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Abstract. The persistent progress of quantum computing with algo-
rithms of Shor and Proos and Zalka has put our present RSA and ECC
based public key cryptosystems at peril. There is a flurry of activity
in cryptographic research community to replace classical cryptography
schemes with their post-quantum counterparts. The learning with errors
problem introduced by Oded Regev offers a way to design secure cryp-
tography schemes in the post-quantum world. Later for efficiency LWE
was adapted for ring polynomials known as Ring-LWE. In this paper
we discuss some of these ring-LWE based schemes that have been de-
signed. We have also drawn comparisons of different implementations of
those schemes to illustrate their evolution from theoretical proposals to
practically feasible schemes.
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1 Introduction

Post-quantum cryptography has become a popular research topic in cryptog-
raphy in this decade. Our existing public-key infrastructures greatly rely on
cryptographic primitives such as elliptic curve cryptography and RSA. The se-
curity if these primitives are based on the hardness of elliptic curve discrete
logarithm problem and integer factorization. With our present day computers,
these two problems remain computationally infeasible for sufficiently large key
size. However a powerful quantum computer together with Shor’s(RSA) and
Proos and Zalka’s(ECDLP) algorithm can solve these problems in polynomial
time. Though there is no known powerful quantum computer till date, different
organizations are trying to build quantum computers. In 2014 a BBC News arti-
cle [2] reports an effort by the NSA. Due to these threats the need for quantum
computer resistant public key cryptography has emerged. Recently NIST has
recommended a gradual shift towards post-quantum cryptography [6] and have
called for a standardization process for post-quantum cryptography schemes in
the PQCrypto 2016 conference. Different organizations in the field of informa-
tion storage and processing have responded to this call. For example, Google
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has recently introduced the scheme Frodo [4] in 1% of all Chrome browsers. The
world wide cryptography research community has proposed several candidates
for post-quantum public key cryptography. Among them, the schemes based on
lattices have received the highest attention thanks to their simpler arithmetic
operations and wide range of applicability. In this paper we provide an overview
of different lattice based constructions and discuss their implementations.

The LWE problem

The foundations of the cryptosystems that we discuss in this paper are based
on the learning with errors (LWE) problem that was introduced in 2005 by
Regev [28]. The problem is conjectured to be a hard problem and it is as hard
as solving several worst-case lattice problems. For a lattice with dimension n,
integer modulus q, and an error distribution X over the integers Z, the LWE
problem is defined as follows.

We denote vectors of dimension n by bold fonts. Generate a secret vector s of
dimension n by choosing its coefficients uniformly in Zq. Generate ai uniformly
and the error terms ei from X . Next compute bi = 〈ai, s〉 + ei ∈ Zq. The
LWE distribution is denoted as As,X over Zn

q × Zq and is the set of tuples
(ai, bi). Solving the decision LWE problem is to distinguish with non-negligible
advantage between the samples from As,X and the same number of samples
drawn uniformly from Zn

q × Zq. Solving the search LWE problem is to find s
from a polynomial number of samples drawn from As,X . The error distribution
X is normally a discrete Gaussian distribution with a standard deviation σ.

The original LWE problem is defined over lattices and is not very efficient
due to the use of large matrices. A more computationally efficient variant of
the problem, known as the ring-LWE problem was introduced by Lyubashevsky,
Peikert and Regev in [21]. The ring-LWE problem is defined over a polynomial
ring Rq = Zq[x]/〈f〉 where the irreducible polynomial 〈f〉 has degree n and
the coefficients have modulus q. The problem is defined as follows. Sample a
secret polynomial s(x), and error polynomials ei(x) ∈ Rq with coefficients from
X . Next generate polynomials ai(x) with coefficients chosen uniformly from Zq.
Compute bi(x) = ai(x)·s(x)+ei(x) ∈ Rq. The ring-LWE distribution is the set of
polynomial tuples (ai(x), bi(x)). The decision ring-LWE problem is to distinguish
between the samples (ai(x), bi(x)) and the same number of samples generated
by choosing the coefficients uniformly. The search ring-LWE problem is to find
the secret polynomial s(x) from a polynomial number of samples drawn from the
ring-LWE distribution. In the next section we will discuss different cryptographic
primitives that have been designed using the ring-LWE problem.

Public-key encryption schemes

An encryption scheme based on the ring-LWE problem has been proposed by
Lyubashevsky, Peikert and Regev in [21]. The steps are described below.

2



1. KeyGen() : Generate a polynomial a ∈ Rq with coefficients chosen uniformly
in Zq. Next sample two polynomials r1, r2 ∈ Rq from X and compute p =
r1 − a · r2 ∈ Rq. The public key is (a, p) and the private key is r2.

2. Enc(a, p,m) : First encode the message m to a polynomial m̄ ∈ Rq. Sam-
ple three polynomials e1, e2, e3 ∈ Rq from X . The ciphertext is the pair of
polynomials c1 = a · e1 + e2 and c2 = p · e1 + e3 + m̄ ∈ Rq.

3. Dec(c1, c2, r2) : Compute m′ = c1 · r2 + c2 ∈ Rq and decode the coefficients
of m′ to either 0 or 1.

After the proposal of the encryption scheme, several implementations of the
encryption scheme followed [12, 25, 29, 7, 3, 18, 27]. The basic arithmetic oper-
ations are polynomial multiplication, addition, subtraction, and generation of
error polynomials from a discrete Gaussian distribution. For around 100 bit se-
curity, the implementations use a parameter set with n = 256, a 13-bit modulus
q, and a narrow discrete Gaussian distribution with standard deviation σ around
4.5. Among all the arithmetic operations, polynomial multiplication is the costli-
est one. To perform fast polynomial multiplication, the implementations use the
number theoretic transform (NTT) which is a variant of the fast Fourier trans-
form (FFT) over integer rings. For the generation of error polynomials from
the discrete Gaussian distribution X , the implementations use one of the fol-
lowing sampling algorithms [8]: rejection sampling, inversion sampling and the
Knuth-Yao sampling. In Fig. 1 a simplified hardware architecture for ring-LWE
encryption [29] is shown. The architecture uses its polynomial arithmetic unit
to perform polynomial addition and multiplication, and the discrete Gaussian
sampler (based on Knuth-Yao algorithm) to generate the error polynomials. To
achieve fast computation time, the architecture uses an efficient memory access
scheme. For more details, authors may follow [29]. In Table 1 and Table 2 we
show some of the implementation results on hardware and software platforms
respectively for different parameter sets (n, q, σ).

Digital signature schemes

Using hard lattice problems to create efficient digital signature scheme was
first demonstrated by Hoffstein et al. [15]. Their ‘Hash and Sign’ signature
scheme NTRUSign was an extremely efficient scheme in practice but the origi-
nal scheme’s ‘Hash and sign’ approach leaks information about the private key,
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Fig. 1. Architecture (simplified) for ring-LWE encryption [29]
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Implementation Parameters Device LUTs/FFs/ Freq Cycles/Time(µs)

Algorithm (n, q, σ) DSPs/BRAM18 (MHz) Encryption Decryption

Roy et. al.[29] (256,7681,4.516) Xilinx 1349/860/1/2 313 6.3k/20.1 2.8k/9.1

(512,12289,4.859) V6LX75T 1536/953/1/3 278 13.3k/47.9 5.8k/21

Pöppelmann et. al.[25] (256,7681,4.516) Xilinx 4549/3624/1/12 262 6.8k/26.2 4.4k/16.8

(512,12289,4.859) V6LX75T 5595/4760/1/14 251 13.7k/54.8 8.8k/35.4

RLWE-Enc[26] (256,4096,3.33) Xilinx 317/238/95/1 144 136k/946 -

RLWE-Dec S6LX9 112/87/32/1 189 - 66k/351

Table 1. Performance of Ring-LWE encryption in hardware

Implementation Parameters Device Cycles

Algorithm (n, q, σ) Encryption Decryption

Boorghany et. al.[3] (256,7681,4.516) ARM7TDMI 878,454 226,235

Boorghany et. al.[3] (256,7681,4.516) ATMega64 3,042,675 1,368,969

de Clercq et. al.[7] (256,7681,4.516) Cortex-M4F 121,166 43,324

Göttert et. al.[12] (256,7681,4.516) Core 2 Duo 4,560,000 1,710,000

Pöppelmann et. al.[27] (256,7681,4.516) AX128 874,347 215,863

Liu et. al. [19] (256,7681,4.516) AX128 666,671 299,538

Table 2. Performance of Ring-LWE encryption in software

namely the shape of the parallelepiped. It was first exploited by Gentry and
Szydlo [11] and later Regev and Nguyen [23] developed this weakness further to
show that an attacker can recover the private key with as few as 400 signatures.

Later Melchor et al. [22] used Gausssian sampling to hide this leakage ef-
ficiently using rejection sampling introduced by Lyubashevsky [20]. Though
Lyubashevsky’s scheme helped to create secure and efficient digital signature
schemes like PASSSign [16] and BLISS [9], his scheme itself was very inefficient
due to the requirement of sampling from Gaussian distributions with large stan-
dard deviation and very high rejection rates. From the computational point of
view the most significant part of such signature schemes are polynomial mul-
tiplication and discrete Gaussian sampling. Unlike the encryption scheme, the
standard deviation of the discrete Gaussian distribution is orders of magnitude
larger to make these schemes secure and keep the signature sizes small. For
example, the signature scheme by Lyubashevsky in [20] requires a standard de-
viation σ in between 3× 104 and 1.7× 105. Implementation of a fast sampler for
such a large standard deviation is a difficult problem. Hence the focus has been
in the direction of designing signature schemes with smaller standard deviation.

The Bimodal Lattice Signature Scheme known as BLISS [9] is a very popular
lattice based signature scheme. It has been implemented on a wide variety of
devices. The standard deviation of BLISS-I has σ = 215 for 128 bit security
[9], which is of magnitude smaller than the previous signature schemes, but still
larger than the σ used in encryption schemes.

For efficiency and security we need to store O(τσ entries to sample from
a discrete Gaussian distribution with standard deviation σ(τ = 12). The large
memory requirement of BLISS makes it a challenging job to implement it on
devices with limited memory and computing power. In addition, the authors
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Implementation Security Signature Size SK Size PK Size Sign(ms) Verify(ms)

BLISS-0 ≤ 60 bits 3.3 kb 1.5 k b 3.3kb 0.241 0.017
BLISS-I 128 bits 5.6 kb 2 kb 7kb 0.124 0.030
BLISS-II 128 bits 5 kb 2 kb 7kb 0.480 0.030
BLISS-III 160 bits 6 kb 3 kb 7kb 0.203 0.032
BLISS-IV 192 bits 6.5 kb 3 kb 7kb 0.375 0.032

RSA-2048 103-112 bits 2 kb 2 kb 2kb 1.180 0.038
RSA-4096 ≥ 128 bits 4 kb 4 kb 4kb 8.660 0.138

ECDSA 256 128 bits 0.5 kb 0.25 kb 0.25kb 0.106 0.384
ECDSA 384 192 bits 0.75 kb 0.37 kb 0.37kb 0.195 0.853

Table 3. Benchmark on a (Intel Core i7 at 3.4 Ghz,32 GB RAM) with openssl
1.0.1c [9]ECDSA on a prime field Fp: ecdsap160,ecdsap256 and ecdsap384 in openssl

of BLISS also proposed a new Gaussian sampling technique that requires only
O(log(τσ2)) storage thus making the scheme suitable scheme for small devices.

An efficient implementation of BLISS is by Pöppelmann and Ducas and
Güneysu [24]. The implementation uses the Peikert’s convolution lemma and the
Kullback-Leibler divergence to design a practical and efficient discrete Gaussian
sampler. Using the Peikert’s convolution lemma, a sample from the distribution
with σ = 215.73 is constructed by mixing two samples from a narrower distribu-
tion with σ = 19.53. This optimization is very useful since designing a sampler
for such a small standard deviation is a lot easier. The Kullback-Leibler diver-
gence is used to get a precision for a desired bit-security. A simplified architecture
diagram of BLISS-I from [24] is shown in Fig. 2. The architecture is composed of
a polynomial arithmetic unit, a discrete Gaussian sampler, a sparse polynomial
multiplier, a compression block (which includes a rejection sampler), and a Huff-
man encoder. On a Xilinx Spartan-6 FPGA the implementation [24] takes 114.1
µs for signature generation and 61.2 µs for signature verification. It is worth
noting here that there exists lattice based signature scheme that don’t require
Gaussian sampling at all [14] [13]. And thus trading off speed with signature
size. Also scheme proposed by Bai and Galbraith [1] requires Gaussian sampling
only in the keygen part, making the time critical signing process efficient.

Homomorphic encryption scheme

The beauty of the ring-LWE problem is that it is not restricted to encryption and
signature schemes. It has been used to design efficient homomorphic encryption
schemes. With homomorphic encryption, computations can be performed on en-
crypted data. Due to its homomorphism, equivalent computations are automati-

M
em

o
ry

Sparse

Polynomial

Multiplication

Compute−U

Huffman

Encoder

NTT

ALU

Decoder

Gaussian

Sampler

PolyMul

Compression

Rejection

Sampling
Keccak

Hash

reject

c

Fig. 2. Architecture for BLISS-I signing [24]
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cally performed on the plaintext data. Thus with homomorphic operations, users
can upload their encrypted data in a powerful cloud service and still perform
computations in the cloud on the encrypted data. With the emergence of cloud
service, a need for data privacy is gradually increasing. Beside data processing,
homomorphic encryption can have applications in oblivious computations such
as encrypted search. In an encrypted search, a user sends her encrypted keyword
to a search engine and the search engine returns encrypted search result. The
search engine and the associated data vendors are oblivious of the user’s search.

A ring-LWE based homomorphic encryption scheme uses a basic ring-LWE
encryption scheme and two additional functions Add and Mult to perform arith-
metic operation on encrypted data. However in comparison to a simple ring-LWE
encryption scheme, a homomorphic encryption scheme requires a much larger pa-
rameter set to support a desired multiplicative depth. An analysis on the choice
of parameter set for a required multiplicative depth for two homomorphic en-
cryption schemes FV [10] and YASHE [5] is provided by Tancrde and Naehrig
in [17]. In the next part we provide some results for our implementation of the
encryption/decrytion for a parameter set that supports a depth of four.

We first designed the YASHE homomorphic encryption scheme for the pa-
rameter set with irreducible polynomial degree n = 2048, 105-bit modulus q,
and standard deviation σ = 11.32. The architecture uses full precision arith-
metic: operations are performed modulo q. To perform coefficient-wise multipli-
cation, a 106-bit Karatsuba multiplier is used. The architecture is implemented
in a Xilinx ML605 board. with a Gigabit Ethernet interface. The homomorphic
encryption-decryption processor consumes 6K LUTs, 5K FFs, 24 BRAMs and 27
DSP multipliers. At 125 MHz frequency, encryption takes 6.8 ms and decryption
takes 6.5 ms. However later a sub-field attack became applicable for the YASHE
scheme and the implementation became insecure.

Next we designed an architecture for the FV homomorphic scheme with a
similar parameter. This scheme is secure against the recent sub-field attack. To
achieve efficiency, we used the Chinese Remainder Theorem (CRT) in the poly-
nomial arithmetic. With this, operations modulo q reduces into several smaller
arithmetic operations modulo smaller primes. This is particularly suitable for
FPGA implementation where the DSP multipliers have small data width. When
implemented on the same FPGA board, the area consumption is: 6K LUTs, 4K
FFs, 36 BRAMs and 12 DSP multipliers. At 125 MHz frequency, the architec-
ture takes a total of 2ms to perform one encryption and one decryption. This is
a lot faster than the previous implementation of the YASHE scheme, though the
YASHE scheme is around 1.5 times faster than the FV scheme. The efficiency is
achieved thanks to the use of CRT.

2 Current trends

In this paper we have presented an overview of the implementations of ring-LWE
based cryptosystems. For public key encryption, ring-LWE encryption schemes
are faster than ECC based schemes. However, memory requirement is a bottle-
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neck for implementations on extremely resource constrained platforms such as
passive RFID tags. The recent focus of the research community is to reduce the
parameter size so that memory requirement can be reduced.

Due to its wide popularity in designing public key cryptography primitives
and homomorphic encryption schemes, it is expected that in future more efficient
schemes will emerge. Beside efficiency, a new focus in this area is in the direction
of physical security of the schemes. The secret in a ring-LWE based scheme is a
polynomial and arithmetic operations involve masking data and the secret using
discrete Gaussian noise. Hence any leakage from the masking computation could
reveal information about the secret to an attacker.
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