi|| < ||eeei||, we observe that the wwwsss term will be smaller
than the vvveee term. The weighted attack [9,21] optimizes the shortest vector so
that these terms have a similar variance, by considering the weighted lattice
Λ′ = {(xxx,yyy′) ∈ Zm × (α−1Z)n : (xxx, αyyy′) ∈ Λ mod q}.

Following the strategy of [4], we can calculate the cost of the dual attack.
The statistical distance between a uniformly distributed z and a Gaussian dis-
tributed z is bounded by ε = 4exp(−2π2τ2), where τ = σz/q . Since the key
is hashed, an advantage of ε is not sufficient and must be repeated at least
R = max(1, 1/(20.2075bε2)) times. The cost of the dual attack is thus equal to:

Costdual = CostBKZR = b2cbR, .

6.2 Parameter selection

We use a python script to choose parameters q, p and t for optimum usage of
communication bandwidth, while achieving a quantum security level of 128 and
failure probability 2−128. Additional parameter sets are generated as Light and
Fire versions of the Saber.KEM, a light and paranoid version respectively.

We would like to remark that choosing p and q as primes facilitates the
use of NTT based polynomial multiplications [16,3]. However, rounding from
Rq to Rp introduces significant bias as p - q. Bogdanov et al. [15] proved the
pseudorandomness of the LWR problem for moduli p and q for general lattices
but left it as open problem for the ring version. However by choosing p and q
as a power-of-two, we can be assured of the pseudorandomness, which we also
showed in Subsection. 3.
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Sec Cat fail prob attack Classical Quantum pk (B) sk (B) ciphertext (B)

LightSaber-KEM: k = 2, n = 256, q = 213, p = 210, t = 22, µ = 10

1 2−120 primal 126 115
672 1568 736

dual 126 115

Saber-KEM: k = 3, n = 256, q = 213, p = 210, t = 23, µ = 8

3 2−136 primal 199 181
992 2304 1088

dual 198 180

FireSaber-KEM: k = 4, n = 256, q = 213, p = 210, t = 25, µ = 6

5 2−165 primal 270 246
1312 3040 1472

dual 270 245

Table 1: Security and correctness of Saber.KEM.

7 Implementation

In this section, we describe a constant-time software implementation of Saber.
Our implementation is relatively simpler than several existing lattice-based post-
quantum key exchange schemes [16,4,17]. This is primarily due to the underlying
LWR problem and our choice of power-of-two moduli. As the LWR problem in-
herently introduces errors, Saber can bypass error sampling operations unlike
other LWE-based schemes. Our choice of power-of-two moduli results in faster
arithmetic operations and does not require rejection sampling [4,16] for generat-
ing the random matrix A. In the remaining part of this section we describe the
building blocks that are used to realize an efficient implementation of Saber.

Symmetric primitives The hash functions G and H in the CCA-secure
Saber-KEM are implemented using SHA3-512 and SHA3-256 respectively, stan-
dardized in FIPS 202 [1]. For pseudorandom number generation, we use the
extendable output function SHAKE-128 [1]. On parallel platforms, such as In-
tel processors that support ‘single instruction multiple data’ (SIMD), one can
speedup pseudorandom number generation by using a vectorized implementa-
tion of SHAKE-128 and multiple seed values [16]. We decided to use SHAKE-128
serially to generate pseudorandom byte string of a required length from a given
seed. This is mainly because of the fact that on majority of resource-constrained
platforms (e.g., billions of IoT devices) SIMD would not be feasible, and hence
multiple execution of SHAKE-128 would worsen performance (time and energy)
because of the costly initialization operation [1] performed in each execution of
SHAKE-128. Note that, it is essential for the correctness of the KEM, that all
parties generate pseudorandomness in the same way.

Secret polynomial generation Saber requires sampling of secret polyno-
mials from an error distribution. Sampling from a centered binomial distribution
can be performed easily [4] in constant time by comparing the Hamming weights
of two random integers of same length. Hence we use a centered binomial distri-
bution βµ with the parameter µ = 8 to sample the secret polynomials.
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Matrix A generation Since A consists of 9 polynomials, each having 256
13-bit coefficients, we use SHAKE-128 to generate 9 · 256 · 13/8 = 3, 744 pseudo-
random bytes. Next we pack these bytes into the 13-bit coefficients of A. Note
that in our case no additional rejection sampling is required as in Kyber, due
to their use of a prime moduli. The rejection sampling wastes a portion of the
generated pseudorandom bytes.

Polynomial arithmetic Our protocols relies heavily on polynomial arith-
metic in the ring Rq with modulus q = 213 and the irreducible polynomial f(x) =
x256 + 1. While polynomial addition and subtraction are simple coefficient-wise
addition and subtraction operations, polynomial multiplication is a costly oper-
ation. An optimized polynomial multiplication routine is crucial for an efficient
implementation of Saber. Since q is not a prime, we cannot apply the Num-
ber Theoretic Transform (NTT) unlike the key exchange schemes such as ‘New
Hope’ [4], Kyber [16] etc. The next best alternative is the Karatsuba method
which does not require any special modulus. Hence we use the Karatsuba polyno-
mial multiplication method in Saber. The Karatsuba polynomial multiplication
has a higher asymptotic complexity of O(nlog2 3). Though we lose in asymptotic
time complexity, we gain in modular arithmetic since modular reduction comes
for free. Furthermore, we found that the Karatsuba polynomial multiplication
method is relatively easier to vectorize in modern Intel processors that support
AVX/AVX2 ‘single instruction multiple data’ (SIMD) instructions.

The Karatsuba multiplication method follows a top-down recursive approach:
a 256-coefficient polynomial multiplication is split into three 128-coefficient poly-
nomial multiplications, next each 128-coefficient polynomial multiplication is
split into three 64-coefficient polynomial multiplications, and so on. After sev-
eral levels of recursive splitting, when the polynomial size becomes small enough,
i.e., reaches a particular threshold, a quadratic-complexity polynomial multipli-
cation such as the School-book method is used to compute the smallest polyno-
mial multiplications. If we set the threshold value to 16, then a 256-coefficient
Karatsuba polynomial multiplication calls the School-book polynomial multipli-
cation routine 81 times.

However, we can improve this by using the Toom-Cook polynomial multipli-
cation. The Toom-Cook method is a generalization of the Karatsuba method and
can be used to split a 256-coefficient polynomial multiplication into seven 64-
coefficient polynomial multiplications. This is called four-way Toom-Cook mul-
tiplication. The smaller multiplications can be computed using the Karatsuba
method as described above. Thus using the four-way Toom-Cook multiplication,
the total number of calls to the School-book multiplication routine reduces to
only 63 for a 256-coefficient polynomial multiplication.

In the Toom-Cook multiplication the choice of the evaluation points affects
the computation time. Following [14], we choose the set of evaluation points to
be {0,±1/2,±1, 2,∞}. In the interpolation phase multiplications and divisions
by scalar constants are performed. Divisions by odd scalars are performed by
computing multiplications by their respective inverses. However, the inverse of
an even divisor does not exist when the modulus is a power of two, which is true
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for Saber. For an even divisor we compute the division in two steps: first, we
multiply by the inverse of the odd factor, then we compute a true division (i.e.
right shifting) by the power-of-two factor since we know beforehand the division
has to be exact. In the four-way Toom-Cook multiplication, the maximum power-
of-two factor we have is 8, which could result in a loss of precision of 3 bits. Hence,
during the interpolation phase, we allow the intermediate coefficients to grow by
3 bits such that the extra bits can be used to calculate the divisions by 2, 4 and
8. Our choice of modulus q = 213 is especially helpful since we can use 16-bit
data variables (short integers in C) to store the 13-bit coefficients. The steps are
shown in Algorithm 6.

Algorithm 6: Toom-Cook Algorithm

Input: Two polynomials A(x) and B(x)of degree n = 256
Output: C(x) = A(x) ∗ b(x)
// Splitting A(x) into four polynomials of size 64

1 A(y) = A3 · y3 +A2 · y2 +A1 · y +A0 where y = x64

// Splitting B(x) into four polynomials of size 64
2 B(y) = B3 · y3 +B2 · y2 +B1 · y +B0

// Evaluation of the polynomials at y = {0,±1,± 1
2
, 2,∞}. These

multiplications are computed using Karatsuba

3 w1 = A(∞) ∗B(∞) = A3 ∗B3

4 w2 = A(2) ∗B(2) = (A0 + 2 ·A1 + 4 ·A2 + 8 ·A3) ∗ (B0 + 2 ·B1 + 4 ·B2 + 8 ·B3)
5 w3 = A(1) ∗B(1) = (A0 +A1 +A2 +A3) ∗ (B0 +B1 +B2 +B3)
6 w4 = A(−1) ∗B(−1) = (A0 −A1 +A2 −A3) ∗ (B0 −B1 +B2 −B3)
7 w5 = A( 1

2
) ∗B( 1

2
) = (8 ·A0 + 4 ·A1 + 2 ·A2 +A3) ∗ (8 ·B0 + 4 ·B1 + 2 ·B2 +B3)

8 w6 = A(−1
2

)∗B(−1
2

) = (8 ·A0−4 ·A1 + 2 ·A2−A3)∗ (8 ·B0−4 ·B1 + 2 ·B2−B3)
9 w7 = A(0) ∗B(0) = A0 ∗B0

// Interpolation

10 w2 = w2 + w5

11 w6 = w6 − w5

12 w4 = (w4 − w3)/2
13 w2 = w5 − w1 − 64 · w7

14 w3 = w3 + w4

15 w5 = 2 · w5 − w6

16 w2 = w2 − 65 · w3

17 w3 = w3 − w7 − w1

18 w2 = w2 + 45 · w3

19 w5 = (w5 − 8 · w3)/24
20 w6 = w6 + w2

21 w2 = (w2 + 16 · w4)/18
22 w4 = −(w4 + w2)
23 w6 = (30 · w2 − w6)/60
24 w2 = w2 − w6

25 return w1 · y6 + w2 · y5 + w3 · y4 + w4 · y3 + w5 · y2 + w6 · y + w7;
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AVX2 implementation of polynomial multiplication Starting from
Sandy Bridge, Intel provides AVX/AVX2 SIMD instructions that support com-
putation on 128/256-bit vectors. We utilize this feature to achieve fast polyno-
mial multiplication inspired by the software implementations of NTRU Prime [11]
and NTRU KEM [27]. In Algorithm 6 the interpolation phase is trivial to vec-
torize. However, the evaluation phase, where 64-coefficient polynomial multi-
plications are performed requires special care to take advantage of vectorized
instructions. We explain this below.

Assume that we want to compute 16 polynomial multiplications C0 · D0,
C1 · D1, to C15 · D15 where each polynomial has 16 coefficients. Also assume
that the polynomials are stored in two AVX2-arrays CAVX and DAVX as shown
in Figure 2. The i-th coefficients of all Cj (and Dj) polynomials reside in the
same AVX2 vectors. With such an arrangement it is easy to compute the 16
polynomial multiplications in a batch by multiplying the elements of CAVX and
DAVX . We design the polynomial multiplier routine with the aim to obtain such
an arrangement of coefficients during the threshold School-book multiplications.
This is explained below.

The seven 64-coefficient polynomial multiplications in Algorithm 6 require 63
School-book multiplications of 16-coefficient polynomials. Since a 16-coefficient
polynomial fits in an AVX2 vector, the 63 School-book multiplications can be
computed in 4 batches using vectorized instructions. However, the batching is not
trivial to implement. In the Karatsuba recursion, we do not immediately com-
pute a School-book multiplication every time the recursion reaches the threshold
condition. Instead, a lazy approach is adapted. We keep two ‘buckets’ each of
which is an array of 16 AVX2 vectors. These buckets are gradually filled with the
16-coefficient polynomials that are the multiplicands of the School-book multi-
plications. Once the buckets are full, each of them can be viewed as a 16 × 16
matrix, containing 256 coefficients. Next we transpose the matrices using a se-
quence of AVX2 operations to reach the arrangement as shown in Figure 2. Now
a batch multiplication is performed. The result is a collection of 31 vectors. This
is again transposed to get the result of each 16-coefficient polynomial multipli-
cation in two vectors. This lazy approach requires a bookkeeping which has a
small overhead.

8 Results

In Table 3, we compare our software implementation of Saber with software im-
plementations of other lattice based post-quantum key exchange and encryption

0
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Figure 2: Arrangement of coefficients for batch polynomial multiplication
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Table 2: Cycle count of the building blocks used in Saber and Kyber
Scheme Operation Cycles

Saber Toom-Cook polynomial multiplication 3,439
AVX2 optimized Sampling secret polynomial vector 13,656

Generating random matrix AAA (serial SHAKE-128) 40,100

Generating random matrix AAA (parallel SHAKE-128)† 25,300

Saber Toom-Cook polynomial multiplication 44,590
C Sampling secret polynomial vector 13,656

Generating random matrix AAA 54,707

Kyber NTT 560
AVX2 + assembly Inverse NTT 489
optimized Sampling secret/error polynomial vector 10,545

Generating random matrix AAA (parallel SHAKE-128) 32,601

Kyber NTT 16,431
C Inverse NTT 13,098

Sampling secret/error polynomial vector 10,545
Generating random matrix AAA 69,620

‡ Not used in Saber, see Sec. 7

schemes. We compiled the Saber software using gcc-7.1 with optimization flags
-O3 and measured computation time using a single core of a Intel(R) Core(TM)
i7-6600U processor running at 2.60GHz with hyper-threading and Turbo-Boost
disabled on a Dell Latitude E7470 laptop with Ubuntu operating system.

We remark that a totally fair comparison between the listed schemes and
their software implementations is not possible since they are based on different
hard problems, offer different levels of post-quantum security, implemented with
different levels of optimizations and benchmarked on different platforms. Never-
theless, it is clear from the table that Saber is highly efficient both in terms of
bandwidth and computation time.

The implementations of Saber and Kyber use similar building blocks namely
polynomial multiplication, generation of random matrix AAA, sampling of small
secret (and error) polynomials and standard symmetric-key primitives for CCA
transformations. In Table 2, we compare the performances of these building
blocks excluding the symmetric-key primitives. Our Toom-Cook multiplication
requires only 3,439 cycles. On the other hand, Kyber uses highly AVX-optimized
NTT for polynomial multiplications. Furthermore, Kyber spends much less cy-
cles in polynomial multiplications by generating the matrix A in the NTT domain
directly and by keeping the secret polynomials in the NTT domain.

Saber does not require sampling of error polynomials, thus saving in com-
putation time and entropy usage. As already described in Section 7 generating
the random matrix A is faster in Saber (when same pseudorandom number gen-
erator is used) since rejection sampling is not performed, resulting in optimal
usage of random numbers. Though in this paper we consider only software im-
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plementation on high-end Intel processors, we would like to remark that random
number generation is very expensive on resource-constrained platforms. When
we compare the high-level C implementations of Saber and Kyber, we see that
Saber performs better than Kyber.

Finally note that at the expense of either using larger public keys, or caching
the decompressed matrix AAA, the implementation would run at least 25% faster.
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Table 3: Performance and comparison of lattice-based KEMs and public-key
encryption schemes. Cycles for key generation, encapsulation/encryption, and
decapsulation/decryption are represented by K, E, and D respectively in the
5th column. Sizes of secret key (sk), public key (pk) and ciphertext (c) are
reported in the last column. Constant-time implementations are marked with
Xin the column ct?. Performances are measured on the platform specified in
the beginning of this section if not indicated otherwise.

Scheme Problem Security ct? Cycles Bytes

Passively secure KEMs

NewHope [4] Ring-LWE 255 X K: 88,920† sk: 1,792

AVX2 optimized E: 110,986† pk: 1,824

D: 19,422† c: 2,048

Frodo [17] LWE 130 X K: 2,938,000? sk: 11,280
E: 3,484,000? pk: 11,296
D: 338,000? c: 11,288

CCA-secure KEMs

NTRU Prime [11] NTRU 129 X K: 6,115,384⊗ sk: 1,600
E: 59,600⊗ pk: 1,218
D: 97,452⊗ c: 1,047

NTRU KEM [27] NTRU 123 X K: 307,914⊥ sk: 1,422

AVX2 optimized E: 48,646⊥ pk: 1,140

D: 67,338⊥ c: 1,281

spLWE-KEM [20] spLWE 128 ? K: 336,700‡ sk: ?

E: 813,800‡ pk: ?

D: 785,200‡ c: 804

Kyber [16] Module-LWE 161 X K: 92,461 sk: 2400
AVX2 + assembly E: 120,280 pk: 1088
optimized D: 113,718 c: 1152

Kyber [16] Module-LWE 161 X K: 251,856 sk: 2400
C implementation E: 336,112 pk: 1088

D: 435,836 c: 1152

Saber Module-LWR 180 X K: 111,215 sk: 2,304
AVX2 optimized E: 138,799 pk: 992

D: 141,097 c: 1,088

Saber Module-LWR 180 X K: 216,597 sk: 2,304
C implementation E: 267,841 pk: 992

D: 318,785 c: 1,088

CCA-secure public-key encryption schemes

NTRUEncrypt [24] NTRU 159 × K: 1,194,816† sk: 1120

E: 57,440† pk: 1,027

D: 110,604† c: 980

Lizard [21] LWE,LWR 128 × K: 97,573,000† sk: 466,944•

E: 35,050† pk: 2,031,616•

D: 80,840† c: 1,072

† Compiled using gcc-4.9.2 and benchmarked on Intel Core i7-4770K (Haswell) computer
? Benchmarked on a 2.6GHz Intel Xeon E5 (Sandy Bridge) with hyperthreading enabled.
⊗ Benchmarked on an Intel Haswell processor.
‡ Benchmarked on PC Macbook Pro with 2.6GHz Intel Core i5.
• Following the explanation provided in [16].
⊥ Benchmarked on an Intel i7-Haswell, 3.5GHz processor.
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