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Abstract—In order to protect the sensitive information in
many applications involving neural networks, several privacy-
preserving neural networks that operate on encrypted data
have been developed. Unfortunately, existing encryption-based
privacy-preserving neural networks are mainly built on classical
cryptography primitives, which are not secure from the threat of
quantum computing. In this paper, we propose the first quantum-
resistant solution to protect neural network inferences based
on an inner-product functional encryption scheme. The selected
state-of-the-art functional encryption scheme based on lattice-
based cryptography works with integer-type inputs, which is
not directly compatible with neural network computations that
operate in the floating point domain. We propose a polynomial-
based secure convolution layer to allow a neural network to
resolve this problem, along with a technique that reduces memory
consumption. The proposed solution, named QuripfeNet, was
applied in LeNet-5 and evaluated using the MNIST dataset.
In a single-threaded implementation (CPU), QuripfeNet took
107.4 seconds for an inference to classify one image, achieving
accuracy of 97.85%, which is very close to the unencrypted
version. Additionally, the GPU-optimized QuripfeNet took 25.9
seconds to complete the same task, which is improved by 4.15 ×
compared to the CPU version.

Index Terms—Inner-product functional encryption, Ring-
learning with errors, Graphics processing units, Convolution
Neural Network, privacy-preserving.

I. INTRODUCTION

NEURAL network (NN) is widely used in many appli-
cations and has greatly revolutionized our daily lives.

Commonly, these applications are hosted on a cloud server and
are offered to users in the form of artificial intelligence (AI) as
a service. The cloud server receives data from the users and
performs the neural network inference whenever users need
to use the service. Such services can greatly reduce the entry
barrier to use AI technology, because the users do not need
to train the AI models by themselves, which take a long time
to develop and are very computationally expensive. However,
such services may also expose sensitive data that users are
unwilling to share with the cloud server. Due to these concerns,
privacy-preserving neural network has emerged as a promising
research direction in recent years.
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In general, NN training requires a lot of training data to
achieve a high accuracy. However, some sensitive information
needs to be hidden in order to avoid misuse, so the privacy
preservation approaches always try to hide as much informa-
tion as possible. In the past, these two conflicting goals limit
the use of NN on applications that deal with non-sensitive data
only, which greatly constrained the potential of AI. To achieve
these two conflicting goals simultaneously, several privacy-
preserving neural networks (PPNNs) that operate on encrypted
private data have been developed in recent years [1]–[5].

A. Motivations

1) Difference of HE-based PPNN and FE-based PPNN: In
general, PPNNs using encryption can be constructed based
on homomorphic encryption (HE) or functional encryption
(FE). However, PPNNs support different application scenarios
according to HE-based or FE-based.

The characteristic of HE is a computation between en-
crypted data and that’s result is another encrypted data which
can be decrypted. HE supports that all of the calculations in
NN operate by encrypted data instead of plaintext data. A
server can operate NN accurately using the data provided by a
client in encrypted form, and the result can be decrypted by the
client only, using the same encryption key [1]–[3]. It is suitable
to the AI outsourcing scenario. For example, AI diagnostic
service should provide the diagnosis result through a NN, but
the patient data are considered sensitive. If we use HE-based
PPNN, the patient can get their own diagnosis results without
exposing his/her own personal information [2]. On the other
hand, the server only knows the result but it cannot collect
any personal information, meaning it cannot make any statistic
information as well.

The characteristic of FE is a computation for encrypted
data and that’s result is a plaintext. FE supports that the
first calculations in NN operate by encrypted data instead
of plaintext data. A server can operate NN accurately using
data a client encrypt, and the server can know the result
without learning the related client data [4]–[8]. It is suitable
to the AI scenario for public interest. For example, users
want that server to filter out spam mails without server’s
knowing the contents in the mail. The system proposed by [5]
was implemented to perform spam filtering while maintaining
privacy in emails. Another notable example [6] demonstrated
an electricity theft detection system that does not expose the
lifestyles of consumers.
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2) Quantum Resistant PPNN: HE and FE are cryptography
schemes built upon the mathematical problems that are hard
to be solved in polynomial time, thus offering sufficient
security against adversarial attacks. However, the development
of quantum computers is advancing rapidly recently [9]. This
creates serious concerns on the classical cryptography schemes
that relies on mathematical problems which are vulnerable to
Shor’s algorithm [10] such as Rivest-Shamir-Adleman (RSA)
and Elliptic-Curve Digital Signature Algorithm (ECDSA).
This can also be a threat to existing PPNNs that were designed
based on the vulnerable classical cryptography algorithms.
Most HE schemes were developed based on the hardness of
lattice-based problems [11], which are resistant to threats from
quantum computing. However, most of the FE-based PPNNs
proposed in the recent years [4]–[6], [12] were designed based
on the classical cryptography algorithms, thus susceptible to
the threat from the quantum computers and Shor’s algorithm.
In other words, existing AI systems that employ FE schemes
based on these classical cryptography algorithms could expose
sensitive data. Furthermore, the original unencrypted data can
be exposed after quantum computing’s wide availability, even
though the data were encrypted before. An attacker can store
the existing encrypted data and then decrypt it later when
quantum computers are widely available. This is known as
harvest-now decrypt-later attack [13], creating a very critical
issue to the community, especially for data that are not
modifiable, such as bio-information. In other words, these
FE-based PPNNs are already facing privacy issues now, even
though the quantum computers are still not powerful enough
to fully exploit these vulnerabilities yet.

3) Goal: Therefore, we need to develop a new FE-based
PPNN relying on post-quantum cryptography (PQC) algo-
rithms to avoid the quantum computer’s threat. However,
replacing the PPNN schemes that are developed from classical
cryptography with those developed using PQC is not a trivial
task. For instance, the lattice-based PPNN works with integer-
type inputs, which is incompatible with the NN’s data that
operate in the floating point. Hence, we need new techniques
to ensure compatibility between NN’s data and the quantum
resistant FE techniques’ input, to process NN and PQC with
low memory. Additionally, there is no available GPU libraries
that can support PPNN schemes that combining PQC schemes
and AI computations despite of AI libraries popularly use GPU
platform to speed up computations. Therefore in this work
we would like to address the following issues: (1) modify
both sides of PQC algorithm and NN layer, (2) implement
the PPNN schemes on GPU for achieving sufficient speed
performance.

B. Our contributions

In this paper, we propose a quantum-resistant, FE-based
neural network, named QuripfeNet, to preserve data privacy in
the pre- and post-quantum computing era. Our contributions
are summarized as follows.

• We propose the first quantum-resistant, FE-based PPNN
with practical instantiation and implementation. Unlike
previous FE-based PPNNs, the proposed QuripfeNet

can provide continuous protection, even in future situ-
ations where commercial-grade quantum computers are
widespread. We applied QuripfeNet on a LeNet-5 con-
volution neural network (CNN) trained on the MNIST
dataset. Moreover, our proposal is not limited to LeNet-
5, because it is designed to flexibly support various CNN
models. Our implementation is available in the public do-
main: https://github.com/hkh112/QuripfeNet-with-GPU.

• QuripfeNet was developed based on a state-of-the-art
IPFE scheme of Mera et al. [14] that is quantum-resistant.
Implementing the RLWE-IPFE straightforwardly on a
CNN requires huge amounts of memory, which is not
practical in real-world applications. To resolve this issue,
we propose a new set of parameters for RLWE-IPFE
that are friendly to computations on a CNN. Using the
proposed parameter set, the input length of IPFE scheme
is reduced to accommodate the AI filter size, leading
to a much smaller memory consumption. The time to
perform encryption, key generation, and decryption is
also reduced to 27 ms, 1.4 ms, and 45 ms, which is 14.1×,
15.7×, and 4.3× faster than the original parameter set.
This allows us to infer data using a CNN with reasonable
memory consumption for various AI applcations.

• The RLWE-IPFE [14] is not directly compatible with the
floating-point and negative-vector operations commonly
found in a CNN. To resolve this issue, we propose a
polynomial-based secure convolution layer that performs
the convolution operation by converting original floating-
point values to polynomials. Through experiments, we
found that the polynomials with more terms provide
higher training accuracy, but the performance is slower.
For example, the performance using 2-term polynomial is
3.12–3.23× slower than the 1-term version. This can be
viewed as a trade-off between accuracy and performance,
which can be chosen according to the needs in different
applications. This allows us to apply RLWE-IPFE for
privacy protection without sacrificing accuracy.

• The proposed QuripfeNet has been implemented on a
CPU and a GPU. For a single-threaded CPU implemen-
tation, it takes 107.4 seconds to classify one image on
the MNIST dataset, which can be slow for some time-
sensitive applications. To improve this, we implemented
a simple solution of QuripfeNet first by parallelizing it
on a GPU, which takes 29.1 seconds to classify one
image. We also proposed a coarse-grain approach to
optimize the GPU implementation, wherein it takes only
25.9 seconds to complete the same task. The optimized
solution demonstrates a 4.14× speed-up compared to the
CPU version and a 1.12× speed-up compared to the
simple solution on GPU.

II. PRELIMINARIES

A. Computing on Encrypted Data

Due to the rapid advancement of cloud computing, many
cloud-based applications have been developed in the past
decade. One of the main trends in recent years is the use
of AI services hosted on a cloud server. These services
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Fig. 1. The process of homomorphic encryption. The server cannot use the
result of computation because it is already encrypted. Only the client that
encrypted the data can decrypt and consume it.

process a lot of data from users, which can be sensitive
due to privacy concerns. Hence, awareness of privacy is-
sues in such applications has also increased in recent years.
Although encryption algorithms such as ECDSA or RSA
cryptography can be employed to preserve data privacy, they
do not support arbitrary computations in the encrypted domain,
which makes computation outsourcing impossible (e.g., neural
network inference). Computing on Encrypted Data (COED)
is a cryptographic technique that allows certain computations
to be performed on the encrypted data, which is an essential
technique in designing a PPNN. There are two known methods
for privacy preservation:

1) HE: Figure 1 shows the process of homomorphic en-
cryption. When HE is employed, users encrypt their data and
send them to a cloud server. Under such scenarios, the cloud
server performs arbitrary computations without even accessing
the original data. The results of the computation are sent back
to the users, who have the secret key to decrypt it. In other
words, the entire computational process that takes place in the
cloud server does not reveal any information related to the
users’ data. Hence, the cloud server cannot use the processed
results to perform any additional operations. Some operations
in HE (e.g., homomorphic multiplication) introduces errors,
which accumulate each time the operations are performed. To
allow successful decryption, we need to remove these errors
by performing additional work, i.e., bootstrapping [15]. As a
result, HE is slow, especially when the application is complex
and when data are to be processed by many NN layers.

2) FE: Figure 2 shows the process of functional encryption.
FE is similar to the case in HE, wherein users encrypt their
data and send them to the cloud server. The cloud server
also obtains the functional key generated by a key distribution
center with permission from users. However, in the case of
FE, the cloud server or another party can calculate a pre-
defined function (e.g., inner-product or quadratic residue) with
the encrypted data and functional key. Under such a scenario,
the cloud server or the third party still has no access to the
original data, but they obtain results of the function, which is

Fig. 2. The process of functional encryption. With authorization from the
client, the server can utilize the output of the function (e.g., inner product)
and perform subsequent computations.

different from HE. The cloud server can utilize the results of
the function to perform subsequent computations and at the
same time preserve the privacy of users’ data. Considering
the application to NNs, another notable difference with HE is
that only the first layer of the NN needs to be performed in
the encrypted domain; the remaining layers can be performed
in plaintext. As a result, the FE-based PPNN is relatively
faster than HE. There are several FE schemes, such as generic
group-model schemes [7], [12], decisional Diffie-Hellman-
based schemes [16]–[18], etc.

B. Related Works

1) HE-based PPNNs: Since the NN performs various op-
erations such as convolution and activation functions, HE is a
natural candidate for developing a PPNN. However, the perfor-
mance of a HE-based PPNN is slow because it requires boot-
strapping and other steps that computationally heavy. For this
reason, recent work focuses on reducing the runtime of a HE-
based PPNN. For example, [3] reduced bootstrapping runtime
with a multiplexed technique that packs data from multiple
channels into one ciphertext in a compact manner. Similarly,
[1] reduced the number of HE operations by proposing a
HE-friendly mobile network architecture search algorithm and
merging the mask while approximating the coefficients in
activation and batch normalization.

2) FE-based PPNNs: To implement an FE-based PPNN,
researchers use inner-product FE (IPFE) or quadratic residue
FE (QFE) in which the selection is dependent on the first layer
of the NN. QFE-based PPNNs are applied to an architecture
that has an activation function such as ReLU as the first layer.
For example, [5], [7] applied QFE to a first layer that uses the
square function as the activation function. [12] applied QFE
to a first layer that uses the ReLU function as the activation
function. IPFE-based PPNNs are applied to architectures that
have a fully connected layer or a convolution layer as the first
layer. For instance, [6] applied IPFE to the first layer that
uses linear and ReLU functions, as the activation function.
[4] applied IPFE to a convolution layer. [19] proposed a
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Fig. 3. The workflow of QuripfeNet inference, which involves three entities: server, key distribution center and client

framework to train a Neural Network over Encrypted Multi-
sourced Datasets (NN-EMD). They proposed two protocols
for horizontally/vertically partitioned computation, which are
using functional encryption schemes. Also, they suggested to
enhance the privacy guarantee by integrating other privacy-
preserving DNN approaches such as split learning. [20] ap-
plied Function Hiding Inner Product Encryption (FHIPE) for
PPNN. It is called function-hiding if the ciphertexts and keys
disclose no extra information about vectors. FHIPE is more
secure since it provides simulation-based security additionally.

Existing FE schemes are mostly designed based on classical
cryptography with hardness assumptions, e.g., Decision Diffie-
Hellman (DDH) [4], [12], [16]–[18], Matrix Decision Diffie-
Hellman (MDDH) [6], and the Generic Group Model (GGM)
[5], [7], [12], which are susceptible to threats from quantum
computing. For this reason, PPNNs developed based on such
FE schemes are also vulnerable in the quantum computing era.
Recently, some post-quantum FE schemes have been proposed,
which can be used to build a PPNN that is secure against
quantum algorithms such as Shor’s algorithm [10]. There is
an existing library (CiFEr) [21] which supports some PQC
FE schemes. However, prior research [20], [22] that are based
on CiFEr library to build PPNNs, did not use the PQC FE
schemes; they only used DDH based scheme. In other words,
there is no quantum-resistant FE-based PPNN. In this paper,
we propose an FE-based PPNN relying on RLWE-IPFE [14],
which is more future-oriented compared to existing solutions.

C. RLWE-IPFE

RLWE-IPFE [14] is a state-of-the-art IPFE scheme de-
signed based on hard lattice problem ring-learning with errors.
Unlike classical hard problems such as integer factorization
or discrete logarithm problems, there exists no quantum algo-
rithm that can solve these hard lattice problems efficiently.
Hence, lattice-based problems are very popular candidates
for constructing post-quantum cryptography. Earlier quantum-
resistant IPFE schemes [18], [23] are built on top of the
Learning With Errors (LWE) lattice problem, which is known
to be inefficient in practical implementation. Unlike these
schemes, the RLWE-IPFE [14] is built on Ring-LWE lattice
problem, allowing it to have smaller key sizes and faster

execution. The implementation of polynomial multiplication
in RLWE-IPFE can also be accelerated through asymptotically
fast algorithm like number theoretic transform (NTT), which
makes it efficient and practical. Similar to other IPFE schemes,
there are four main operations in RLWE-IPFE: Setup, KeyGen,
Encrypt, and Decrypt. Setup returns a master public key mpk
and a master secret key msk for a given security level. The
KeyGen function accepts the msk and an operand y; it returns a
secret-key sky associated with the inner-product. The Encrypt
function accepts the master public key mpk and a message
m; it returns the ciphertext ctm. Finally, the Decrypt function
accepts sky and ctm as inputs; it returns f(m) which is an
inner-product between m and y. Note that the length of both
m and y are L. The parameter N, N mod is dependent on other
security parameters, which will be discussed in Section III-B1.

III. QURIPFENET: A QUANTUM-RESISTANT IPFE-BASED
NEURAL NETWORK

A. Overview

Figure 3 shows the workflow of QuripfeNet, which involves
three entities: the key distribution center (KDC), the client, and
the server, which has a pre-trained model.

Initially, the KDC sets the RLWE-IPFE parameters [14];
then, it generates a master public key, mpk, and master secret
key msk by running the Setup algorithm; mpk is published
to all the entities for the follow-up processes, but msk is
kept secret. Upon request from the server, the KDC generates
functional key skW for the weights, W , by invoking the algo-
rithm KeyGen(msk, W ). Functional key skW will be used to
produce the inner-product results. The client prepossesses data,
X , and encrypts them by executing an algorithm, Enc(mpk,
X), producing the ciphertext, ctX . After receiving ctX from
the client, the server calculates the convolution operation,
a = g(WX+b), in which g is the activation function and b is
the bias. The server asks the KDC to generate skW , which can
be used to calculate the inner-product of W . Then, the server
gets WX using Dec(mpk, ctX , skW , W ). In this process, the
server does not have any information about X; it only has
the inner-product results WX . Finally, the server calculates
a = g(WX + b) with a general plaintext operation. Note that
the polynomial secure convolution layer is proposed to handle
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Fig. 4. The preprocessing way for FE-based PPNNs. One image is split into multiple sub-images before the encryption in order to produce the ciphertext.
Here we consider the “Medium” security level of RLWE-IPFE [14].

TABLE I
PARAMETERS AND THE PERFORMANCE OF THE ORIGINAL AND THE PROPOSED RLWE-IPFE.

Security PQ FE Gaussian Ring CRT Time
level Security Bounds Parameters Parameters moduli (ms)

Low 76.3
Bx : 2
By : 2
L = 64

σ1 : 33
σ2 : 59473921
σ3 : 118947840

N : 2048
⌈log q⌉ : 66

q1 : 214 − 212 + 1
q2 : 223 − 217 + 1
q3 : 229 − 218 + 1

Setup : 26
Enc : 16

KG : 0.27
Dec : 1

Medium 119.2
Bx : 4
By : 16
L = 785

σ1 : 225.14
σ2 : 258376412.19
σ3 : 516752822.39

N : 4096
⌈log q⌉ : 86

q1 : 224 − 214 + 1
q2 : 231 − 217 + 1
q3 : 231 − 224 + 1

Setup : 589
Enc : 381
KG : 22
Dec : 17

High 246.2
Bx : 32
By : 32
L = 1024

σ1 : 2049
σ2 : 5371330561
σ3 : 10742661120

N : 8192
⌈log q⌉ : 101

q1 : 217 − 214 + 1
q2 : 220 − 214 + 1
q3 : 232 − 220 + 1
q4 : 232 − 230 + 1

Setup : 1743
Enc : 1388

KG : 70
Dec : 45

Proposed 131.44
Bx : 32
By : 32
L = 25

σ1 : 321
σ2 : 65740801
σ3 : 131481600

N : 4096
⌈log q⌉ : 86

q1 : 224 − 214 + 1
q2 : 231 − 217 + 1
q3 : 231 − 224 + 1

Setup : 46
Enc : 27
KG : 1.4
Dec : 3.9

issues pertaining to the implementation of RLWE-IPFE, which
will be discussed in Section III-B2.

The workflow of QuripfeNet is similar to CryptoNN [4]
since both PPNNs have the convolution layer as the first layer.
The difference is that QuripfeNet utilizes RLWE-IPFE [14]
instead of the classical FE, which is not quantum-resistant.
There are several issues in employing the RLWE-IPFE scheme
to construct QuripfeNet, which are discussed below.

Issue 1: Huge ciphertext size. In general, the size of
the ciphertext produced by RLWE-IPFE is larger than the
plaintext. This can be a problem for a PPNN because the
ciphertext size may grow significantly large. In particular, the
client must split the image and encrypt all of the split image
data [4]. This is due to a convolution requirement wherein
the kernel slides through the entire image using a fixed stride.
However, the cloud server cannot perform this sliding process
because the image is already encrypted, so it is impossible to
know the location of image pixels, and thus, it is impossible to
apply the sliding operation. The only way to overcome this is
to split images and encrypt the segments separately [4]. Figure
4 shows the preprocessing way for FE-based PPNNs. As an
example, in LeNet-5, the sliding policy splits one image into
784 images. On top of that, RLWE-IPFE generates almost 37
MB of ciphertext for one batch of plaintext. The ciphertext
size is L × Nmod × N× double-type size, in which L=785,
Nmod=3, N=4096, and double-type size=4 bytes. Hence, if

we follow this naive way of applying RLWE-IPFE to a CNN,
the ciphertext size will be 28GB for one image; the memory
consumption is too huge to be practical.

Issue 2: Does not support floating-point arithmetic. NN
training is typically conducted in the floating-point domain
wherein the weights are updated and stored as floating-point
values. However, RLWE-IPFE only accepts integer vectors as
input, because the arithmetic in RLWE-IPFE is conducted
in polynomial form. To solve this issue, one can convert
the weights from floating-point to integer values, but this
may lose important information, and affects NN classification
accuracy. Therefore, we need to consider how to preserve the
information in weights while employing RLWE-IPFE.

Issue 3: Small coefficient limits the range of input
arguments. Three parameter sets are proposed by RLWE-
IPFE (see Table. I) wherein the medium security level seems
to be the most suitable for QuripfeNet. However, the range of
input coefficients is limited by parameters Bx and By , which
are rather small. In particular, input has to be X = 0, 1, 2, 3
and W = 0, 1, ..., 15. However, we found that a typical deep
learning dataset (e.g., MNIST) uses 32-bit integers to represent
the image data. Moreover, the trained weights are represented
in 32-bit single precision floating-point. This shows that the
input (NN and dataset) are clearly incompatible with the
parameters at the medium security level, because they are too
large to be represented correctly in RLWE-IPFE polynomials.
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Note that using the parameters from a high security level does
not solve this problem because Bx and By are still small.
Moreover, a higher security level requires more computations
due to the larger polynomial length (N = 8192).

Issue 4: Unable to process negative vectors. After the
training process, weights in the NN may contain negative
values. Some classical IPFEs [18] support calculating negative
vectors in the encrypted domain, but that is not supported
in RLWE-IPFE. For this reason, we cannot correctly perform
the inner-product functional encryption scheme using RLWE-
IPFE, which eventually affects NN accuracy adversely. A
solution is required to avoid this issue.

B. QuripfeNet in Detail
In this paper, we propose several techniques to solve the

aforementioned problems, which are described in detail here.
1) The RLWE-IPFE parameter set:
Solution to Issue 1: Reducing the ciphertext size. After

analyzing the factors that affect ciphertext size, we found
that the CNN convolution needs to execute the sliding policy
and produce 784 split images, which cannot be omitted.
Hence, we turn our focus to reducing the ciphertext size
per image segment, which is related to parameters L, Nmod,
and N . Among them, L is related to the length of input
to be processed under RLWE-IPFE, which can be modified
according to different application scenarios. Since convolution
in the CNN uses a small filter size (e.g., 5 × 5 was used in
LeNet-5), we changed parameter L according to the target
CNN. In this paper, we set L = 25 and evaluated QuripfeNet
in LeNet-5; the resulting ciphertext was reduced by 97% to
0.9 GB.

Solution to Issue 3: Small coefficient size for input. The
maximum value of inner-product results in RLWE-IPFE is
bounded by P = Bx × By × L. Taking the medium security
level as an example, P = 4×16×(785+1) = 50241. Since we
reduced L to 25, we can allow a higher range for Bx and By .
In this paper, we set Bx = 32 and By = 32, so P = 26, 624,
which is less than the maximum allowable value (i.e., 50241).
In this way, the representation range for data and weight
increases by eight times and two times, respectively. Note
that one can also configure other parameter sets according
to application-specific requirements for input and weight. For
instance, one can define a larger P to accommodate larger
inner-product results, which eventually affects other parame-
ters (i.e., N, CRT moduli, and Gaussian parameters).

The proposed RLWE-IPFE parameters for QuripfeNet and
its performance are shown in Table. I. This new parameter
set has security performance similar to the medium-level
parameters, with 4× to 15× faster performance owing to the
smaller L.

Note that, some CNN models use a bigger filter (i.e., 7 ×
7). In this case, we can set L to 49, while P is still not over
the maximum allowable value. In other words, the proposed
parameter set can be used for the most of the CNN models
which have a filter size within 7 × 7 of first layer. Even if
the CNN model has a larger filter size, one can derive a new
parameter set (including smaller Bx and By) by referring to
the above consideration.

Xj = aj1v
1 + aj2v

2 + ...+ ajiv
i

Wj = bj1v
1 + bj2v

2 + ...+ bjiv
i

X1W1 = a11b11 +(a11b12 + a12b11)v
3 + a12b12 +...

X2W2 = a21b21 +(a21b22 + a22b21)v
3 + a22b22 +...

X3W3 = a31b31 + +...(a31b32 + a32b31)v
3 + a32b32+

+

Original’s
Inner product

v2

v2

v2

One term’s
Inner product

v4

v4

v4

Two term’s
Inner product

Fig. 5. Polynomial representation: convert floating point weights to the
proposed polynomial integer form

2) Polynomial secure convolution layer:
Solution to Issue 2: Polynomial representation. In pre-

vious research, this problem was usually solved through two
methods:

1) Keep the i-th decimal places and discard the rest. This
is equivalent to approximation of the original value [4].

2) Use a quantized model [2].
The first method is easy to implement, but it discards a

lot of important information. The second method requires the
NN (hosted on the cloud server) to be trained in the quantized
form, which may not always be possible. In this paper, we
propose a new solution to this problem: convert floating point
weights to polynomial integer form. Referring to Figure 5,
data Xj and weight Wj can be represented in polynomial
form. Note that, in the case where NN has a 5 × 5 size filter,
j = 0, 1, ...25. The convolution layer is computing the sum
of XjWj (the red box in Figure 5), which involves inner-
product. We convert all data and weights to polynomial form.
Then XjWj is represented like Figure 5. We can calculate the
whole inner-product by summing the inner-products (the green
and blue box in Figure 5) of each coefficient considering radix
v (the green and blue box in Figure 5). In this way, we can
control the precision of the polynomial multiplication result by
changing the number of terms and radix v. Note that we should
keep the number of terms to the minimum, because each term
introduces additional computations. For example, the one-term
case requires one calculation (the vertical green line), but
the two-term case requires four calculations (the green line
and three brown lines). These extra computations can have
a detrimental effect on performance speed because the inner-
product operations are repeated many times in a typical NN
architecture.

To decide on a suitable radix and number of terms to
be used, we performed a micro-benchmark and checked the
corresponding accuracy. Table. II shows the accuracy without
encryption to illustrate the effect of the polynomial convolution
layer. Referring to Table. II, accuracy increases as radix v
increases. If the polynomial has more terms, it can represent
data and weight more precisely. However, v must be smaller
than parameter Bx in Table. I so that the value does not
overflow. Fortunately, the accuracy of the combination of one
term and v = 32 is close to the peak accuracy. Hence, we
used one term and v = 32 in our implementation.
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TABLE II
ACCURACY ACCORDING TO THE NUMBER OF TERMS TESTED ON MNIST

[24] AND LENET-5 [25].

Accuracy (%)
v one term 2-term 3-term
2 65.26 96.02 97.23
4 96.02 97.81 97.87
8 97.23 97.87 97.86
16 97.81 97.86 97.86
32 97.85 97.86 97.86
64 97.87 97.86 97.86

Solution to Issue 4: Use a redundant negative vector.
To calculate negative vectors in RLWE-IPFE, we make the
following proposition.

Proposition 1. Consider XP that contains only the positive
elements of vector X , and consider XN that contains only the
negative elements of X . For vectors X and Y , if X is divided
by XP and XN , X · Y = XP · Y − (−XN ) · Y .

Proof. The inner-product is the sum of the products of the
corresponding entries from two sequences of numbers. Hence,
it has the following properties as expressed in III-B2 and
III-B2.

Lemma 2. For any vector X and Y , X · Y = −(−X) · Y
is satisfied.

Lemma 3. For any vector X and Y , if X is divided into
X1, ... Xn, X · Y = X1 · Y + ...+Xn · Y is satisfied.

We can conclude that Proposition 1 is true using Lemma
2 and Lemma 3. Therefore, there is no problem if we utilize
Proposition 1.

Note that (−XN ) becomes a positive vector, so we have no
issue in computing it using the RLWE-IPFE [14]. Therefore,
we can calculate inner-product WX by invoking the algo-
rithm Dec(mpk, ctX , skPW , PW ) - Dec(mpk, ctX , sk−NW ,
−NW ), in which PW contains the positive elements from
W , and NW contains the negative elements from W .

By combining these two solutions, we propose the polyno-
mial secure convolution layer that is used in QuripfeNet. Re-
ferring to Figure 3, the server decomposes weight W into PW
and NW , then converts them to polynomial forms PolyPW
and PolyNW . After that, the server receives functional keys
skPolyPW and skPolyNW by requesting them from the KDC.
With this information, the polynomial secure convolution layer
can compute the inner-product in a CNN successfully. The
details are shown in Algorithm 1.

First, the client encrypts the private data using the function
pre-process (X) (line 5). For that, the client needs to decide on
the padding and splitting strategy and the filter size, and then
divides the data into the image segments (line 7). After that,
the client decomposes the image into positive elements and
negative elements (lines 9 and 10), converts it to polynomial
form (lines 11 and 12), and encrypts it by using mpk (lines
13 and 14). These steps (lines 8-15) are repeated for all the
split image segments. The client sends encrypted data CP and
CN to the server (line 16).

In the second step, the cloud server needs to perform
convolution of the client’s CP and CN with the server’s
weight, W . For that, the server prepares PolyPW , PolyNW ,

Algorithm 1 The polynomial secure convolution scheme
1: Input: master public key mpk, test image data X , poly-

nomial weights PolyPW and PolyNW , functional keys
skPolyPW and skPolyNW

2: Output: result Z
3: Server and client decide a suitable interval term.
4:
5: function pre-process(X)
6: initialize an empty window list CP, CN
7: X ′ ← X with padding and splitting
8: repeat
9: XP ← the positive elements of vector X ′

10: XN ← the negative elements of vector X ′

11: PolyXP ← convert XP to polynomial form using
terms

12: PolyXN ← convert XN to polynomial form using
terms

13: cp ←Enc(mpk, PolyXP ) into CP
14: cn ←Enc(mpk,−PolyXN ) into CN
15: until slide window finished;
16: return CP, CN
17:
18: function polynomial secure convolution(CP, CN)
19: initialize an empty matrix S, Z
20: repeat
21: s1 ← Dec(mpk, cp, skPolyPW , PolyPW )
22: s2 ← - Dec(mpk, cn, skPolyPW , PolyPW )
23: s3 ← - Dec(mpk, cp, sk−PolyNW ,−PolyNW )
24: s4 ← Dec(mpk, cn, sk−PolyNW ,−PolyNW )
25: u ← inverse from polynomial form using

s1, s2, s3, s4, term
26: z ← g(u) + b into Z // activation function
27: until slide window finished;
28: return Z

skPolyPW , and skPolyNW . The server decrypts CP and CN
using PolyPW and skPolyPW , PolyNW and skPolyNW

sequentially (lines 21-24). Note that the results s1, s2, s3, s4
are coefficient values. The server must convert the polynomial
results back to floating point by substituting the term into
each variable (line 25). Thus, this step needs to use the
formula in a different way based on the chosen number of
terms. Finally, the server calculates convolution result z using
activation function g and bias b (line 26). These steps (lines
20-27) are repeated for all image segments.

C. GPU implementation of QuripfeNet

GPU is a well-known parallel platform to speed up compu-
tations. It was initially developed for graphics applications, but
now becomes a very popular choice in accelerating artificial
intelligence (AI) and machine learning applications. However,
due to the complexity involved, there is no available GPU
libraries that can support both PPNN schemes and AI compu-
tations. This sub-section describes the GPU implementation
of QuripfeNet based on a recent work that parallelized the
RLWE-IPFE scheme [26]. Specific techniques are also pro-
posed to optimize the performance of QuripfeNet on a GPU.
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Fig. 6. The overview of major convolution and simple solution: in Step 2, the simple solution replaces the inner product with Decrypt function, which is
repeated in the loop for all the polynomial terms and the sign.

Algorithm 2 The original convolution algorithm
1: Input: split image data x[column][row], filter w
2: initialize output[column][row], t
3:
4: for i = 0; i < column do
5: for j = 0; j < row do
6: t ← Inner-product(x[i][j], w)
7: output[i][j] ← Activation(t)
8: end for
9: end for

10: return output

1) Simple GPU Implementation: Algorithm 2 shows the
original convolution operation in CNN. It first gets the split
image data and a filter (weight) as the parameter (line 1).
Next, it calculates the inner product of one split image and
the filter (line 4) and calls an activation function (line 5). This
calculation is repeated during the loop for column and row
(lines 2-7). The algorithm outputs the result (line 8).

Figure 6 shows a straightforward way to apply the CNN
convolution to QuripfeNet. Only Step 1 and 2 are implemented
on the GPU, the other steps are comparatively lightweight
and thus executed on the CPU. In Step 1, the split image
data is encrypted by Encrypt, while the filter is correspond-
ing to a secret-key, generated by KeyGen. After that, both
results containing arrays of polynomial terms and the sign
for positive/negative vectors, are passed as inputs to Step
2, The computation of inner product (original convolution)
is now replaced by Decrypt, because a Decrypt operation
in QuripfeNet correspond to the decryption of inner-product
results from IPFE-RLWE [14]. This process is repeated for
all the terms and the signs inside the loop. Step 3 and 4
correspond to the activation function and convolution output.
Note that the implementation of Step 2 is actually exploiting
the fine-grain parallelism, which is explained in detail in
Algorithm 3.

The simple solution shown in Algorithm 3 only exploits the
inner parallelism that exists in RLWE-IPFE [14]. It receives
encrypted data array ctx and secret-key array sk as input
(line 1), then assigns a temp array to save many results for
the terms and the sign (line 3). There are four additional
for loops because the arrays for polynomial terms and sign

Algorithm 3 The polynomial secure convolution algorithm in
the simple solution

1: Input: encrypted data ctx[column][row][terms][sign],
filter(Key) sk[terms][sign]

2: initialize output[column][row], t
3: initialize temp[terms2][sign2]
4:
5: for i = 0; i < column do
6: for j = 0; j < row do
7: for k = 0; k < terms do
8: for l = 0; l < terms do
9: for m = 0; m < sign do

10: for n = 0; n < sign do
11: temp[k × terms + l][m × sign + n] ←

Dec(ctx[i][j][k][m], sk[l][n])
12: end for
13: end for
14: temp[k×terms+l][0]← temp[k×terms+l][0]

- temp[k×terms+l][1] - temp[k×terms+l][2]
+ temp[k × terms+ l][3]

15: end for
16: end for
17: t ← Merge temp according to terms
18: output[i][j] ← Activation(t)
19: end for
20: end for
21: return output

exist in both the encrypted data and the filter (lines 6-15). In
these loop, we utilized the GPU implementation of Decrypt
provided in [26] and the results of Decrypt are saved to a
temp array (line 10). Following this, lines 13 and 16 are the
operations to merge results of the sign and the polynomial
terms. Finally the algorithm calls an activation function (line
17) and outputs the result (line 20). This approach exploits
the inner parallelism within all the RLWE-IPFE functions.
However, it does not fully utilize the capability of a GPU,
because fine-grain parallelism itself only able to create small
amount of workload, which is insufficient to fully utilize the
computational resources available in a GPU.

2) Optimized Solution: To fully utilize the GPU resources,
a coarse-grain parallel approach is proposed, wherein multiple
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Fig. 7. The overview of simple solution and optimized solution: The optimized solution replaces the inner product to Dec parallel which is Executed one
time for all the terms and the sign.

input data are processed in parallel instead of one at a
time. Figure 7 shows an the modification from the simple
GPU implementation to the optimized version. In the simple
solution, Decrypt was performed repeatedly in the loops for
the polynomial terms and the sign. In other words, Decrypt
is invoked many times for one split image data. To allow
more parallelism in the optimized version, Dec parallel takes
in a larger array for the polynomial terms and the sign as
inputs. Then, it assigns the inputs to several blocks. In such
a way, Dec parallel is only executed once for each split
image data, and the parallelism is increased compared to the
simple version. This proposed strategy combined both the
coarse-grain parallelism at input data level and the fine-grain
parallelism at the RLWE-IPFE function level.

Algorithm 4 shows the proposed optimized GPU imple-
mentation in detail. This algorithm receives encrypted data
array ctx and secret-key array sk as input (line 1). It assigns a
temporary array to store the results for the polynomial terms
and the sign (line 3). The proposed Dec parallel processes all
terms and sign, for the same split image data (line 6), at once.
For this, Dec parallel also take one more parameter, which is
the number of operations, calculated as terms2 × sign2. The
results of Dec parallel are stored on a temp array (line 6)
before proceed to the next stop. Then, the operations to merge
results from the polynomial terms and sign are performed
(lines 7-12). Finally, the algorithm calls an activation function
(line 13) and outputs the results (line 16). In this approach,
two for loops for the polynomial terms and signs that are
not used are removed. In addition, two for loops are added
to merge the results of the polynomial terms and signs,
which is a lightweight computation compared to the entire
algorithm. Through this proposed solution, sufficient workload
is generated to fully utilizing the computational resources of
a GPU.

IV. EXPERIMENTAL METHODOLOGY

The proposed QuripfeNet was evaluated on a LeNet-5 CNN
that was trained to classify images from the MNIST dataset
[24], consists of 10,000 test examples with size 32 × 32
from 10 classes. LeNet-5 is a CNN architecture that includes
three convolution layers and two sub-sampling layers. We use
a model provided by https://github.com/fan-wenjie/LeNet-5,
which was pre-trained with 32-bit floating point precision at

Algorithm 4 The polynomial secure convolution algorithm in
the optimized solution

1: Input: encrypted data ctx[column][row][terms][sign],
filter(Key) sk[terms][sign]

2: initialize output[column][row], t
3: initialize temp[terms2][sign2]
4:
5: for i = 0; i < column do
6: for j = 0; j < row do
7: temp ← Dec parallel(ctx[i][j], sk, terms2× sign2)
8: for k = 0; k < terms do
9: for l = 0; l < terms do

10: temp[k×terms+l][0]← temp[k×terms+l][0]
- temp[k×terms+l][1] - temp[k×terms+l][2]
+ temp[k × terms+ l][3]

11: end for
12: end for
13: t ← Merge temp according to terms
14: output[i][j] ← Activation(t)
15: end for
16: end for
17: return output

98.2% accuracy. The experiments were carried out based on
the RLWE-IPFE library [14] on a CPU, and another library
[26] on a GPU. These experiments were conducted on a
workstation with a 3.0GHz eight-core Intel i7-9700F CPU and
16GB RAM, and an NVIDIA RTX 2060 GPU with 1920 cores
and 6GB RAM.

A. Ablation Studies

This subsection presents the ablation studies to evaluate
the improvements brought about by each of the proposed
techniques. The experimental conditions are as follows:

1) Set 1: The original LeNet-5 model trained on floating
point without any encryption.

2) Set 2: RLWE-IPFE with the original parameter set (Bx,
By = 4) and one term polynomial is applied.

3) Set 3: RLWE-IPFE with the proposed polynomial secure
convolution layer (2-term polynomial) and the original
parameter set (Bx, By = 4) is applied.
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TABLE III
CLASSIFICATION PERFORMANCE OF THE PROPOSED QURIPFENET (FOR

ONE DATA)

Condition Accuracy Time Time
(No Encryption) (Encryption)

Set 1 98.20% 0.10 ms -
Set 2 96.02% - 105.2 seconds
Set 3 97.81% - 327.8 seconds
Set 4 97.85% - 107.4 seconds
Set 5 97.86% - 346.7 seconds

4) Set 4: RLWE-IPFE with one term polynomial and the
original parameter set (Bx, By = 32) is applied.

5) Set 5: RLWE-IPFE with the proposed polynomial secure
convolution layer (2-term polynomial) and the original
parameter set (Bx, By = 32) is applied.

Referring to Table. III, the inference time taken by LeNet-5
to classify one image is 0.1 ms, and the accuracy is 98.2%
(Set 1). When RLWE-IPFE with the original parameter set is
applied (Set 2), the accuracy dropped to 96.02% and it takes
105.2 secondsto complete. Note that encoding the floating
point values of an image to integers and merging the results
introduce overhead, which adds on to the encryption overhead.
Moreover, the encoding process maps floating point values
to integer values 0-3 (Bx, By = 4 of the original RLWE-
IPFE), this causes information loss and reduces the accuracy
by 2.18%.

To improve the accuracy, the proposed polynomial secure
convolution (Set 3) is applied, wherein 2-term polynomial was
used. Compared to Set 1, Set 3 loses only 0.39% of accuracy,
which is better than Set 1. However, the inference time Set
3 is 327.8 seconds, ≈ 3.12× slower than Set 2, due to more
operations involved after adding the polynomial terms (see
Section III-B for details). This is due to the fact that the 2-
term solution requires two encryption, two key generations,
and four decryption. In other words, 2-term polynomial is
estimated to be ≈ 4× slower than 1-term polynomial, while
3-term polynomial could be ≈ 9× slower.

By applying the new proposed parameter set (Set 4), the
accuracy lost compared to Set 1 is only 0.35%. This shows that
the new parameter set can avoid losing too much information
during the encoding process. Furthermore, the inference time
of Set 4 is 107.4 seconds, which is very closed to Set 2, but the
accuracy is 1.83% higher. This shows that by adopting the new
parameter set, we can keep a good accuracy with only a small
timing overhead. The timing performance is similar to the
classification time of Set 1 because the number of encryption
and decryption operation does not changed.

Finally, Set 5 shows the effect of the RLWE-IPFE parameter
set and the polynomial secure convolution layer. In this case,
only 0.34% of accuracy is lost compared to Set 1, which
is slightly better than the accuracy in Set 4. However, the
inference time of this version is 346.7 seconds on CPU,
which is 3.23× more than Set 4. Note that using the Set 4
configuration can provide a higher accuracy compared to Set 4,
but it is also significant slower compared to the other versions.

In summary, the two proposed techniques can keep accuracy
of NNs very closed to the original NN trained in floating point.

They can be used according to the specific requirements in
different applications. For instance, one can apply the new
RLWE-IPFE parameter set only (Set 4), if timing performance
is of utmost importance. This is because Set 4 already able to
provide sufficiently accurate inference results with fast timing
performance. Alternatively, one can also use both techniques
(Set 5) to improve the accuracy further, in expense of slower
timing performance.

B. Evaluation of the CPU and GPU Implementation Perfor-
mance

This subsection reports the timing performance of CPU and
GPU implementation, including the proposed optimized GPU
techniques. The experiments were carried out using Set 4 and
Set 5, which were giving high accuracy.

Table. IV shows the classification time taken by QuripfeNet
implemented on CPU and GPU respectively. In the case of
Set 4, the CPU version of QuripfeNet takes 107.4 seconds
to classify one image. In detail, the Setup time is 45.9ms
followed by the loading of images and encryption that takes
41.5 seconds, while KeyGen, decryption and prediction take
65.8 seconds. When QuripfeNet was implemented on an RTX
2080 GPU with the simple solution, it only takes 29.1 seconds
to complete the same task. In detail, the Setup time is 86.0ms
followed by the loading of images and encryption that takes
4.7 seconds, while KeyGen, decryption and prediction take
24.2 seconds. With the proposed optimized solution, the GPU
implementation can classify one image in only 25.9 seconds,
wherein the Setup time is 86.5ms, the loading of images
and encryption time is 3.0 seconds, and the remaining parts
(KeyGen, decryption and prediction) take 22.8 seconds. This
is also 4.14× faster than the CPU implementation. Moreover,
the proposed optimized GPU implementation is 12% faster
than the simple implementation.

In the case of Set 5, the CPU version of QuripfeNet takes
346.7 seconds to classify one image. This long classification
time can be reduced to 108.2 seconds by applying the simple
GPU implementation, which is a 3.2× reduction. An optimized
GPU implementation can further reduce this to 81.8 seconds.
This means that the GPU version of QuripfeNet is 4.23× faster
than the CPU version for Set 5.

C. Comparison with Other Candidates

Table. V shows the proposed QuripfeNet with several re-
cently proposed PPNNs. We would like to point out that
comparison with existing works is not a trivial task, due to the
different dataset, cryptography algorithm and neural network
used in the experimentation. For instance, the inference result
of HE-based PPNN is only known by the user. In contrast,
FE-based PPNN allows the user and also the server to know
the inference result. Both HE- and FE-based PPNN are used
in different scenarios, so it is hard to decide their superiority
solely based on the inference time. However, we included both
schemes into Table. V for completeness, because HE-based
PPNN is also a popular in for some applications.

Firstly, we present the results of a notable HE-based PPNN
from [27], which can complete the inference in 297.5 seconds
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TABLE IV
CLASSIFICATION TIME OF THE PROPOSED QURIPFENET (FOR ONE DATA)

Condition Set 4 Times Set 5 Times
Total = (Setup + Encrypt + Decrypt) Total = (Setup + Encrypt + Decrypt)

CPU 107.4 seconds - 346.7 seconds -
(45.9 ms + 41.5 seconds + 65.8 seconds) (43.9 ms + 83.7 seconds + 262.9 seconds)

GPU Simple 29.1 seconds 3.69× 108.2 seconds 3.20×
(86.0 ms + 4.7 seconds + 24.2 seconds) (87.1 ms + 9.4 seconds + 98.6 seconds)

GPU Optimized 25.9 seconds 4.14× 81.8 seconds 4.23×
(86.5 ms + 3.0 seconds + 22.8 seconds) (86.7 ms + 4.2 seconds + 77.5 seconds)

TABLE V
PPNN CLASSIFICATION PERFORMANCE

Research Enc Type Inference Accuracy NN model Dataset Quantum resistance Environment
[27] HE 297.5 seconds 99% 5-layer NN MNIST O 3.5GHz*
[7] QFE not specified 97% 2-layer NN MNIST X (GGM) 2.6GHz*
[12] QFE 3 seconds 97.70% 4-layer NN MNIST X (GGM) 2.7GHz*

[5] QFE 33.9 seconds not specified 2-layer NN
TREC07p
CEAS08-1
ENRON

X (GGM) 2.5GHz*

[4] IPFE not specified 95.49% LeNet-5 MNIST X (DDH) 2.3GHz**

[6] IPFE 1.9 seconds not specified 15-layer NN
Energy

Regulation
dataset

X (MDDH) 1.2GH*

[19] IPFE 1.5 seconds (e) not specified 5-layer NN MNIST X (DDH) 2.3GHz*
[20] IPFE 1.0 seconds 94.87% 4-layer NN MNIST X (DDH) 2.1GHz**
[20] FHIPE 2.0 seconds 94.50% 4-layer NN MNIST X (DDH) 2.1GHz**

QuripfeNet CPU (Ours) IPFE 107.4 seconds 97.85% LeNet-5 MNIST O (LWE) 3.0GHz*
QuripfeNet GPU (Ours) IPFE 25.9 seconds 97.85% LeNet-5 MNIST O (LWE) RTX 2060***

(e): the expected value by dividing the training time by the number of samples.
*: unoptimized CPU implementation, **: CPU optimized, ***: GPU optimized)

to classify an image from the MNIST dataset by using a five-
layer NN. Our LeNet-5 implementation with QuripfeNet on
a CPU and a GPU can complete the same task within 107.4
seconds and 25.9 seconds, which are 2.79× and 11.5× faster
than [27], respectively.

Next, we compare the proposed QuripfeNet with other FE-
based PPNNs. PPNNs developed based on quadratic residue
FE schemes are generally fast. For instance, [12] proposed a
scheme that can classify an image from the MNIST dataset
in only 3 seconds, which is almost 100× faster than the
HE-based PPNN by [27]. Several PPNNs developed based
on IPFE schemes [4], [6] offer similar performance. On the
other hand, PPNNs developed based on IPFE schemes are
generally faster than PPNNs developed based on quadratic
residue FE schemes. Among that, the works from Xu et al. [19]
and Panzade et al. [20] improved their security considering
several attacks. However, all of these FE-based PPNNs are not
quantum-resistant, rendering them inadequate in the quantum
computing era.

Referring to Table. V, DDH, GGM, and MDDH are hard-
ness assumptions that are vulnerable to Shor’s algorithm.
Although the proposed QuripfeNet is slower than all the
existing FE-based PPNNs, it is built upon the LWE lat-
tice problem, which is quantum-resistant, and thus offering
higher security protection considering the threat from quantum
computers. This is a very critical aspect for existing PPNN
systems because the harvest-now decrypt-later attack [13] is
considered as an immediate threat, even though the technology
to build quantum computers is still not matured. Adopting

a quantum-resistant PPNN like QuripfeNet can prevent such
attacks, which is also the main motivation of our work.

On the other hand, QuripfeNet achieved the highest accu-
racy among all FE-based PPNN schemes. Consider CryptoNN
by [4], which implemented the same LeNet-5 trained on
the MNIST dataset. They achieved 95.49% accuracy, which
is lower than the 97.85% achieved by QuripfeNet. This is
because CryptoNN discards parts of its weight by keeping
only two decimal places. In contrast, the accuracy achieved
by QuripfeNet is closed with that achieved in unencrypted
floating-point form. This shows that the proposed polynomial
conversion technique can retain most of the precision in
weights, eventually improving classification accuracy. Since
CryptoNN does not provide the timing performance of infer-
ence, we are unable to compare with it.

D. Security Analysis
FE-based PPNN exposes the inner product of W and X

to the server due to the characteristics of FE. This may raise
concerns about various attacks that exploit such intermediate
results and infringed the data privacy, including membership
inference attacks, which is a common issue with FE-based
PPNN. To react for these attacks, [19] was integrated with
SplitNN to control the layer which expose intermediate result.
According to the analysis in [28], we can also obtain a higher
privacy guarantee, if more layers are computed in the client.
Therefore, FE-based PPNN can be secure from privacy related
attacks, if we combine our work with these two solutions. Note
that, since the computational burden of the client increases,
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each FE-based PPNN research should conduct an efficiency-
security trade-off analysis after combining with split learning.
This can be interesting independent research for future work.

In addition, FE-based PPNN must receive a key through
KDC to operate. However, various attacks by KDC can occur.
For example, if KDC generates a key for a one-hot vector or
colludes with an AI server, client data can be exposed through
simple inversion. Therefore, FE-based PPNN usually assumes
that there exists a trustworthy KDC between the client and the
server.

V. CONCLUSION

QuripfeNet is the first quantum-resistant IPFE-based PPNN
with a practical implementation. To achieve this, several
techniques were proposed to enable RLWE-IPFE by [14] to
be used in a CNN. Experiments were conducted to evaluate
its accuracy and inference speed. Our implementation on
a single-threaded CPU takes 107.4 seconds to classify one
image. Furthermore, our implementation on a GPU takes just
25.9 seconds to classify one image. Unlike other existing
IPFE-based PPNNs, QuripfeNet provides a privacy-preserving
neural network even for the quantum computing era.

In future, we wish to extend our work to other more complex
neural networks targeting various applications, such as public
peace, crime prevention, spam filtering, an electricity theft
detection system, etc. Some state-of-the-art (SOTA) neural
networks like RNN and Transformer may introduce new
modules like attention mechanism, which has a very different
computational requirements. Adapting existing FE schemes on
these SOTA neural network can be a very interesting research
direction.
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APPENDIX

THE RLWE-IPFE SCHEME BY [14]
In this section, we briefly describe the inner-product func-

tional encryption scheme by [14].
Before describing the scheme, we define the notations used

in the scheme. We define the polynomial ring R = Z[x]/xn+
1 and the quotient ring Rq = R/qR = Zq[x]/x

n + 1. The
identity element of this ring is 1R. Here the constant term is set
to 1 and all other coefficients are set to 0. This scheme allows
the encryption of only non-negative vectors. The l-dimensional
vectors i.e. the message x and y are bounded by Bx and
By such that ||x||∞ ≤ Bx and ||y||∞ ≤ By respectively.
K > lBxBy is a constant set to be greater than the maximum
value of the inner-product. We denote Dσ , a discrete Gaussian
distribution with standard deviation and mean with σ and 0
respectively. We write a← χ to denote a variable v sampled
randomly from a particular distribution χ. For polynomials or
vectors, we extend this notation to denote that each vector
element or coefficient have been sampled independently from
a particular distribution. [l] denotes the set {1, ..., l}.

Setup:
1) Sample a ∈ Rq uniformly at random
2) Sample (si, ei ← Dσ1

) ∈ R for i ∈ {1, 2, · · · , l}
3) Compute pki = a · si + ei ∈ Rq for i ∈ {1, 2, · · · , l}
4) Set, msk = {si | i ∈ [ℓ]} and mpk =

(
a, {pki | i ∈ [l]}

)
Encrypt: Provided a message x = (x1, x2, · · · , xℓ) ∈ Zl

with ||x||∞ ≤ Bx, the Encrypt is as follows,
1) Sample (r, f0 ← Dσ2) ∈ Rq

2) Sample (fi ← Dσ3) ∈ Rq independently for all i ∈
{1, 2, · · · , l}

3) Calculate ct0 = a·r+f0, cti = pki ·r+fi+⌊q/K⌋xi·1R
for all i ∈ [l]

4) Output ctx =
(
ct0 , {cti | i ∈ [l]}

)
as encryption of x.

KeyGen: Provided a vector y = (y1, y2, · · · , yl) ∈ Zl such
that ||y||∞ ≤ By , The decryption-key corresponding to y is
calculated as below.

sk y =

l∑
i=1

yisi ∈ R

Decrypt: To decrypt the ciphertext ctx =
(
ct0 , {cti | i ∈

[l]}
)

using the decryption key sk and y we compute,

d =

( l∑
i=1

yicti

)
− ct0 · sk y

This d will be very close to ⌊q/K⌋⟨x, y⟩1R with some
small noise. For properly chosen parameters this noise can be
eliminated to finally extract ⟨x, y⟩. This is described below.

Correctness: We can write the decryption value d as

d =

( l∑
i=1

yicti

)
− ct0 · sk y

=

l∑
i=1

(yieir + yifi − yisif0)︸ ︷︷ ︸
noise

+⌊q/K⌋ ⟨x, y⟩ 1R

To successfully recover the inner-product, we need
||noise||∞ < ⌊q/2K⌋. We fix a security parameter κ. With
non-negligible probability we have, ||ei||∞, ||si||∞ ≤

√
κσ1,

also ||r||∞, ||f0||∞ ≤
√
κσ2 and ||fi||∞ ≤

√
κσ3. Therefore,

we can bound the noise as,∣∣∣∣∣∣∣∣ ℓ∑
i=1

(yieir + yifi − yisif0)

∣∣∣∣∣∣∣∣
∞
≤ ℓ(2nκσ1σ2 +

√
κσ3)By

Hence, for correctness, we need to choose the parameters of
the RLWE-IPFE scheme such that l(2nκσ1σ2 +

√
κσ3)By <

⌊q/2K⌋.


