
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

A Side-channel Resistant Implementation of SABER

MICHIEL VAN BEIRENDONCK, JAN-PIETER D’ANVERS, ANGSHUMAN KARMAKAR, JOSEP

BALASCH∗, and INGRID VERBAUWHEDE, imec-COSIC KU Leuven, Belgium

The candidates for the NIST Post-Quantum Cryptography standardization have undergone extensive studies on efficiency and
theoretical security, but research on their side-channel security is largely lacking. This remains a considerable obstacle for their
real-world deployment, where side-channel security can be a critical requirement. This work describes a side-channel resistant instance
of Saber, one of the lattice-based candidates, using masking as a countermeasure. Saber proves to be very efficient to mask due
to two specific design choices: power-of-two moduli, and limited noise sampling of learning with rounding. A major challenge in
masking lattice-based cryptosystems is the integration of bit-wise operations with arithmetic masking, requiring algorithms to securely
convert between masked representations. The described design includes a novel primitive for masked logical shifting on arithmetic
shares, as well as adapts an existing masked binomial sampler for Saber. An implementation is provided for an ARM Cortex-M4
microcontroller, and its side-channel resistance is experimentally demonstrated. The masked implementation features a 2.5x overhead
factor, significantly lower than the 5.7x previously reported for a masked variant of NewHope. Masked key decapsulation requires
less than 3,000,000 cycles on the Cortex-M4 and consumes less than 12kB of dynamic memory, making it suitable for deployment in
embedded platforms.

CCS Concepts: • Security and privacy→ Side-channel analysis and countermeasures; Public key encryption.

Additional Key Words and Phrases: Post-Quantum Cryptography, Masking, SABER, ARM Cortex-M4

ACM Reference Format:
Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede. 2020. A Side-channel
Resistant Implementation of SABER. ACM J. Emerg. Technol. Comput. Syst. 1, 1, Article 1 (January 2020), 25 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The security of our current public-key cryptographic infrastructure depends on the intractability of mathematical
problems such as large integer factorization or the elliptic-curve discrete logarithm problem. However, if a large scale
quantum computer becomes available, these mathematical problems can be easily solved using Shor’s [48] algorithm. In
anticipation of this possible disruption, the National Institute of Standards and Technology (NIST) started a procedure
in 2017 for standardizing post-quantum cryptographic primitives. These primitives are based on mathematical problems
not solvable by quantum computers, such as computational problems over lattices or codes. After an intense scrutiny and
lengthy deliberation, in which provable and concrete mathematical security have been the most prominent evaluation

∗Also with eMedia Lab-STADIUS KU Leuven, Andreas Vesaliusstraat 13 - bus 2600, 3000 Leuven.

Authors’ address: Michiel Van Beirendonck; Jan-Pieter D’Anvers; Angshuman Karmakar; Josep Balasch; Ingrid Verbauwhede, imec-COSIC KU Leuven,
Kasteelpark Arenberg 10 - bus 2452, 3001 Leuven, Belgium, {firstname}.{lastname}@esat.kuleuven.be.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede

criteria, 26 of the original 69 proposals have advanced to the second round. NIST has already announced that, in the
second round, more stress will be put on implementation aspects. In particular, more importance will be given to
efficient implementations on resource constrained platforms as well as physical security aspects.

Lattice-based cryptography is one of the most promising families in this process, sprouting 11 out of 26 round 2
candidates. When looking at lattice-based encryption schemes, these can be further divided into two main categories:
NTRU-based schemes and LearningWith Errors (LWE)-based schemes. The latter category still encompasses a multitude
of schemes such as FrodoKEM [36], NewHope KEM [40] and Kyber [47], whose security can be reduced to variants of
the LWE problem, and Saber [18] and Round5 [22], with security reduction to variants of the Learning With Rounding
(LWR) problem. The security of both problems relies on introducing noise into a linear equation. However, in LWE-based
schemes the noise is explicitly generated and added to the equation, while the LWR problem introduces noise through
rounding of some least significant bits.

Side-channel attacks [32] are a widely acknowledged threat against implementations of cryptographic algorithms.
These attacks exploit information contained in physically measurable channels, for instance the instantaneous power
consumption of a chip [33], in order to extract secret keys processed by an implementation. The field of side-channel
attacks and countermeasures has significantly evolved in the last 20 years, with a strong focus on protecting existing and
standardized cryptographic primitives. The advent of post-quantum cryptography is, however, bringing new challenges
to the field, and therefore it is gaining attention in the research community.

Reparaz et al. [45] were first to propose a side-channel resistant implementation of a Ring-LWE (RLWE) lattice-based
cryptosystem. Their method relied on masking techniques [11] in combination with a custom masked decoder to
achieve first-order security. A subsequent work by the same authors [44] removes the need for this masked decoder,
by exploiting the additively-homomorphic property of the RLWE encryption. Masking approaches typically increase
the cost of an implementation by at least a factor of 2x in performance metrics such as speed and memory, or area
and latency for a hardware implementation. This is the case because masking duplicates most linear operations, but
requires more complex routines for non-linear operations, such as the masked decoder. For their first work, Reparaz et
al. report an overhead factor of 5.2x in CPU cycles for a masked decryption on an ARM Cortex-M4.

Where Reparaz et al. successfully masked a Chosen-Plaintext Attack (CPA)-secure RLWE decryption, real-world
applications typically require Chosen-Ciphertext Attack (CCA) secure primitives, which can be obtained using an
appropriate CCA-transform. It has been shown that the CCA-transform is itself susceptible to side-channel attacks
and should be masked [42]. Oder et al. [38] presented a masked implementation of a complete CCA-secure RLWE
key decapsulation similar to NewHope KEM [2], reporting a factor 5.7x overhead over an unmasked implementation.
Masked software implementations of the lattice-based signature schemes GLP [26], Dilithium [20], and qTESLA [1]
have also received research attention [7, 23, 35].

Our contribution. Saber is a Module-LWR (MLWR)-based encryption scheme that is accepted in the second round
of the NIST post-quantum standardization process. Its most notable features are the choice of power-of-two moduli,
contrary to the prime moduli present in similar lattice-based schemes, and the introduction of noise through rounding
instead of adding explicit error terms. In this paper, we show that these two key properties make Saber very efficient
to mask. We construct a first-order masked implementation of Saber’s CCA-secure decapsulation algorithm, with an
overhead factor of only 2.5x over the unmasked implementation. Saber’s side-channel secure version can be built with
relatively simple building blocks compared to other NIST candidates, resulting in significantly less overhead for a
side-channel secure design.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

A Side-channel Resistant Implementation of SABER 3

In our masked implementation of Saber, we develop a novel primitive to performmasked logical shifting on arithmetic
shares. We subsequently adapt an existing masked binomial sampler, to take advantage of Saber’s power-of-two moduli.
Furthermore, Saber avoids excessive noise sampling due to its choice for LWR. We implement and benchmark our
design on an ARM Cortex-M4 microcontroller. An experimental validation of our implementation follows, using the
well-known Test Vector Leakage Assessment (TVLA) to assess security. We develop critical routines directly in assembly,
and thereby confirm suppression of side-channel leakage even on the Cortex-M4 general-purpose embedded processor.
We integrate and profile our masked CCA-secure decapsulation in the PQM4 [29] post-quantum benchmark suite for
the Cortex-M4, showing our close-to-ideal 2.5x overhead in CPU cycles. This factor can directly be compared to the
overhead factor 5.7x reported by Oder et al., which is the work most closely related to ours, and we show that it can
largely be attributed to the masking-friendly design choices of Saber.

The remainder of this paper is structured as follows. First, we give the general notation and definitions used
throughout this paper, including masking as the implemented side-channel countermeasure. Thereafter, we give an
introduction to Saber, describing both the baseline CPA-secure public-key encryption scheme as well as the CCA-secure
KEM. In Section 4, we follow up with a description of our side-channel resistant instance of Saber. First, we give a
high-level overview of the masked primitives our implementation requires. Subsequently, we present our novel primitive
for masked logical shifting, and adapt an existing masked binomial sampler to fit Saber’s parameters. In Section 5, we
describe the implementation of our masked Saber instance on an ARM-Cortex M4 microcontroller. In Section 6, we
experimentally demonstrate the side-channel resistance using TVLA, and in Section 7 we benchmark our design in the
PQM4 suite for relevant performance metrics and compare to related work. Finally, in Section 8, we conclude our work.

2 PRELIMINARIES

2.1 Notation

We denote with Z𝑞 the ring of integers modulo the integer 𝑞, where the elements of this ring are represented with
integers in [0, 𝑞). We define the polynomial ring 𝑅𝑞 (𝑋) = Z𝑞 [𝑋]/(𝑋𝑁 + 1) with 𝑁 = 256 throughout this paper. For a
ring 𝑅, let 𝑅𝑙1×𝑙2 be the ring of 𝑙1 × 𝑙2 matrices over 𝑅. Matrices will be written in uppercase bold letters (e.g.𝐴𝐴𝐴), vectors
in lowercase bold (e.g. 𝑏𝑏𝑏) and single polynomials without markup (e.g 𝑣).

Let ⌊·⌋ be the flooring operation which returns the largest integer smaller than the input and let ⌊·⌉ be the rounding
operation that rounds to the nearest integer, i.e. ⌊𝑥⌉ = ⌊𝑥 + 0.5⌋. Let 𝑥 ≪ 𝑏 denote shifting an integer 𝑥 with 𝑏 positions
to the left, which corresponds to a multiplication of 𝑥 with 2𝑏 . Correspondingly, let 𝑥 ≫ 𝑏 denote shifting an integer
𝑥 with 𝑏 positions to the left, which can be calculated as ⌊𝑥/2𝑏⌋. All these operations can be applied to (matrices of)
polynomial rings by performing them coefficient-wise.

Let 𝑥 ← 𝜒 denote sampling 𝑥 according to a distribution 𝜒 . This notation is extended for (matrices of) polynomials
as 𝑋𝑋𝑋 ← 𝜒 (𝑅𝑙1×𝑙2), where the coefficients of 𝑋𝑋𝑋 ∈ 𝑅𝑙1×𝑙2 are sampled independently according to the distribution 𝜒 .
Optionally, one can specify the seed 𝑟 to denote pseudorandomly sampling 𝑋𝑋𝑋 from this seed, which is written as
𝑋𝑋𝑋 ← 𝜒 (𝑅𝑙1×𝑙2 ; 𝑟). The uniform distribution is denoted asU and the centered binomial distribution as 𝛽𝜇 with parameter
𝜇, which is the binomial distribution with 2𝜇 coins, where the result is subtracted with 𝜇.

2.2 Cryptographic Definitions

A Public Key Encryption scheme (PKE) consists of three functions KeyGen, Encrypt and Decrypt, where KeyGen

generates a secret key 𝑠𝑘 and a public key 𝑝𝑘 , where Encrypt takes the public key 𝑝𝑘 and a message𝑚 from a message
Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede

spaceM to construct a ciphertext 𝑐𝑡 , and where Decrypt returns a message𝑚′ given the secret key 𝑠𝑘 and ciphertext
𝑐𝑡 . We say that a PKE is 𝛿-correct if 𝑃 [Decrypt(𝑠𝑘, 𝑐𝑡) ≠𝑚 : 𝑐𝑡 ← Encrypt(𝑝𝑘,𝑚)] ≤ 𝛿 . We will bound the security of
a PKE using the advantage of an adversary A in the indistinguishability against chosen-plaintext attacks (IND-CPA)
security model as follows:

advind-cpaPKE (A) =
�����𝑃

[
𝑏 = 𝑏∗ :

(𝑝𝑘, 𝑠𝑘) ← KeyGen();𝑚0,𝑚1 ← A(𝑝𝑘),𝑚0,𝑚1 ∈ M;
𝑏 ← {0, 1}; 𝑐𝑏 ← Encrypt(𝑝𝑘,𝑚𝑏); 𝑏∗ ← AEncrypt() (𝑝𝑘, 𝑐𝑏)

]
− 1
2

����� .
A Key Encapsulation Mechanism (KEM) consists of three functions KeyGen, Encaps and Decaps. KeyGen generates

a secret key 𝑠𝑘 and a public key 𝑝𝑘 , Encaps takes the public key 𝑝𝑘 and generates a 𝑐𝑡 and key 𝐾 , and Decaps

returns a key 𝐾 ′ from the ciphertext 𝑐𝑡 and the secret key 𝑠𝑘 . Similarly to the PKE case, we will say that a KEM is
𝛿-correct if 𝑃 [Decaps(𝑠𝑘, 𝑐𝑡) ≠ 𝐾 : (𝑐𝑡, 𝐾) ← Encaps(𝑝𝑘)] ≤ 𝛿 . We define the advantage of an adversary against the
chosen-ciphertext (IND-CCA) security of a KEM as follows:

advind-ccaKEM (A) =
�����𝑃

[
𝑏 ′ = 𝑏 :

(𝑝𝑘, 𝑠𝑘) ← KeyGen(); 𝑏 ←U({0, 1}); (𝑐, 𝑘0) ← Encaps(𝑝𝑘);
𝑘1 ← K ; 𝑏 ′ ← ADecaps(𝑠𝑘, ·),Encaps() (𝑝𝑘, 𝑐, 𝑘𝑏);

]
− 1
2

����� .
2.3 Masking

Our side-channel resistant instance of Saber is based on masking [11], a well-studied countermeasure to thwart
side-channel attacks. First-order masking provides resistance against attacks exploiting information in the first-order
statistical moment. A first-order masking splits any sensitive variable 𝑥 in the algorithm into two shares 𝑥1 and 𝑥2,
such that 𝑥 = 𝑥1 ⊙ 𝑥2, and perform all operations in the algorithm on the shares separately. The operator ⊙ refers to
the type of masking. Classical examples include arithmetic masking (𝑥 = 𝑥1 + 𝑥2) and Boolean masking (𝑥 = 𝑥1 ⊕ 𝑥2).
Performing operations in the masked domain prevents any type of leakage due to the variable 𝑥 , since it is never directly
manipulated. Instead, the only observable leakage in the side-channel measurements is due to computations involving
either 𝑥1 or 𝑥2. Since these shares are randomized at each execution of the algorithm, they contain no exploitable
information about 𝑥 . This is typically done by setting one share to a randomly sampled mask, for which we reserve the
notation 𝑥2 = 𝑅, and computing the other share as 𝑥1 = 𝐴 = 𝑥 − 𝑅 for arithmetic masking or as 𝑥1 = 𝐵 = 𝑥 ⊕ 𝑅 for
Boolean masking.

3 THE SABER ALGORITHM

In this section we provide a brief and high-level description of the functionality of Saber. We focus on aspects relevant to
developing a side-channel resistant version, and hence we intentionally omit details about the underlying mathematical
background. For detailed information, we refer the interested reader to the original paper in [16] and the latest version
described in the NIST round 2 submission document [18].

3.1 Saber PKE

First, we introduce the public-key encryption variant of Saber, which serves as the cornerstone for Saber.KEM, the
candidate for the NIST post-quantum cryptography process. The Saber package is based on the Module Learning With
Rounding (MLWR) problem, and its security can be reduced to the security of this problem. MLWR is a variant of the
well known Learning With Errors (LWE) problem [43], which combines a module structure as introduced by Langlois
and Stehlé [34] with the introduction of noise through rounding as proposed by Banerjee et al. [6]. The core element
Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

A Side-channel Resistant Implementation of SABER 5

𝑙 𝑁 𝑞 𝑝 𝑇 𝜇
quantum
security

LightSaber.PKE 2 256 213 210 23 5 114
Saber.PKE 3 256 213 210 24 4 185

FireSaber.PKE 4 256 213 210 26 3 257

Table 1. Parameter settings of Saber.PKE

of the MLWR problem are MLWR samples, which are defined as (𝐴𝐴𝐴,𝑏𝑏𝑏 = ⌊𝐴𝐴𝐴𝑠𝑠𝑠⌉𝑝), given a public matrix𝐴𝐴𝐴←U(𝑅𝑙×𝑙𝑞),
secret vector of polynomials 𝑠𝑠𝑠 ← 𝛽𝜇 (𝑅𝑙×1𝑞), and a rounding modulus 𝑝 . The relevant search MLWR problem states that
it is hard to recover the secret 𝑠𝑠𝑠 given a MLWR sample, while the decision MLWR problem states that it is hard to
distinguish a MLWR sample from a uniformly random sample from the distributionU(𝑅𝑙×𝑙𝑞 × 𝑅𝑙×1𝑞). It is assumed that
for certain parameter sets, MLWR is hard to solve even in the presence of large scale quantum computers, and it can be
shown that Saber.PKE is at least as secure as the underlying decisional MLWR problem.

The encryption scheme Saber.PKE consists of three algorithms, described in Figure 1: Saber.PKE.KeyGen generates a
public key 𝑝𝑘 and private key 𝑠𝑘 , Saber.PKE.Enc encrypts a 256-bit message𝑚 into a ciphertext 𝑐 based on the public
key 𝑝𝑘 , and Saber.PKE.Dec decrypts the ciphertext 𝑐 using the private key 𝑠𝑘 . The output message is denoted as𝑚′. It
can be shown that𝑚 and𝑚′ are equal with high probability. Saber.PKE has three variants aimed at a different security
level. In order of increasing security they are LightSaber, Saber and FireSaber, and their parameters can be found in
Table 1. In this work we focus on the medium security version Saber, but all the methods described in this work can be
adapted for LightSaber and FireSaber with trivial modifications.

Saber.PKE.KeyGen()
(1) 𝑠𝑒𝑒𝑑𝐴𝐴𝐴 ← U({0, 1}256)
(2) 𝐴𝐴𝐴 := U(𝑅𝑙×𝑙𝑞 ; seed𝐴𝐴𝐴)
(3) 𝑟 := U({0, 1}256)
(4) 𝑠𝑠𝑠 := 𝛽𝜇 (𝑅𝑙×1𝑞 ; 𝑟)
(5) 𝑏𝑏𝑏 := ((𝐴𝐴𝐴𝑇𝑠𝑠𝑠 +ℎℎℎ) mod 𝑞) ≫ (𝜖𝑞 − 𝜖𝑝) ∈ 𝑅𝑙×1𝑝

(6) return (𝑝𝑘 := (𝑠𝑒𝑒𝑑𝐴𝐴𝐴,𝑏𝑏𝑏), 𝑠𝑘 := (𝑠𝑠𝑠))

Saber.PKE.Enc(𝑝𝑘 = (𝑠𝑒𝑒𝑑𝐴𝐴𝐴,𝑏𝑏𝑏),𝑚 ∈ 𝑅2; 𝑟)
(1) 𝐴𝐴𝐴 := U(𝑅𝑙×𝑙𝑞 ; seed𝐴𝐴𝐴)
(2) if: 𝑟 is not specified:
(3) 𝑟 := U({0, 1}256)
(4) 𝑠′𝑠′𝑠′ := 𝛽𝜇 (𝑅𝑙×1𝑞 ; 𝑟)
(5) 𝑏𝑏𝑏′ := ((𝐴𝐴𝐴𝑠𝑠𝑠′ +ℎℎℎ) mod 𝑞) ≫ (𝜖𝑞 − 𝜖𝑝) ∈ 𝑅𝑙×1𝑝

(6) 𝑣′ := 𝑏𝑏𝑏𝑇 (𝑠𝑠𝑠′ mod 𝑝) ∈ 𝑅𝑝
(7) 𝑐𝑚 := (𝑣′ + ℎ1 − 2𝜖𝑝−1𝑚 mod 𝑝) ≫ (𝜖𝑝 − 𝜖𝑇) ∈ 𝑅𝑇
(8) return 𝑐 := (𝑐𝑚,𝑏′𝑏′𝑏′)

Saber.PKE.Dec(𝑠𝑘 = 𝑠𝑠𝑠, 𝑐 = (𝑐𝑚,𝑏′𝑏′𝑏′))
(1) 𝑣 := 𝑏𝑏𝑏′𝑇 (𝑠𝑠𝑠 mod 𝑝) ∈ 𝑅𝑝
(2) 𝑚′ := ((𝑣 − 2𝜖𝑝−𝜖𝑇 𝑐𝑚 + ℎ2) mod 𝑝) ≫ (𝜖𝑝 − 1) ∈ 𝑅2
(3) return𝑚′

Fig. 1. Saber.PKE

The additions with the constant terms ℎ1, ℎ2 and ℎℎℎ are needed to center the errors introduced by rounding around 0,
which reduce the failure probability of the protocol. This is achieved by choosing ℎ1 ∈ 𝑅𝑞 with coefficients following
2𝜖𝑞−𝜖𝑝−1 and ℎ2 ∈ 𝑅𝑞 with coefficients following (2𝜖𝑝−2 − 2𝜖𝑝−𝜖𝑇 −1 + 2𝜖𝑞−𝜖𝑝−1). The vectorℎℎℎ ∈ 𝑅𝑙×1𝑞 can be constructed
as 𝑙 polynomials ℎ1.

Practically, the generation of the secret polynomial 𝑠𝑠𝑠 ′ according to distribution 𝛽𝜇 using a seed 𝑟 is realized by first
expanding 𝑟 to a pseudorandom bit-string of length 2𝜇 · 𝑙 · 𝑁 using 𝑆𝐻𝐴𝐾𝐸 − 128 as eXtendable Output Function (XOF).
This bit-string is then divided into segments (x, y) of 2𝜇 bits. Finally, each element of the secret vector is calculated by
subtracting Hamming weight of last 𝜇 bits, HW(y), from the Hamming Weight of first 𝜇 bits, HW(x).

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede

Saber.KEM.KeyGen()
(1) (𝑠𝑒𝑒𝑑𝐴𝐴𝐴,𝑏𝑏𝑏,𝑠𝑠𝑠) = Saber.PKE.KeyGen()
(2) 𝑝𝑘 = (𝑠𝑒𝑒𝑑𝐴𝐴𝐴,𝑏𝑏𝑏)
(3) 𝑝𝑘ℎ = F(𝑝𝑘)
(4) 𝑧 = U({0, 1}256)
(5) return (𝑝𝑘 := (𝑠𝑒𝑒𝑑𝐴𝐴𝐴,𝑏𝑏𝑏), 𝑠𝑘 := (𝑠𝑠𝑠, 𝑧, 𝑝𝑘ℎ))

Saber.KEM.Encaps(𝑝𝑘 = (𝑠𝑒𝑒𝑑𝐴𝐴𝐴,𝑏𝑏𝑏))
(1) 𝑚 ← U({0, 1}256)
(2) (�̂�, 𝑟) = G(F(𝑝𝑘),𝑚)
(3) 𝑐 = Saber.PKE.Enc(𝑝𝑘,𝑚; 𝑟)
(4) 𝐾 = H(�̂�, 𝑐)
(5) return (𝑐, 𝐾)

Saber.KEM.Decaps(𝑠𝑘 = (𝑠𝑠𝑠, 𝑧, 𝑝𝑘ℎ), 𝑝𝑘 = (𝑠𝑒𝑒𝑑𝐴𝐴𝐴,𝑏𝑏𝑏), 𝑐)
(1) 𝑚′ = Saber.PKE.Dec(𝑠𝑠𝑠, 𝑐)
(2) (�̂� ′, 𝑟 ′) = G(𝑝𝑘ℎ,𝑚′)
(3) 𝑐∗ = Saber.PKE.Enc(𝑝𝑘,𝑚′; 𝑟 ′)
(4) if: 𝑐 = 𝑐∗
(5) return 𝐾 = H(�̂� ′, 𝑐)
(6) else:
(7) return 𝐾 = H(𝑧, 𝑐)

Fig. 2. Saber.KEM

3.2 Saber KEM

One drawback of the public key variant of Saber is that it is not secure against chosen-ciphertext attacks. To achieve
security against these types of attacks, Saber.PKE can be compiled into Saber.KEM using a post-quantum variant of the
Fujisaki-Okamoto (FO) transformation [49]. The resulting KEM can be found in Figure 2 and consists of a key generation,
an encapsulation and a decapsulation phase. Additionally, it requires three hash functions that model random oracles:
F ,G andH , which are instantiated with 𝑆𝐻𝐴3 − 256, 𝑆𝐻𝐴3 − 512 and 𝑆𝐻𝐴3 − 256 respectively.

The transformation from chosen-plaintext secure PKE to chosen-ciphertext secure KEM does not impact the communi-
cation cost and preserves the security estimate (which is now in a stronger attack model). However, it does complicate
the decapsulation process, which on top of decrypting the message also performs a re-encryption step to validate the
input ciphertext. Whenever the input ciphertext does not correspond to the newly generated ciphertext, a random
response is given as described in the decapsulation procedure.

From a side-channel perspective, the decapsulation, Saber.KEM.Decaps, is the most sensitive operation to protect, the
reason being it directly involves the long-term secret key 𝑠𝑠𝑠 . Consequently, our efforts in this work are devoted to obtain
a side-channel resistant version of the decapsulation algorithm, Saber.Masked.KEM.Decaps. Figure 3 gives an overview
of the arithmetic flow of the decapsulation procedure, where the sensitive operations that contain information about
the secret key 𝑠𝑠𝑠 are indicated in grey.

Two properties of Saber stand out when compared to other lattice-based schemes: Saber uses power-of-two moduli
𝑞, 𝑝 and 𝑇 , and is based on the LWR hard problem. The first property not only implies that modular reductions are
essentially free, but also that some masking operations can be implemented more efficiently. The latter property has a
big positive impact in that only one secret vector 𝑠𝑠𝑠 needs to be sampled securely, in contrast to LWE-based schemes
that also need to sample additional two error vectors. Avoiding the generation of these two elements is a big advantage,
as we will show later that the sampling of these vectors becomes one of the most costly operations in a masked
implementation.

4 SIDE-CHANNEL RESISTANT SABER

In this section, we describe Saber.Masked.KEM.Decaps, the key decapsulation routine for Saber with built-in resistance
against side-channel attacks. In Figure 3, operations influenced by the long term secret 𝑠𝑠𝑠 are highlighted in grey. These
Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

A Side-channel Resistant Implementation of SABER 7

X𝑏𝑏𝑏 ′

𝑠𝑠𝑠

+

ℎℎℎ2

𝑐𝑚 ≪ − ≫ G

𝑝𝑘ℎ

�̂� ′

XOF 𝛽𝜇 X

U

seed𝐴𝐴𝐴

X

𝑏𝑏𝑏

+

ℎℎℎ

+

ℎ1

+ ≫

≫ 𝑏𝑏𝑏 ′∗

𝑐𝑚∗

=

returnH(�̂� ′, 𝑐)

yes

returnH(𝑧, 𝑐)

no

Fig. 3. Decapsulation of Saber. In grey the operations that are influenced by the long term secret 𝑠𝑠𝑠 and thus vulnerable to side-channel
attacks.

operations are vulnerable to side-channel attacks, and must be masked. First, we give a high-level overview of these
masked primitives our implementation requires, and we refer to existing solutions. Then, we develop a new primitive
which we call A2A conversion, which serves as the substitute of the logical shift operation performed on arithmetic
shares. Finally, we describe how a recent masked binomial sampler should be tweaked to fit the Saber algorithm, taking
advantage of Saber’s power-of-two moduli. Figure 4 illustrates the arithmetic flow of Saber.Masked.KEM.Decaps and
serves as a visual representation of our discussion in this section.

We do not explicitly give a masked implementation of the IND-CPA secure Saber.Masked.PKE.Dec, even though
it is contained in the Saber.Masked.KEM.Decaps implementation. The reason being that even without side-channel
information, the Saber.PKE is vulnerable to chosen-ciphertext attacks if the secret key is re-used, which was shown by
Fluhrer [21] to be the case for all current LWE-based and LWR-based IND-CPA secure encryption schemes.

The shift operation on the input 𝑐𝑚 and the expansion of seed𝐴𝐴𝐴 are operations on values known to the adversary. As
they do not depend on the secret 𝑠𝑠𝑠 there is no need to mask them. A similar reasoning is true for the calculation of the
return value. While the comparison of the input ciphertext with the reconstructed ciphertext does compute on sensitive
values that depend on 𝑠𝑠𝑠 , the output of this comparison is not valuable information to a side-channel adversary. The
reason is that a smart adversary should know whether the input ciphertext is valid or not: it is clearly not possible to
construct a non-valid ciphertext that still succeeds the comparison, and, as discussed in [17], it is hard to generate a
valid ciphertext that fails the comparison check. Another way to look at this is the fact that there exists an analogous
FO transformation to the one used in Saber with similar practical security bounds [27], with the only difference that
the return value is explicitly set to ⊥ when the comparison check does not return true. From this it is clear that an
adversary that explicitly learns the result of the comparison does not learn any sensitive information.

4.1 Masked Primitives

4.1.1 Masked Polynomial Arithmetic. The main workhorse in Saber.PKE.Dec and Saber.PKE.Enc is polynomial arith-
metic. Luckily, polynomial multiplication and addition/subtraction are easy to protect using arithmetic masking. Given
a polynomial 𝑥 = 𝑥1 + 𝑥2, the multiplication 𝑦 = 𝑥 · 𝑐 with an unmasked polynomial 𝑐 can be split into two independent
computations as:

𝑦1 = 𝑥1 · 𝑐 𝑦2 = 𝑥2 · 𝑐.
Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede

X𝑏𝑏𝑏 ′

𝑠𝑠𝑠1

X

𝑠𝑠𝑠2

+

ℎℎℎ2

𝑐𝑚 ≪

−
𝐴2𝐴 G

𝑝𝑘ℎ

�̂� ′

𝑋𝑂𝐹 𝛽𝜇

X

X

U

seed𝐴𝐴𝐴

X

X

𝑏𝑏𝑏

+

ℎℎℎ

+

ℎ1

+

+

𝐴2𝐴

𝐴2𝐴

𝑏𝑏𝑏 ′∗1

𝑏𝑏𝑏 ′∗2

𝑐𝑚∗1

𝑐𝑚∗2

=

returnH(�̂� ′, 𝑐)

yes

returnH(𝑧, 𝑐)

no

Fig. 4. Masked decapsulation of Saber. In grey the operations that are influenced by the long term secret 𝑠𝑠𝑠 and thus vulnerable to
side-channel attacks.

Saber.Masked.KEM.Decaps does not require multiplication of two masked polynomials, which is a significantly more
expensive computation. Similarly, addition (resp. subtraction) can be performed as:

𝑦1 = 𝑥1 ± 𝑐 𝑦2 = 𝑥2

or as:
𝑦1 = 𝑥1 ± 𝑐1 𝑦2 = 𝑥2 ± 𝑐2,

when the second polynomial is also shared 𝑐 = 𝑐1 + 𝑐2. In all cases, the correctness of the result can be trivially checked
by reverting the masking: 𝑦 = 𝑦1 + 𝑦2.

4.1.2 Masked Logical Shift. Both Saber.PKE.Dec and Saber.PKE.Enc use coefficient-wise logical shifting of polynomials,
i.e. each polynomial coefficient is shifted separately. Logical shifting is easy to protect using Boolean masking, but
non-trivial for arithmetically masked polynomial coefficients. For a Boolean masked coefficient, it is easy to see that
𝑥 = (𝑥ℎ ∥ 𝑥𝑙) = (𝐵ℎ ∥ 𝐵𝑙) ⊕ (𝑅ℎ ∥ 𝑅𝑙) implies 𝑥ℎ = 𝐵ℎ ⊕ 𝑅ℎ , due to the XOR being a bit-wise operator. Logical shifting
can therefore be performed on each share separately. However, given an arithmetic masked coefficient (𝑥ℎ ∥ 𝑥𝑙) =
(𝐴ℎ ∥ 𝐴𝑙) + (𝑅ℎ ∥ 𝑅𝑙), it does not necessarily hold that 𝑥ℎ = 𝐴ℎ + 𝑅ℎ . This is the case because a carry might propagate
from the lower masked bits𝐴𝑙 +𝑅𝑙 to the upper masked bits𝐴ℎ +𝑅ℎ . Moreover, as illustrated in Table 2 for𝐴𝑙 , 𝑅𝑙 having
size two bits, the occurrence of a carry in 𝐴𝑙 + 𝑅𝑙 is correlated with 𝑥𝑙 , and the carry is therefore itself a sensitive value
that must be masked. In Section 4.2, we elaborate on the most straightforward approach to logical shifting of arithmetic
shares, which first converts to a Boolean masking and subsequently shifts both Boolean shares, a technique known as
Arithmetic to Boolean (A2B) conversion. However, this approach is rather wasteful for masked logical shifting, since
the Boolean masking of the lower bits is computed only to be discarded in the following operation. Because of this
observation we subsequently develop a novel primitive, which is more efficient in both speed and memory.

4.1.3 Masked G, XOF. In Saber, both the random oracle G and the XOF are instantiated with primitives defined
in the 𝑆𝐻𝐴3 standard, 𝑆𝐻𝐴3 − 512 and 𝑆𝐻𝐴𝐾𝐸 − 128, specifically. Both are a subset of the broader cryptographic
Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

A Side-channel Resistant Implementation of SABER 9

𝑥𝑙 𝐴𝑙 + 𝑅𝑙

0 0+0 1+3 2+2 3+1
1 0+1 1+0 2+3 3+2
2 0+2 1+1 2+0 3+3
3 0+3 1+2 2+1 3+0

Table 2. The carry of 𝐴𝑙 + 𝑅𝑙 is correlated with the unmasked value 𝑥𝑙 . Sharings 𝐴𝑙 + 𝑅𝑙 with a carry bit are highlighted in bold.

primitive Keccak, which has previously received attention for a masked implementation [9] using Boolean masking.
The Keccak-𝑓 [1600] permutation is relatively easy to mask. The operations 𝜃, 𝜌, 𝜋 and 𝜄 are linear, i.e. they can be
duplicated for both shares, and only the 𝜒 step requires special treatment. In our implementation we apply the masking
scheme of [9], which re-uses a linear term from the state to securely mask the computation of the logical AND that is
embedded in 𝜒 .

4.1.4 Masked Binomial Sampler. The masked binomial sampler must compute HW(x) −HW(y), where x and y are masked
pseudo-random bit strings supplied by the masked 𝑆𝐻𝐴𝐾𝐸 − 128. Both the calculation of the Hamming weight as well
as the subtraction are arithmetic operations, whereas the masked 𝑆𝐻𝐴𝐾𝐸 − 128 of [9] outputs Boolean shares. Similarly
to masked logical shifting, binomial sampling algorithms typically employ mask conversion to solve this issue, i.e they
transform from Boolean to Arithmetic (B2A) shares. In Section 4.3, we describe how a recent masked binomial sampler
from [46] can be adapted to fit Saber.

4.1.5 Masked Comparison. The comparison 𝑐 = 𝑐𝑐𝑐∗ must likewise be protected from the side-channel adversary, since
the unmasked 𝑐∗ depends on the secret 𝑠𝑠𝑠 . In [38], it was proposed to avoid unmasking the sensitive intermediate 𝑐𝑐𝑐∗,
using an additional hashing step. Relying on the collision-resistance of a hashing functionH ′,H ′(𝑐 − 𝑐∗1)

?
= H ′(𝑐∗2)

is only true for valid ciphertexts, in which case the adversary already knows 𝑐∗. As discussed at the start of this section,
the inputs to the comparison contain sensitive information, but the outcome of the comparison does not give any extra
information to an adversary. In such a setting the unmasked 𝑐∗ is sensitive, but, relying on the pre-image resistance of
H ′,H ′(𝑐 − 𝑐∗1)

?
= H ′(𝑐∗2) no longer contains exploitable information about 𝑐∗. Note that a similar argument applies

for the sensitive 𝐾 ′ = 𝐾 ′1 ⊕ 𝐾 ′2, which should only be selectively unmasked in case a valid ciphertext was submitted.
In Saber.KEM.Decaps, the comparison between the input ciphertext 𝑐 = (𝑐𝑚,𝑏𝑏𝑏 ′) and the re-encrypted ciphertext

𝑐∗ = (𝑐𝑚∗,𝑏𝑏𝑏 ′∗) is typically implemented as two separate checks, since 𝑐𝑚∗, and𝑏𝑏𝑏 ′∗ can be computed largely independently.
This is not straightforwardly possible in Saber.Masked.KEM.Decaps, since the output of the individual comparisons
does contain sensitive additional information for the side-channel adversary. Similarly to [38] we instantiateH ′ with
(unmasked) 𝑆𝐻𝐴𝐾𝐸 − 128, but use an incremental state to avoid having to store a masked version of both 𝑐𝑚∗, and 𝑏𝑏𝑏 ′∗
in memory. Using 𝑆𝐻𝐴𝐾𝐸 − 128.𝑎𝑏𝑠𝑜𝑟𝑏 (𝑏𝑏𝑏 ′ −𝑏𝑏𝑏 ′1∗) and 𝑆𝐻𝐴𝐾𝐸 − 128.𝑎𝑏𝑠𝑜𝑟𝑏 (𝑏𝑏𝑏

′
2∗), we must only keep the two Keccak

states in memory, rather than the much larger masked 𝑏𝑏𝑏 ′∗.

4.2 Masked Logical Shift : A2B and A2A Conversion

A straightforward approach to logical shifting of arithmetic shares, is to first convert to a Boolean masking and
subsequently shift both Boolean shares. This approach is also adopted in [38]. Several secure A2B as well as B2A
conversion algorithms exist. These generally come in two flavours, depending on whether the arithmetic shares use a
power-of-two or a prime modulus. The former group have received considerably more research interest due to their
use in symmetric primitives, and they are typically more efficient and simpler to implement. In this group, Goubin [25]

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede

was the first to introduce first-order secure B2A and A2B conversions. Especially Goubin’s B2A conversion remains very
efficient, whereas the time complexity of Goubin’s A2B method was improved by Coron et al. [13]. Another approach to
first-order A2B was proposed and developed in a series of works that use table-based implementations. Table-based A2B
algorithms were first proposed by Coron and Tchulkine [15]. A second method was proposed by Neiße and Pulkus
[37], which claims resistance against DPA, but introduces a variable that could facilitate attacks using SPA techniques.
Finally, Debraize [19] corrected a bug in [15] and proposes a third method with a time/memory trade-off. Higher-order
secure conversion algorithms have been described and subsequently improved in [10, 12, 14, 28].

Saber heavily benefits from the added simplicity and extensive research of conversions with power-of-two moduli,
since all its moduli 𝑝 , 𝑞 and 𝑇 are powers of two. In contrast, algorithms for prime moduli are typically more ad
hoc, adapting existing approaches to fit lattice schemes with prime moduli. Oder et al. [38] use a power-of-two A2B

conversion in their masked CCA-secure variant of NewHope. Because of NewHope’s prime modulus 𝑞 = 12289, they
have to include an extra algorithm, TransformPower2, to first transform the shares to a power of two. Barthe et al. [7]
similarly have to develop new algorithms for prime conversion in their masking of GLP, but they provide a more generic
solution for arbitrary orders. Finally, Schneider et al. [46] combine the previous two algorithms, and at the same time
present a new algorithm, B2Aq, which works for arbitrary moduli as well as arbitrary security orders. However, when
instantiated as a power-of-two conversion, e.g. 𝑞 = 28, B2Aq only outperforms [10] and [14] for more than nine shares.

Whereas the approach to use first A2B conversion and subsequently shift the Boolean shares is quite straightforward,
it is also quite wasteful. The Boolean masking of the lower bits is computed only to be shifted out in the following
operation. In the remainder of this section, we first describe the Coron-Tchulkine [15] table-based A2B algorithm,
including the fix from [19]. Based on this algorithm we subsequently develop a more frugal approach, that avoids
computing the Boolean sharing of the lower bits entirely. Because this requires minimal algorithmic change from A2B

conversion, but leaves the output shares in an arithmetic masking, we call this new primitive A2A conversion. Compared
to the classical approach, our novel A2A primitive reduces both the table size and number of arithmetic instructions.

4.2.1 Table-based A2B Conversion. Table-based A2B conversions use a divide-and-conquer approach to convert the
arithmetic masking 𝑥 = 𝐴 + 𝑅 to a Boolean masking 𝑥 = 𝐵 ⊕ 𝑅. The conversion is first performed for a smaller mask
𝑟 , and 𝑥 = 𝐴 + 𝑟 can be converted to 𝑥 = 𝐵 ⊕ 𝑟 by securely computing 𝐵 = (𝐴 + 𝑟) ⊕ 𝑟 . The intermediate unmasking
step (𝐴 + 𝑟) can be avoided using a pre-computed table 𝑇 , such that 𝑇 [𝐴] = (𝐴 + 𝑟) ⊕ 𝑟 for a fixed mask 𝑟 . For a 𝑘-bit
value 𝐴, the size of𝑇 is then 2𝑘 entries of 𝑘 bits. Because this is quickly prohibitive when 𝑘 is the size of a full processor
word, Coron and Tchulkine [15] proposed to iteratively apply the conversion to smaller 𝑘-bit chunks,

(𝐵𝑛−1 ∥ ... ∥ 𝐵𝑖 ∥ ... ∥ 𝐵0) = ((𝐴𝑛−1 ∥ ... ∥ 𝐴𝑖 ∥ ... ∥ 𝐴0) + (𝑟 ∥ ... ∥ 𝑟 ∥ ... ∥ 𝑟)) ⊕ (𝑟 ∥ ... ∥ 𝑟 ∥ ... ∥ 𝑟).

This is possible using two tables, 𝐺 and 𝐶𝐴 , which are pre-computed as illustrated in Algorithms 1 and 2, respectively.
Table 𝐺 converts chunk 𝐴𝑖 to a Boolean masking 𝐵𝑖 = (𝐴𝑖 + 𝑟) ⊕ 𝑟 , whereas table 𝐶𝐴 contains the carry from the
modular addition (𝐴𝑖 + 𝑟) that should be added to chunk𝐴𝑖+1. As mentioned before, the carry of (𝐴𝑖 + 𝑟) is correlated to
the unmasked value 𝑥𝑖 , which is why the carry is itself masked with an arithmetic mask 𝛾 in table 𝐶𝐴 . The conversion
itself, using tables 𝐺 and 𝐶𝐴 is shown in Algorithm 3. Since (𝑟 ∥ ... ∥ 𝑟 ∥ ... ∥ 𝑟) is not a uniformly distributed mask,
during the conversion only the least significant 𝑘-bit chunk 𝐴𝑙 of 𝐴 is masked with 𝑟 and unmasked with 𝑅𝑙 .

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

A Side-channel Resistant Implementation of SABER 11

Algorithm 1: Pre-computation of 𝐺 [15]
input :𝑘

1 𝑟 ← U({0, 1}𝑘)
2 for 𝐴 = 0 to 2𝑘 − 1 do

3 𝐺 [𝐴] = (𝐴 + 𝑟) ⊕ 𝑟

4 end

5 return𝐺, 𝑟

Algorithm 2: Pre-computation of 𝐶𝐴 [15, 19]
input :𝑘 , 𝑟

1 𝛾 ← U({0, 1}𝑒)
2 for 𝐴 = 0 to 2𝑘 − 1 do

3 𝐶𝐴 [𝐴] =

𝛾, if 𝐴 + 𝑟 < 2𝑘

𝛾 + 1 mod 2𝑒 , if 𝐴 + 𝑟 ≥ 2𝑘

4 end

5 return𝐶𝐴 , 𝛾

Algorithm 3: A2B conversion of a (𝑛 · 𝑘)-bit variable [15, 19]
input : (𝐴,𝑅) such that 𝑥 = 𝐴 + 𝑅 mod 2𝑛·𝑘 ,

𝐺 ,𝐶𝐴 , 𝑟 , 𝛾
output :𝐵 such that 𝑥 = 𝐵 ⊕ 𝑅
/* Let 𝐴 = (𝐴ℎ ∥ 𝐴𝑙), 𝑅 = (𝑅ℎ ∥ 𝑅𝑙) with 𝐴𝑙, 𝑅𝑙 the 𝑘 least significant bits. 𝐴ℎ, 𝐴𝑙, 𝑅ℎ, 𝑅𝑙 are updated

at the same time as 𝐴, 𝑅. */

1 Γ ← ∑𝑛−1
𝑖=1 2𝑖 ·𝑘 · 𝛾 mod 2𝑛·𝑘

2 𝐴← 𝐴 − (𝑟 ∥ ... ∥ 𝑟 ∥ ... ∥ 𝑟) mod 2𝑛·𝑘

3 𝐴← 𝐴 − Γ mod 2𝑛·𝑘

4 for 𝑖 = 0 to 𝑛 − 1 do
5 𝐴← 𝐴 + 𝑅𝑙 mod 2(𝑛−𝑖) ·𝑘

6 if 𝑖 < 𝑛 − 1 then
7 𝐴ℎ ← 𝐴ℎ +𝐶𝐴 [𝐴𝑙] mod 2(𝑛−𝑖−1) ·𝑘

8 𝐵𝑖 ← 𝐺 [𝐴𝑙] ⊕ 𝑅𝑙
9 𝐴← 𝐴ℎ

10 𝑅 ← 𝑅ℎ

11 end
12 return 𝐵 ⊕ (𝑟 ∥ ... ∥ 𝑟 ∥ ... ∥ 𝑟)

4.2.2 Table-based A2A Conversion. We adapt the method from [15, 19] for logical shifting and call this new primitive
A2A conversion. Algorithm 3 can easily be adapted to this use case. For logical shifting, we only need to compute the
propagation of the carry, but can discard the conversion to a Boolean share. This requires just table𝐶𝐴 , obsoleting table
𝐺 . The computation of 𝐵𝑖 can likewise be removed, and, because we do not require the mask 𝑟 on the upper𝑚 bits, the
same applies for the final unmasking with 𝑟 . Our A2A conversion making this adjustment is shown in Algorithm 4. Its
input is an𝑚 + (𝑛 · 𝑘)-bit arithmetic masking of 𝑥 . Its output is an𝑚-bit arithmetic masking of 𝑥 ≫ (𝑛 · 𝑘). Similarly to
the original algorithm this is computed iteratively, in 𝑘-bit chunks. For Saber, the logical shifts in Saber.PKE.Dec and
Saber.PKE.Enc are ≫ 9, ≫ 3 and ≫ 6. Since these are all multiples of 3, we use tables with 𝑘 = 3 uniformly for the
three conversion, and illustrate the other parameters in Table 3. Note that the output of (𝐴, 𝑅) ∈ 𝑅2𝑝 ≫ (𝜖𝑝 − 1) is a
1-bit arithmetic masking, which is equivalent to a 1-bit Boolean masking, as addition modulo 2 is exactly the same as a
XOR operation. Therefore, the conversion from an arithmetic masking to Boolean masking at the input of G is implicit.

In the original method from Coron and Tchulkine, the size of 𝛾 was set to 𝑒 = 𝑘 bits. It was later noted by Debraize
that in this case 𝐴ℎ +𝐶 [𝐴𝑙] − 𝛾 does not always equal 𝐴ℎ + 1 when 𝐴ℎ has more than 𝑘 bits. For this equation to hold
for all iterations of the loop in Algorithm 3, the size of 𝛾 must be at least 𝑒 = (𝑛 − 1) · 𝑘 bits. For the correctness of our

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede

𝑚 𝑛 𝑘

(𝐴,𝑅) ∈ 𝑅2𝑝 ≫ (𝜖𝑝 − 1) 1 3 3
(𝐴,𝑅) ∈ 𝑅2𝑝 ≫ (𝜖𝑝 − 𝜖𝑇) 4 2 3
(𝐴,𝑅) ∈ 𝑅2𝑞 ≫ (𝜖𝑞 − 𝜖𝑝) 10 1 3

Table 3. Parameters of the three A2A conversions..

Algorithm 4: A2A conversion of a𝑚 + (𝑛 · 𝑘)-bit variable
input : (𝐴,𝑅) such that 𝑥 = 𝐴 + 𝑅 mod 2𝑚+𝑛·𝑘 ,

𝐶𝐴 , 𝑟 , 𝛾
output : (𝐴,𝑅) such that 𝑥 ≫ (𝑛 · 𝑘) = 𝐴 + 𝑅 mod 2𝑚
/* Let 𝐴 = (𝐴ℎ ∥ 𝐴𝑙), 𝑅 = (𝑅ℎ ∥ 𝑅𝑙) with 𝐴𝑙, 𝑅𝑙 the 𝑘 least significant bits. 𝐴ℎ, 𝐴𝑙, 𝑅ℎ, 𝑅𝑙 are updated

at the same time as 𝐴, 𝑅. */

1 Γ ← ∑𝑛
𝑖=1 2

𝑖 ·𝑘 · 𝛾 mod 2𝑚+(𝑛·𝑘)

2 𝑃 ← ∑𝑛−1
𝑖=0 2𝑖 ·𝑘 · 𝑟 /* (0 ∥ ... ∥ 𝑟 ∥ ... ∥ 𝑟) */

3 𝐴← 𝐴 − 𝑃 mod 2𝑚+(𝑛·𝑘)

4 𝐴← 𝐴 − Γ mod 2𝑚+(𝑛·𝑘)

5 for 𝑖 = 0 to 𝑛 − 1 do
6 𝐴← 𝐴 + 𝑅𝑙 mod 2𝑚+(𝑛−𝑖) ·𝑘

7 𝐴ℎ ← 𝐴ℎ +𝐶𝐴 [𝐴𝑙] mod 2𝑚+(𝑛−𝑖−1) ·𝑘

8 𝐴← 𝐴ℎ

9 𝑅 ← 𝑅ℎ

10 end
11 return A, R

A2A algorithm a similar argument applies, and we require that the size of 𝛾 is at least 𝑒 =𝑚 + ((𝑛 − 1) · 𝑘) bits. The total
table size is then 2𝑘 · (𝑚 + ((𝑛 − 1) · 𝑘)) bits.

Debraize proposed a third table-based A2B conversion method [19] (Algorithm 4.4), where carries are protected by
a Boolean mask 𝜌 instead of an arithmetic mask 𝛾 . It can be adapted to masked logical shifting similarly to what we
described above, but still requires an extra table to add the Boolean carry to the resulting arithmetic shares, which is
why this approach is less practical. We also note that it is possible to decompose table𝐶𝐴 with an arithmetic mask of the
carry into tables 𝐶𝐵 and 𝐶𝐵2𝐴 [19] (Algorithm 4.1), that compute the Boolean masked carry of (𝐴𝑙 + 𝑟) and convert the
Boolean masked carry to an arithmetic masked carry, respectively. These two tables have reduced memory compared to
𝐶𝐴 , but require two table look-ups, which can offer a useful time/memory trade-off for extremely resource-constrained
devices.

4.3 Masked Binomial Sampling

Secret vectors in Saber are sampled from a binomial sampler, and as illustrated in Figure 4, it is an operation that also
should be masked. Similarly to masked logical shifting, masked binomial sampling typically employs mask conversion
within the algorithm. A recent implementation of Schneider et al. [46] employs their B2Aq conversion to propose
two efficient masked binomial sampling algorithms. The first algorithm is a generalization of [38], which converts
individual masked bits, whereas the second algorithm employs bit-slicing. Bit-slicing is known to increase the efficiency
of sampling [31] as it can generate multiple samples in parallel. Similarly to B2Aq itself, both algorithms are generic,
in the sense that they can be instantiated with an arbitrary B2A algorithm and at arbitrary security orders. Here, we
instantiate the bit-sliced sampler with Goubin’s B2A algorithm [25], which is currently the most efficient B2A algorithm
for first-order security. For Saber, we additionally require packing and unpacking functions, since the output of the
Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

A Side-channel Resistant Implementation of SABER 13

masked 𝑆𝐻𝐴𝐾𝐸 − 128 is not naturally in bit-sliced format. All the variables in this section are in bit-sliced format, and
we denote the 𝑖-th bit of the 𝑗-th share of x as 𝑥 (𝑖)

𝑗
.

In the bit-sliced binomial sampler, the Hamming weight computation 𝑧 = HW(x) − HW(y) is computed by directly
adding and subtracting the individual Boolean shared bits of x and y. This is based on the bit-wise equations of a
half adder, (𝑠 = 𝑧 ⊕ 𝑥 , 𝑐 = 𝑧𝑥), and subtractor, (𝑠 = 𝑧 ⊕ 𝑦, 𝑐 = 𝑧𝑦), and allows to bit-slice these equations over the
full processor word-width. For Boolean shares, the XOR operator is linear, whereas the logical AND needs a secure
substitute, SecAnd [14]. The resulting z is still in Boolean masked format, and only one B2A conversion is necessary to
ultimately convert it to an arithmetic sharing. To realize the masked bit-sliced sampler we use the functions SecBitAdd,
SecBitSub, and SecConstAdd, and we describe these functions below.

Algorithm 5: SecBitAdd, adapted from [46]
input :x = (𝑥𝑖)1≤𝑖≤𝑛 ∈ F2𝜇 such that

⊕
𝑖 𝑥𝑖 = 𝑥

output :z = (𝑧𝑖)1≤𝑖≤𝑛 ∈ F2𝜆 such that
⊕

𝑖 𝑧𝑖 = HW(𝑥) , 𝜆 = ⌈log2 (𝜇 + 1) ⌉ + 1
1 s, z← 0
2 for 𝑗 = 1 to 𝜇 do
3 cin ← x(𝑗)

4 s(1) ← z(1) ⊕ cin
5 for 𝑙 = 2 to ⌊log2 (𝑗) ⌋ + 1 do
6 cin ← SecAnd(cin, z(𝑙−1))
7 s(𝑙) ← z(𝑙) ⊕ cin
8 end
9 z← s

10 end
11 return z

SecBitAdd takes input Boolean shares x = (𝑥𝑖)1≤𝑖≤𝑛 ∈ F2𝜇 such that
⊕

𝑖 𝑥𝑖 = 𝑥 . It produces an output z =

(𝑧𝑖)1≤𝑖≤𝑛 ∈ F2𝜆 such that
⊕

𝑖 𝑧𝑖 = 𝐻𝑊 (𝑥). Algorithm 5 shows our implementation of SecBitAdd, which is slightly
adapted from [46] to reduce the number of calls to SecAnd. In [46], the inner loop iterates from 𝑙 = 2 to 𝜆, resulting in a
total of 𝜇 · ⌈log2 (𝜇 + 1)⌉ calls to SecAnd. However, SecBitAdd starts from 𝑧 = 0, and during outer loop iteration 𝑗 , 𝑧
is therefore upper bounded by 𝑗 − 1. Secondly, there can only ever be a carry to bit 𝑧 (𝑙) when 𝑧 ≥ 2(𝑙−1) − 1. Joining
these two conditions, the inner loop is only necessary when 𝑙 ≤ log2 (𝑗) + 1. This adaptive loop condition is easily
expressed in standard C as 𝑓 𝑜𝑟 (𝑙 = 2, 𝑘 = 𝑗 ;𝑘 > 1; 𝑙 + +, 𝑘 >>= 1), and makes only

∑ ⌊log2 (𝜇) ⌋
𝑖=0 𝜇 − 2𝑖 + 1 calls to SecAnd.

For Saber, which uses 𝜇 = 4, this reduces the number of calls to SecAnd from 12 to just 4. SecAnd is described in [14].
For first-order security, SecAnd requires a single random bit, and the amount of needed randomness is therefore also
reduced by our modification.

SecBitSub takes input Boolean shares z = (𝑧𝑖)1≤𝑖≤𝑛 ∈ F2𝜆 and y = (𝑦𝑖)1≤𝑖≤𝑛 ∈ F2𝜇 such that
⊕

𝑖 𝑧𝑖 = 𝑧 and⊕
𝑖 𝑦𝑖 = 𝑦. It produces an output z = (𝑧𝑖)1≤𝑖≤𝑛 ∈ F2𝜆 such that

⊕
𝑖 𝑧𝑖 = 𝑧 − 𝐻𝑊 (𝑦). It is very similar to Algorithm 5,

with the exception that a negation is added at line 6. This negation is necessary because the carry of a half subtractor
is computed as 𝑐 = 𝑧𝑦, requiring to negate the bit 𝑧. Since the carry of the subtraction can always propagate the full
length of z, a similar modification as in SecBitAdd is not possible for SecBitSub and we take the implementation from
Algorithm 12 of [46].

Finally, the SecConstAdd routine adds the constant 𝜇 to z, which is necessary to avoid negative values after SecBitSub
and subsequently convert z correctly to an arithmetic sharing. This added value is later compensated by subtracting

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede

𝜇 from the arithmetic shares. We show SecConstAdd in Algorithm 6, which we have optimized for Saber’s constant
𝜇 = 4. For generic constants values we refer the interested reader to Algorithm 13 of [46].

Algorithm 6: SecConstAdd, optimized for 𝜇 = 4
input :x = (𝑥𝑖)1≤𝑖≤𝑛 ∈ F2𝜇 such that

⊕
𝑖 𝑥𝑖 = 𝑥

output :y = (𝑦𝑖)1≤𝑖≤𝑛 ∈ F2𝜆 such that
⊕

𝑖 𝑦𝑖 = 𝑥 + 4
1 y← x
2 y(3) ← y(3)

⊕
y(2)

3 𝑦
(2)
0 ← 𝑦

(2)
0

⊕
1

4 return y

At this moment we have described all the components that constitute the bit-sliced sampler of [46]. However,
for Saber, we still need two additional functions PackMu and UnpackMu. These functions are necessary to make the
input, which is a consecutive string of 𝜇 bits belonging to x[0], 𝜇 bits belonging to y[0], 𝜇 bits belonging to x[1], 𝜇
bits belonging to y[1] and so forth, suitable for using in the bit-sliced format, as well as transform the output of the
bit-sliced sampler back to the normal format. Intuitively, the packing functions are necessary to align all the 𝑘-th bits,
𝑘 ∈ [0, 𝜇 − 1] of consecutive x[𝑗] in a single CPU word. Our target platform is an ARM Cortex-M4 device which has
32-bit word-width, and it can perform 32 single bit Boolean operations in parallel using bit-wise Boolean operators.
Hence, our bit-sliced sampler generates 32 binomial samples at a time.

The PackMu function packs x[0 : 31] with 𝜇-bit entries into an array x′[0 : 𝜇 − 1] with 32-bit words such that
x′[𝑘] contains the 𝑘-th bits of all 32 elements of x[0 : 31]. The UnpackMu does the opposite of PackMu, i.e. it unpacks
x′[0 : 𝜇 − 1] back into x[0 : 31], such that x[𝑗] again contains the 𝜇 bits that are associated to a single sample. A visual
representation of the extraction and subsequent packing transformation is shown in Figure. 5. Before executing PackMu,
the bitstring containing x and y is split into both components, after which the packing procedure of y is identical to the
packing procedure of x. Note that PackMu can be applied to each share independently.

After packing x and y into x′ and y′, the algorithms described above can be performed on full 32-bit words instead of
single bits, where the bit operations are replaced with their bit-wise counterparts. This way, all algorithms generate 32
binomially distributed coefficients in parallel. If we consider x[0 : 31] as a 32 × 32 bit-matrix, the PackMu and UnpackMu
can be materialized by a bit-matrix transpose operation. There exist very sophisticated algorithms to do this operation
as described in [50]. However, as our bit-matrix is very sparse, i.e. we have only 𝜇 = 4 columns, we found that a naïve
implementation of bit-matrix transpose performs better in our case. The full bit-sliced binomial sampler, including
PackMu and UnpackMu, is shown in Algorithm 7.

5 IMPLEMENTATION

We have implemented Saber.Masked.KEM.Decaps on two STM32F4 microcontrollers manufactured by ST Microelectron-
ics. This embedded processor based on the ARMCortex-M4 architecture is very popular for realizing IoT applications. For
our performance evaluation, we use the STM32F407-DISCOVERY development board, also targeted by the PQM4 [29]
post-quantum crypto library and benchmark suite for the ARM Cortex-M4. For our side-channel evaluation we use
the highly similar STM32F417 chip, mounted on a custom PCB to facilitate power side-channel measurements. Both
chips have a maximal operating frequency of 168 MHz and feature 1 MB of Flash memory, 192 KB of SRAM, FPU/DSP
instruction extensions, and an internal TRNG. Memory footprint and speed-optimized implementations of Saber
tailored to this architecture have been documented in two recent works [8, 30]. For our experiments, we started with the
Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

A Side-channel Resistant Implementation of SABER 15

j

µ−1
y[1]

j

µ−1
y[0]

j

µ−1
[31]y

j

1
[31]y

j

0
[31]y

y[1]

j
y[0]

j

µ−1
[31]x

j

1
[31]x

j

0
[31]x

x[1]
j

1

j

1
x[0]

j
x[0]

0

j

0
x[1]

j

µ−1
x[0]

µ−1 ’[]

.

.

.

. .
.

.

. .
.

.

..
.

.

..
.

.

.

j

µ−1
[31]x

j

1
[31]x

j

0
[31]x

j
x[0]

0

j

0
x[1]

x[1]
j

1

j

1
x[0]

j

µ−1
x[1]

j

µ−1
x[0]

j

µ−1
x[1]

j

µ−1
x[0]

j

µ−1
[31]x

j

1
[31]x

j

0
[31]x

x[1]
j

1

j

1
x[0]

j
x[0]

0

j

0
x[1]

 Identical to x

32

µ µ

.

.

.

.

.

.

 .

 .

 .

 .

 .

 .

 .

j

1

j

0
y[1]

0

j

1
y[0]

.

.

.

.

.

.

 .

 .

 .

 .

 .

 .

 .

j

µ−1
x[1]

 ’[1]

 ’[0]

µ

32

. x

x

x.

.

PackMu

.

.

.

 .

 .

 .

 .

 .

 .

 .

.

.

.

 .

 .

 .

 .

 .

 .

 .

.

.

.

.

.

.

 .

 .

 .

 .

 .

 .

 .

.

.

.

 .

 .

 .

 .

 .

 .

 .

.

.

.

 .

 .

 .

 .

 .

 .

 .

.

.

.

 .

 .

 .

 .

 .

 .

 .

.

.

.

 .

 .

 .

 .

 .

 .

 .

Fig. 5. The PackMu function packs x[0 : 31] with 𝜇-bit entries into an array x′ [0 : 𝜇 − 1] with 32-bit words.

Algorithm 7: SecBitSlicedSampler

input :x[0 : 31] = (𝑥𝑖 [0 : 31])1≤𝑖≤𝑛 ∈ F322𝜇 , y[0 : 31] = (𝑦𝑖 [0 : 31])1≤𝑖≤𝑛 ∈ F
32
2𝜇 such that

⊕
𝑖 𝑥𝑖 [𝑗] = 𝑥 [𝑗],⊕

𝑖 𝑦𝑖 [𝑗] = 𝑦 [𝑗]
output :A[0 : 31] = (𝐴𝑖 [0 : 31])1≤𝑖≤𝑛 ∈ F32𝑞 such that

∑
𝑖 𝐴𝑖 [𝑗] = 𝐻𝑊 (𝑥 [𝑗]) −𝐻𝑊 (𝑦 [𝑗]) mod 𝑞

1 x′ ← PackMu(x)
2 y′ ← PackMu(y)
3 z′ ← SecBitAdd(x′)
4 z′ ← SecBitSub(z′, y′)
5 z′ ← SecConstAdd(z′)
6 z← UnpackMu(z′)
7 for 𝑗 = 0 to 31 do
8 A[𝑗] ← 𝐵2𝐴(z[𝑗])
9 𝐴0 [𝑗] ← 𝐴0 [𝑗] − 𝜇 mod 𝑞

10 end
11 return A[0 : 31]

implementation with the best time-memory trade-off, combining different methods from both these works. It achieves
fast polynomial multiplication by leveraging on the DSP extensions and through a clever combination of Toom-Cook,
Karatsuba and low-degree schoolbook multiplication methods. In both our performance and side-channel evaluation,
we use the same settings as PQM4, i.e. a core system clock of 24 MHz, and a 48 MHz clock for the TRNG, but we
additionally disable the data cache to prevent timing side-channel leakages. The TRNG supplies 32-bit random numbers
every 40 clock cycles, corresponding to only 20 clock cycles of the core system clock. All masking randomness is
sampled directly from the TRNG. Since the TRNG offers ample throughput, we avoid complex bookkeeping of random
bits. For example, to mask two 13-bit secret key coefficients we use 32 bits of randomness, effectively discarding the
redundant 6 bits. This allows us to use straightforward halfword operations, rather than having to unpack the random
bitstrings.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede

We build on the unprotected Saber.KEM.Decaps reference implementations from [8, 30] and extend them to realize
our protected design. Operations that are duplicated on both shares can easily be implemented by re-using the original
functions from Saber.KEM.Decaps. For non-linear operations combining both shares, new implementations are necessary.
Furthermore, it is a well-known issue that a theoretically secure masking scheme can still show side-channel leakage [5].
Microarchitectural effects can easily violate the independent leakage assumption, and produce leakage due to the
unexpected combination of both shares. Bus transitions, memory or register overwrites, re-use of stack memory or
hidden registers in the ALU are all examples that can cause such leakage. Consider for example the inner loop of
Algorithm 4. Subsequent loads from memory𝐶𝐴 [𝐴𝑙] load the memory bus with either 𝛾 or 𝛾 +1. Each of the possible bus
transitions has a different power profile, and directly leaks information correlated to the sensitive carry. Implementations
can be meticulously crafted not to have these issues, using techniques such as assigning different registers to different
shares, and clearing the memory or datapath buses before sensitive transitions. We use this approach for routines that
combine both shares and integrate these techniques directly in hand-crafted assembly. In our implementation, we use
such assembly code for A2A conversion, bit-sliced binomial sampling and the non-linear Keccak 𝜒 function.

Similarly to the Cortex-M4 implementations from [8, 30], we try to make the best tradeoff between speed and memory
usage wherever possible. Our design is compatible with many of the just-in-time techniques that reduce dynamic
memory usage, such as polynomial-by-polynomial generation of the public matrix𝐴𝐴𝐴. Another example of reducing
memory usage, is the masked comparison we described in Section 4.1.5. Using the incremental 𝑆𝐻𝐴𝐾𝐸 − 128.𝑎𝑏𝑠𝑜𝑟𝑏
allows us to allocate just 2 ∗ 200 bytes of stack memory for its state, rather than 2 ∗ 960 bytes for the masked 𝑏𝑏𝑏 ′∗.

Another similarity we share with [30] is the use of the ARM Cortex-M4’s support for SIMD instructions to speed up
execution. In both A2A and B2A conversion, the USUB16 or UADD16 instructions complement the bitwise operators,
allowing us to perform two 𝜖𝑞 or 𝜖𝑝 -bit conversions in parallel in a 32-bit processor word. B2A conversion benefits most,
since the table lookups of A2A are inherently sequential. To illustrate, by parallelising B2A in this fashion, the loop in
SecBitSlicedSampler, line 7, makes only 16 calls to B2A, rather than 32.

We refresh our A2A tables before the conversion of each full 256-coefficient polynomial. The exact table parameters
are given in Table 3. The bit-size 𝑙 of 𝛾 in table 𝐶𝐴 is 7 bits, 7 bits, and 10 bits, for ≫ (𝜖𝑡 − 1), ≫ (𝜖𝑝 − 𝜖𝑇), and
≫ (𝜖𝑞 − 𝜖𝑝), respectively. Because the overall table size 23 · 𝑙 is tiny compared to Saber’s total dynamic memory usage,
we avoid table entries of exactly 𝑙 bits. Rather, we use byte-size tables for 𝑙 = 7 and halfword-size tables for 𝑙 = 10,
making packing and unpacking routines unnecessary. Even then, the size of the largest table with 𝑙 = 16 only amounts
to a total 16 bytes of dynamic memory.

6 SECURITY EVALUATION

In this section we experimentally validate the soundness of our first-order secure Saber.Masked.KEM.Decaps. We first
describe our experimental setup and security assessment methodology, and then provide results that confirm the
suppression of side-channel leakage in the first-order moment. As mentioned in the previous section, we use a custom
PCB target board for our side-channel evaluation, which guarantees a very stable behaviour of the STMF417 chip.
This PCB is stripped of all of the unnecessary components of the DISCOVERY development board, which would
introduce additional noise into the measurements. The PCB contains a dedicated shunt resistor to monitor side-channel
information through the chip’s instantaneous power consumption. To ensure maximal stability, the PCB is driven by an
external power supply at 3.2 V and clocked by an external clock at 8 MHz, which is the same speed as the DISCOVERY
board’s crystal oscillator.

Manuscript submitted to ACM

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

A Side-channel Resistant Implementation of SABER 17

0 1 2 3 4 5 6 7 8 9

time [ms]

0

50

100

150

200

250

Q
u
a
n
ti
z
e
d
 V

o
lt
a
g
e

Fig. 6. Power measurement of the masked inner product𝑏′𝑇𝑏′𝑇𝑏′𝑇 · 𝑠𝑠𝑠 .

We use a Tektronix DPO 70604C digital oscilloscope to collect instantaneous power measurements during executions
of Saber.Masked.KEM.Decaps with a sample rate of 125 MS/s. In between the oscilloscope and the PCB we add a PA 303
SMA pre-amplifier and a 48 MHz low-pass filter to perform analog pre-processing of the collected traces. A central PC
is used to communicate input/output data to the board through a serial USART connection, as well as to collect and
analyze power measurements. In Figure 6 we show an exemplary measurement obtained with our setup, which captures
the inner product between the input ciphertext part 𝑏 ′𝑏 ′𝑏 ′ and the secret key 𝑠𝑠𝑠 . The black signal shows the quantized
voltage over the shunt resistor, which corresponds directly to the instantaneous power consumption of the chip. We
add a yellow trigger signal to partition the power trace into 𝑏 ′𝑇𝑏 ′𝑇𝑏 ′𝑇 · 𝑠𝑠𝑠1 and 𝑏 ′𝑇𝑏 ′𝑇𝑏 ′𝑇 · 𝑠𝑠𝑠2. The six clearly visible patterns in the
measurement each correspond to one polynomial multiplication.

We use the Test Vector Leakage Assessment (TVLA) methodology introduced by Goodwill et al. [24] in order
to validate the security of our implementation. The method analyzes two sets of measurements which are defined
according to sensitive information. In our experiments we use a non-specific fix vs. random test. The fix class contains
measurements obtained when the algorithm’s input 𝑥1, 𝑥2 is a fresh masking of a fixed value 𝑥1 + 𝑥2 = 𝑥 𝑓 𝑖𝑥 , while
the random class contains measurements when the input is randomly generated 𝑥1 + 𝑥2 = 𝑥𝑟𝑎𝑛𝑑 . TVLA uses the
Welch’s t-test to detect differences in the mean power consumption between the two sets. The so-called t-test statistic is
computed for every sample in the measurements as:

𝑡 =
𝑋 1 − 𝑋 2√
𝜎2
1
𝑁1
+ 𝜎2

2
𝑁2

,

where 𝑋 1 and 𝑋 2 denote the means of each set, 𝜎21 and 𝜎22 their respective variances, and 𝑁1, 𝑁2 the number of samples
in each class. Following [24], the t-test is repeated twice, on independently collected data sets. The null-hypothesis
is rejected with confidence greater than 99.999% when the 𝑡 value exceeds the ±4.5 range for a large number of
measurements, in the same direction and at the same time point for both data sets. Put differently, 𝑡 values outside this
range indicate that the means of both sets are distinguishable and, consequently, there exists leakage in the side-channel
measurements of the unmasked value 𝑥1 + 𝑥2 = 𝑥 .

6.1 Experimental Results

We start our experiments by testing the security of our hand-crafted assembly routines. These are the most critical
operations, since they are non-linear operations that must combine both shares to compute their results. In our
experiments, we first test our measurement setup by testing the security of these routines when the TRNG is turned
off. This is equivalent to testing an unprotected implementation, as one of the input shares 𝑥2 is set to zero at each
execution and therefore 𝑥1 = 𝑥 . Furthermore, when these routines sample randomness internally, e.g. in SecAnd, this
randomness is likewise supplied as 0.

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede

0 20 40 60 80 100

-10

-5

0

5

10

t-
s
ta

ti
s
ti
c

(a) A2A conversion

0 50 100 150 200 250 300

-40

-30

-20

-10

0

10

20

30

40

t-
s
ta

ti
s
ti
c

(b) Bit-sliced binomial sampling

0 0.2 0.4 0.6 0.8 1

time [ms]

-60

-40

-20

0

20

40

60

t-
s
ta

ti
s
ti
c

(c) Keccak-𝑓 [1600]

0 20 40 60 80 100

-6

-4

-2

0

2

4

6

t-
s
ta

ti
s
ti
c

(d) A2A conversion

0 50 100 150 200 250 300

-6

-4

-2

0

2

4

6

t-
s
ta

ti
s
ti
c

(e) Bit-sliced binomial sampling

0 0.2 0.4 0.6 0.8 1

time [ms]

-6

-4

-2

0

2

4

6

t-
s
ta

ti
s
ti
c

(f) Keccak-𝑓 [1600]
Fig. 7. T-statistic as a function of time after applying TVLA with a pool of 10 000 measurements and masks OFF (top), and with a pool
of 100 000 measurements and masks ON (bottom).

The results of applying the TVLA method with a pool of 10 000 measurements and masks OFF are shown in
Figure 7 (a,b,c) for A2A conversion, bit-sliced binomial sampling, and the Keccak-𝑓 [1600] round permutation, respectively.
For A2A conversion and bit-sliced binomial sampling, we show conversion and sampling of the first 32 polynomial
coefficients. For the bit-sliced sampler, this corresponds to one iteration of the central routine. The black signal
corresponds to the value of the 𝑡-statistic at each sample.

In our 𝑡-test, we add a yellow trigger signal to single out specific operations. In the A2A conversion, the yellow trigger
is first low for the generation of table 𝐶𝐴 and subsequently high for the 32 conversions. Since the table generation is a
constant operation that does not depend on the input, it shows no 𝑡-test leakage even with masks OFF. For binomial
sampling, the trigger is first low for PackMu, then high for SecBitAdd, SecBitSub, and SecConstAdd, low for UnpackMu,
and finally high for B2A conversion. From the figure, PackMu and UnpackMu are applied to each share independently, and
it is clear that with masks OFF only the operation on the share 𝑥1 = 𝑥 shows leakage. Finally, we show the first three
rounds of Keccak-𝑓 [1600], and use the yellow trigger to mark the non-linear 𝜒 operation. Again it can be observed
that the linear operations show leakage for only one of the shares.

Next, we test the implementation when the TRNG is turned ON. The results of applying the TVLA method with a
pool of 100 000 measurements are shown in Figure 7 (d,e,f). In contrast to the previous experiment, there are no visible
peaks during the execution of the respective routines. Since the masking is enabled, neither A2A conversion, bit-sliced
binomial sampling, or Keccak-𝑓 [1600] exhibit first-order leakage. In our experiments with 100 000 measurements,
none of the 𝑡-statistic pass the confidence boundary of ±4.5, such that a second repetition of the 𝑡-test is unnecessary.
Nonetheless, we verified that the results are reproducible, and the experiment confirms the soundness of our assembly
subroutines.
Manuscript submitted to ACM

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

A Side-channel Resistant Implementation of SABER 19

We continue our experiments with a validation of the full Saber.Masked.KEM.Decaps. To allow formoremeasurements,
we set the Saber module parameter 𝑙 universally to 𝑙 = 1 in our TVLA experiment. This reduces the vectors of
polynomials 𝑠𝑠𝑠 ′ and 𝑏𝑏𝑏 ′, as well as the public matrix 𝐴𝐴𝐴 to a single polynomial. All operations are largely identical
to 𝑙 = 3, but there are fewer iterations of the same routines, e.g. the matrix-vector multiplication 𝐴𝐴𝐴 · 𝑠𝑠𝑠 ′ becomes a
single polynomial multiplication. This allows us to test the exact same routines used in Saber.Masked.KEM.Decaps

with 𝑙 = 3, but cut the length of the power traces by roughly a factor 3. With 𝑙 = 1 at 125 MS/s, power traces for
Saber.Masked.KEM.Decaps consist of approximately 6,000,000 samples.

In our TVLA experiment for Saber.Masked.KEM.Decaps, we divide between measurements with a fresh masking of
the fixed secret key 𝑠𝑠𝑠1 +𝑠𝑠𝑠2 = 𝑠𝑠𝑠 𝑓 𝑖𝑥 , and measurements with a masking of a random secret key 𝑠𝑠𝑠1 +𝑠𝑠𝑠2 = 𝑠𝑠𝑠𝑟𝑎𝑛𝑑 , accordingly
to the null-hypothesis that the implementation does not leak the sensitive unmasked 𝑠𝑠𝑠 . The input ciphertext 𝑐 = (𝑐𝑚,𝑏 ′𝑏 ′𝑏 ′)
is kept as a constant, valid, ciphertext encrypted under 𝑠𝑠𝑠 𝑓 𝑖𝑥 . The results of applying the TVLA method with a pool of
10 000 measurements and masks OFF are shown in Figure 8 (top).

We again add the yellow trigger signal, and this time use it to mark the start and end of the sensitive part of
Saber.Masked.KEM.Decaps, i.e. the operations highlighted in grey in Figure 4. The results of applying the TVLA method
with a pool of 100 000 measurements and masks ON are shown in Figure 8 (middle). Directly after the yellow trigger
there is still a strong indication of leakage, due to the final comparison H ′(𝑐 − 𝑐∗1)

?
= H ′(𝑐∗2) after the hash. As

mentioned in Section 4.1.5, the final outcome of this comparison is unmasked, as it does not give information to an
adversary. In our 𝑡-test scenario where 𝑐 is a ciphertext encrypted under 𝑠𝑠𝑠 𝑓 𝑖𝑥 , the comparison is always 𝑡𝑟𝑢𝑒 for the
fixed set and always 𝑓 𝑎𝑙𝑠𝑒 for the random set of measurements, such that the 𝑡-test can clearly extract the difference
from the power traces. After 100 000 measurements, our 𝑡-test results for Saber.Masked.KEM.Decaps with masks ON
still show some slight excursions past the ±4.5 confidence boundary. This is sometimes expected for long traces, and
therefore, as per [24], we conduct a second independent 𝑡-test showing that these excursions are never at the same time
instant. Results from this second experiment are shown in Figure 8 (bottom). Together, these two 𝑡-tests confirm that
Saber.Masked.KEM.Decaps suppresses the leakage of the sensitive 𝑠𝑠𝑠 , confirming the soundness of our design.

7 RESULTS AND COMPARISON

To evaluate the performance of Saber.Masked.KEM.Decaps, we integrate it in the PQM4 [29] benchmarking framework
for the STM32F407-DISCOVERY. We benchmark for speed and stack usage, as well as profiling cycles spent in different
primitives. We compile with optimization flag -O3, but add attributes such as noinline to prevent the compiler
optimizations from removing the masking. In PQM4, cycle counts are measured from the system timer (SysTick) and
dynamic memory is measured using stack canaries. For the dynamic memory consumption, we report the use case
where the long-term secret key is already stored in masked format and is refreshed after every masked decapsulation,
ensuring that the same masked representation is never used twice. Both shares of the secret are assumed to be stored in
non-volatile memory, e.g. EEPROM, and therefore do not contribute to dynamic memory consumption. Note that this
requires 2496 bytes of non-volatile memory, which is exactly twice the size required by Saber.KEM.Decaps.

To motivate our design choices, in Table 4, we first compare the performance of Saber.KEM.Decaps with different C
implementations of Saber.Masked.KEM.Decaps. In masked design (B), we implement Saber.Masked.KEM.Decaps with
Goubin’s A2B conversion to perform masked logical shifting, as well as implement the non bit-sliced sampler from
[46]. In masked design (C), we substitute the five polynomial A2B conversions with our novel A2A tables, netting a
performance improvement of more than 150,000 CPU cycles. Our most efficient design is (D), where both A2A tables and

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede

0 5 10 15 20 25 30 35 40 45

time [ms]

-60

-40

-20

0

20

40

60

t-
s
ta

ti
s
ti
c

0 5 10 15 20 25 30 35 40 45

time [ms]

-10

-5

0

5

10

t-
s
ta

ti
s
ti
c

0 5 10 15 20 25 30 35 40 45

time [ms]

-10

-5

0

5

10

t-
s
ta

ti
s
ti
c

Fig. 8. T-statistic of Saber.Masked.KEM.Decaps as a function of time after applying TVLA with a pool of 10 000 measurements and
masks OFF (top), and with a pool of 100 000 measurements and masks ON (middle, bottom). The 𝑡-statistic does not pass the
confidence boundary ±4.5 at the same time instant in both independent tests with masks ON.

CPU Cycles Dynamic Memory [bytes]

Saber.KEM.Decaps (A) 1,123,280 (1.00x) 6,320 (1.00x)

Saber.Masked.KEM.Decaps

(B) 2,986,568 (2.66x) 11,656 (1.84x)
(C) 2,824,800 (2.51x) 11,656 (1.84x)
(D) 2,645,279 (2.35x) 11,656 (1.84x)
(E) 2,833,348 (2.52x) 11,656 (1.84x)

Table 4. CPU cycles and dynamic memory consumption of Saber.KEM.Decaps compared to different implementations of
Saber.Masked.KEM.Decaps.

the SecBitSlicedSampler are implemented. Our A2A tables, as well as the matrix arrays of SecBitSlicedSampler
are able to reuse stack memory from other functions, such that the memory usage is exactly 11,656 bytes for all the
different implementations.

As mentioned in the previous section, microarchitectural effects can easily destroy the theoretically secure masking.
Therefore, in masked design (E), we implement the critical routines of (D) directly in assembly. We assign different CPU
registers to different shares. Before sensitive transitions, we randomize the load and store memory buses, as well as
applying the same technique for the 𝑅𝑛, 𝑅𝑚, and 𝑅𝑑 operand and destination buses of the ALU. For Keccak.𝜒 , which
showed persistent leakage, we make sure that the register file never contains two values that jointly leak sensitive
information. Our hand-crafted assembly adds 200,000 CPU cycles to masked design (D), and our final implementation
only has overhead factors 2.52x and 1.84x over the unmasked implementation for CPU cycles and stack usage, respectively.
It is masked design (E) that we evaluated in the previous section, and therefore only these numbers correctly reflect the
overhead cost of the secure Saber.Masked.KEM.Decaps on the ARM-Cortex M4.
Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

A Side-channel Resistant Implementation of SABER 21

Operation CPU cycles
Unmasked Masked

Saber.Masked.KEM.Decaps 1,123,280 2,833,348 (2.52x)���������������������������

Saber.Masked.PKE.Dec 132,836 259,931 (1.96x)���� Polynomial arithmetic 130,769 239,868 (1.83x)
(𝐴,𝑅) ∈ 𝑅2𝑝 ≫ (𝜖𝑝 − 1) 1,832 19,138 (10.45x)

𝑆𝐻𝐴3 − 512(𝑝𝑘ℎ,𝑚′) 13,379 123,840 (9.26x)
Saber.Masked.PKE.Enc 853,382 2,116,031 (2.48x)��������������

Polynomial arithmetic 452,835 938,859 (2.07x)
𝐴𝐴𝐴 := U(𝑅𝑙×𝑙𝑞 ; seed𝐴𝐴𝐴) 314,964 314,964 (1.00x)
𝑠′𝑠′𝑠′ := 𝛽𝜇 (𝑅𝑙×1𝑞 ; 𝑟) 73,543 796,260 (10.83x)���� x, y = 𝑆𝐻𝐴𝐾𝐸 − 128(𝑟) 65,619 615,493 (9.38x)

SecBitSlicedSampler(x, y) 7,777 180,619 (23.22x)
(𝐴,𝑅) ∈ 𝑅𝑙𝑥2𝑞 ≫ (𝜖𝑞 − 𝜖𝑝) 6,267 43,569 (6.95x)
(𝐴,𝑅) ∈ 𝑅2𝑝 ≫ (𝜖𝑝 − 𝜖𝑇) 2,091 16,830 (8.05x)

H′ (𝑐 − 𝑐∗1)
?
= H′ (𝑐∗2) 8,097 184,852 (22.83x)

TRNG (1262 calls) 0 114,842

Table 5. Profiled CPU cycles of Saber.KEM.Decaps compared to Saber.Masked.KEM.Decaps.

Masking Scheme CPU cycles Dynamic Memory [bytes]
Unmasked Masked Masked

Our work 1,123,280 2,833,348 (2.52x) 11,656
CCA2-Secure and Masked Ring-LWE [38] 4,416,918 25,334,493 (5.74x) 25,696

Table 6. CPU cycles and dynamic memory consumption of Saber.Masked.KEM.Decaps compared to related work.

Masking has so far received limited attention in post-quantum cryptography, but will become increasingly important
in the continuation of the NIST standardization process. To improve understanding of the overhead cost of masking,
we profile the CPU cycles of important operations in our masked design (E), and group the results in Table 5. We
compare operations in the masked implementation with the equivalent operations in the unmasked design, e.g.
SecBitSlicedSampler(x, y) is equivalent to z = HW(x) − HW(y), and categorize the overhead factors accordingly. From
this table, it can be seen that the linear operations, i.e. polynomial arithmetic, have roughly a factor 2x overhead in the
masked design, due to the duplication of every polynomial multiplication. Non-linear operations, on the other hand,
have overhead factors ranging from 7x for A2A conversion to 23x for binomial sampling. Our design requires 5048
random bytes, and spends roughly 100,000 cycles sampling these from the TRNG. Note that these cycles are interleaved
in the algorithm, which is why we list them separately.

7.1 Comparison

The work most closely related to ours is that of Oder et al. [38], presenting a CCA-secure masked implementation of a
Ring-LWE cryptosystem similar to NewHope KEM [2]. In Table 6, we make the comparison with our work presented in
this paper, for both CPU cycles and dynamic memory consumption. Oder et al. do not present the dynamic memory
consumption for an unmasked design, such that we only make the masked comparison for that performance metric.
Since [38] presents a masked variant of Newhope1024, which has security parameters similar to FireSaber, an absolute
comparison is not directly possible. However, it is still possible to directly compare the CPU cycles overhead cost in
masking, which are 2.52x and 5.74x for our work and the work of Oder et al., respectively.

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede

The significant performance improvement of Saber.Masked.KEM.Decaps over the work presented in [38] can largely
be attributed to two key properties of Saber, i.e. the choice for power-of-two moduli together with LWR as the
underlying hard problem. The former property allows Saber to use simple and efficient power-of-two A2B, A2A, and
B2A conversions. In contrast to the simple A2A routine we employ for logical shifting, Oder et al. present a complex
equivalent procedure, MDecode, to extract the MSB of an arithmetic sharing with a prime modulus. MDecode requires
several calls to A2B conversion, extra random bits, as well as many additional arithmetic and bit-wise operations.

Secondly, the colossal benefit of LWR in a masked implementation can easily be extracted from Table 5. LWE-based
schemes sample extra error vectors from 𝛽𝜇 to substitute the rounding operation ⌊⌉ used in Saber. If Saberwas likewise
based on LWE, the cost of themasked rounding, i.e. the A2A conversions≫ (𝜖𝑞 −𝜖𝑝) and≫ (𝜖𝑝 −𝜖𝑇), would be replaced
with the cost of the masked sampling of four error polynomials from 𝛽𝜇 . From Table 5, these two A2A conversions take
roughly 60,000 CPU cycles, whereas masked sampling of four error polynomials from 𝛽𝜇 would take approximately
1,026,000 CPU cycles. The high cost of masked binomial sampling is further illustrated in [38] (Table 2), where roughly
71% of the decapsulation’s CPU cycles are spent in the masked sampling routine. Note that PQM4 features a very
efficient full assembly implementation of the Keccak permutation, whereas our implementation has only Keccak.𝜒 in
assembly. An efficient masked implementation of Keccak with a lower overhead factor would contribute significantly
to reducing the overhead of both Saber.Masked.KEM.Decaps, as well as masked binomial sampling in general.

7.2 Discussion

In this paper, we focus on a first-order secure implementation of Saber.Masked.KEM.Decaps. To protect against higher-
order DPA, our implementation must be extended to higher-order masking. Linear operations that process each share
independently can straightforwardly be extended to higher orders by duplicating the respective operation for extra
shares. Non-linear routines, however, need special treatment to guarantee that they do not leak sensitive information
in higher-order statistical moments. Higher-order secure A2B and B2A conversion algorithms have been proposed in
[10, 12, 14, 28]. Subsequent work could investigate whether the A2B routines in these works similarly lend themselves to
efficient implementations of masked logical shifting. Higher-order masked polynomial comparison has been described
in [4]. The masked binomial sampler from [46] that we described and adapted can be instantiated for arbitrary security
orders. Finally, for the Keccak permutation, we refer the reader to [9] for a discussion on higher-order masking.

While our implementation can be extended to higher-order DPA, there are other side-channel attack vectors that must
be addressed as well. Attacks relying on SPA techniques typically exploit variable-time arithmetic operations or control
flow. Since we start from a constant-time implementation of Saber, these attacks are countered in our implementation. It
has also been shown that even a single power trace might be enough for a full key recovery. These single-trace attacks
analyze the power trace horizontally, e.g. using horizontal DPA on schoolbook polynomial multiplication [3] or template
attacks on the NTT [39, 41]. Since the horizontal information in the single trace contains both the shares, masking
typically only hardens the implementation but does not fully prevent these attacks. Even though previous attacks
have focused on schoolbook mulitplication or the NTT, Saber’s multiplication, using a combination of Toom-Cook,
Karatsuba, and schoolbook, is likely vulnerable to similar attacks as well. A possible countermeasure is to randomize
the order of execution of these vulnerable routines. Randomness should be used to shuffle the order of operations in
Saber’s multiplication or introduce dummy operations. At the same time, these techniques increase the noise level
for higher-order DPA attacks. Oder et al. [38] included such hiding countermeasures in the linear operations of their
masked design at only 1.01x overhead in CPU cycles.

Manuscript submitted to ACM

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

A Side-channel Resistant Implementation of SABER 23

8 CONCLUSIONS

In this work we presented a side-channel resistant instance of Saber using masking. We showed that Saber is very
efficient to mask, and only features a 2.5x overhead factor between masked and unmasked key decapsulation in a
post-quantum benchmark suite. Saber’s side-channel secure version can be built with relatively simple building blocks,
at an overhead factor that is significantly less than other candidates of the NIST Post-Quantum standardization process.
This can largely be attributed to two key properties of Saber’s design: power-of-two moduli and LWR as the underlying
hard problem. The former property allows Saber to use simple and efficient mask conversion algorithms, and allows to
tightly integrate arithmetic and bit-wise operations on masked variables. We developed a new masked primitive for
Saber that takes advantage of this property, allowing to perform masked logical shifting directly on arithmetic shares.
Saber’s choice for LWR further contributes to the efficient masking, by replacing the very costly masked noise sampling
with efficient masked logical shifting.

ACKNOWLEDGMENTS

This work was supported in part by CyberSecurity Research Flanders with reference number VR20192203, the Research
Council KU Leuven (C16/15/058), the Horizon 2020 ERC Advanced Grant (695305 Cathedral), and SRC grant 2909.001.
The authors would like to thank Kasper Verhulst for initially starting this work.

REFERENCES
[1] Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Juliane Kramer, Patrick Longa, and Jefferson E. Ricardini. 2019. The Lattice-Based Digital Signature

Scheme qTESLA. Cryptology ePrint Archive, Report 2019/085.
[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. 2016. Post-quantum Key Exchange - A NewHope. In USENIX Security Symposium

- USENIX Security 16, Thorsten Holz and Stefan Savage (Eds.). USENIX Association, 327–343.
[3] Aydin Aysu, Youssef Tobah, Mohit Tiwari, Andreas Gerstlauer, and Michael Orshansky. 2018. Horizontal side-channel vulnerabilities of post-quantum

key exchange protocols. In 2018 IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2018, Washington, DC, USA, April 30 -
May 4, 2018. IEEE Computer Society, 81–88.

[4] Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider, and Tim Güneysu. 2020. High-Speed Masking for Polynomial Comparison in
Lattice-based KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 3 (2020), 483–507.

[5] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-Xavier Standaert. 2014. On the Cost of Lazy Engineering for Masked
Software Implementations. In Smart Card Research and Advanced Applications - 13th International Conference, CARDIS 2014, Paris, France, November
5-7, 2014. Revised Selected Papers (Lecture Notes in Computer Science, Vol. 8968), Marc Joye and Amir Moradi (Eds.). Springer, 64–81.

[6] Abhishek Banerjee, Chris Peikert, and Alon Rosen. 2012. Pseudorandom Functions and Lattices. In Advances in Cryptology - EUROCRYPT 2012
(Lecture Notes in Computer Science, Vol. 7237). Springer, 719–737.

[7] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin Grégoire, Mélissa Rossi, and Mehdi Tibouchi. 2018. Masking the GLP
Lattice-Based Signature Scheme at Any Order. In Advances in Cryptology – EUROCRYPT 2018 (Lecture Notes in Computer Science), Jesper Buus
Nielsen and Vincent Rijmen (Eds.). Springer International Publishing, Cham, 354–384.

[8] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede. 2020. Time-memory trade-off in Toom-Cook multiplication: an
application to module-lattice based cryptography. IACR Transactions on Cryptographic Hardware and Embedded Systems 2020, 2 (Mar. 2020), 222–244.

[9] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. 2010. Building power analysis resistant implementations of Keccak. In Second
SHA-3 candidate conference, Vol. 142. Citeseer.

[10] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. 2018. Improved High-Order Conversion From Boolean to Arithmetic Masking. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018, 2 (2018), 22–45.

[11] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. 1999. Towards Sound Approaches to Counteract Power-Analysis Attacks. In
Advances in Cryptology - CRYPTO ’99 (LNCS, Vol. 1666), Michael J. Wiener (Ed.). Springer, 398–412.

[12] Jean-Sébastien Coron. 2017. High-Order Conversion from Boolean to Arithmetic Masking. In Cryptographic Hardware and Embedded Systems -
CHES 2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10529), Wieland
Fischer and Naofumi Homma (Eds.). Springer, 93–114.

[13] Jean-Sébastien Coron, Johann Großschädl, Mehdi Tibouchi, and Praveen Kumar Vadnala. 2015. Conversion from Arithmetic to Boolean Masking
with Logarithmic Complexity. In Fast Software Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 9054), Gregor Leander (Ed.). Springer, 130–149.

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep Balasch, and Ingrid Verbauwhede

[14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala. 2014. Secure Conversion between Boolean and Arithmetic Masking of
Any Order. In Cryptographic Hardware and Embedded Systems - CHES 2014 (LNCS, Vol. 8731), Lejla Batina and Matthew Robshaw (Eds.). Springer,
188–205.

[15] Jean-Sébastien Coron and Alexei Tchulkine. 2003. A New Algorithm for Switching from Arithmetic to Boolean Masking. In Cryptographic Hardware
and Embedded Systems - CHES 2003, 5th International Workshop, Cologne, Germany, September 8-10, 2003, Proceedings (Lecture Notes in Computer
Science, Vol. 2779), Colin D. Walter, Çetin Kaya Koç, and Christof Paar (Eds.). Springer, 89–97.

[16] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Vercauteren. 2018. Saber: Module-LWR Based Key Exchange, CPA-Secure
Encryption and CCA-Secure KEM. In Progress in Cryptology - AFRICACRYPT 2018 (LNCS, Vol. 10831), Antoine Joux, Abderrahmane Nitaj, and
Tajjeeddine Rachidi (Eds.). Springer, 282–305.

[17] Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, Alexander Nilsson, Frederik Vercauteren, and Ingrid Verbauwhede. 2019. Decryption Failure
Attacks on IND-CCA Secure Lattice-Based Schemes. In Public-Key Cryptography – PKC 2019 (Lecture Notes in Computer Science, Vol. 11443). Springer,
565–598.

[18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik Vercauteren. 2019. SABER. Technical Report. National Institute of
Standards and Technology.

[19] Blandine Debraize. 2012. Efficient and Provably Secure Methods for Switching from Arithmetic to Boolean Masking. In Cryptographic Hardware and
Embedded Systems - CHES 2012 - 14th International Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings (Lecture Notes in Computer Science,
Vol. 7428), Emmanuel Prouff and Patrick Schaumont (Eds.). Springer, 107–121.

[20] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé. 2018. CRYSTALS-Dilithium: A
Lattice-Based Digital Signature Scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 1 (2018), 238–268.

[21] Scott Fluhrer. 2016. Cryptanalysis of ring-LWE based key exchange with key share reuse. Cryptology ePrint Archive, Report 2016/085.
[22] Oscar Garcia-Morchon, Zhenfei Zhang, Sauvik Bhattacharya, Ronald Rietman, Ludo Tolhuizen, Jose-Luis Torre-Arce, Hayo Baan, Markku-Juhani O.

Saarinen, Scott Fluhrer, Thijs Laarhoven, and Rachel Player. 2019. Round5. Technical Report. National Institute of Standards and Technology.
[23] François Gérard and Mélissa Rossi. 2020. An Efficient and Provable Masked Implementation of qTESLA. In Smart Card Research and Advanced

Applications, Sonia Belaïd and Tim Güneysu (Eds.). Springer International Publishing, Cham, 74–91.
[24] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. 2011. A testing methodology for side-channel resistance validation. NIST

Non-Invasive Attack Testing Workshop - NIAT.
[25] Louis Goubin. 2001. A Sound Method for Switching between Boolean and Arithmetic Masking. In Cryptographic Hardware and Embedded Systems -

CHES 2001 (LNCS, Vol. 2162), Çetin Kaya Koç, David Naccache, and Christof Paar (Eds.). Springer, 3–15.
[26] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. 2012. Practical Lattice-Based Cryptography: A Signature Scheme for Embedded

Systems. In Cryptographic Hardware and Embedded Systems – CHES 2012 (Lecture Notes in Computer Science), Emmanuel Prouff and Patrick
Schaumont (Eds.). Springer, Berlin, Heidelberg, 530–547.

[27] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. 2017. A Modular Analysis of the Fujisaki-Okamoto Transformation. In TCC (1). Springer,
341–371.

[28] Michael Hutter and Michael Tunstall. 2019. Constant-time higher-order Boolean-to-arithmetic masking. J. Cryptographic Engineering 9, 2 (2019),
173–184.

[29] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. [n.d.]. PQM4: Post-quantum crypto library for the ARM Cortex-M4.
[30] Angshuman Karmakar, Jose M. Bermudo Mera, Sujoy Sinha Roy, and Ingrid Verbauwhede. 2018. Saber on ARM CCA-secure module lattice-based

key encapsulation on ARM. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018, 3 (2018), 243–266.
[31] Angshuman Karmakar, Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Verbauwhede. 2018. Constant-Time Discrete Gaussian

Sampling. IEEE Trans. Computers 67, 11 (2018), 1561–1571.
[32] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In Advances in Cryptology - CRYPTO ’96

(LNCS, Vol. 1109), Neal Koblitz (Ed.). Springer, 104–113.
[33] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis. In Advances in Cryptology - CRYPTO ’99 (LNCS, Vol. 1666),

Michael J. Wiener (Ed.). Springer, 388–397.
[34] Adeline Langlois and Damien Stehlé. 2015. Worst-case to average-case reductions for module lattices. Designs, Codes and Cryptography 75, 3 (01 Jun

2015), 565–599. https://dontusedoi.org/10.1007/s10623-014-9938-4
[35] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque. 2019. Masking Dilithium - Efficient Implementation and Side-Channel

Evaluation. In Applied Cryptography and Network Security - 17th International Conference, ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceedings
(Lecture Notes in Computer Science, Vol. 11464), Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung (Eds.). Springer, 344–362.

[36] Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen Easterbrook, Brian LaMacchia, Patrick Longa, Ilya Mironov, Valeria Nikolaenko,
Christopher Peikert, Ananth Raghunathan, and Douglas Stebila. 2019. FrodoKEM. Technical Report. National Institute of Standards and Technology.

[37] Olaf Neiße and Jürgen Pulkus. 2004. Switching Blindings with a View Towards IDEA. In Cryptographic Hardware and Embedded Systems - CHES
2004: 6th International Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings (Lecture Notes in Computer Science, Vol. 3156), Marc Joye and
Jean-Jacques Quisquater (Eds.). Springer, 230–239.

[38] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. 2018. Practical CCA2-Secure and Masked Ring-LWE Implementation. IACR
Trans. Cryptogr. Hardw. Embed. Syst. 2018, 1 (2018), 142–174.

Manuscript submitted to ACM

https://dontusedoi.org/10.1007/s10623-014-9938-4

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

A Side-channel Resistant Implementation of SABER 25

[39] Peter Pessl and Robert Primas. 2019. More Practical Single-Trace Attacks on the Number Theoretic Transform. In Progress in Cryptology –
LATINCRYPT 2019, Peter Schwabe and Nicolas Thériault (Eds.). Springer International Publishing, Cham, 130–149.

[40] Thomas Poppelmann, Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la Piedra, Peter Schwabe, Douglas Stebila, Martin R. Albrecht,
Emmanuela Orsini, Valery Osheter, Kenneth G. Paterson, Guy Peer, and Nigel P. Smart. 2019. NewHope. Technical Report. National Institute of
Standards and Technology.

[41] Robert Primas, Peter Pessl, and Stefan Mangard. 2017. Single-Trace Side-Channel Attacks on Masked Lattice-Based Encryption. In Cryptographic
Hardware and Embedded Systems – CHES 2017, Wieland Fischer and Naofumi Homma (Eds.). Springer International Publishing, Cham, 513–533.

[42] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin. 2020. Generic Side-channel attacks on CCA-secure lattice-based PKE
and KEMs. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020, 3 (2020), 307–335.

[43] Oded Regev. 2004. New Lattice-based Cryptographic Constructions. Vol. 51-6. ACM, 899–942.
[44] Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. 2016. Additively Homomorphic Ring-LWE Masking.

In Post-Quantum Cryptography - PQCrypto 2016 (LNCS, Vol. 9606), Tsuyoshi Takagi (Ed.). Springer, 233–244.
[45] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. 2015. A Masked Ring-LWE Implementation. In Cryptographic

Hardware and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings. 683–702.
[46] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. 2019. Efficiently Masking Binomial Sampling at Arbitrary Orders for

Lattice-Based Crypto. In Public-Key Cryptography – PKC 2019, Dongdai Lin and Kazue Sako (Eds.). Springer International Publishing, Cham,
534–564.

[47] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and
Damien Stehlé. 2019. CRYSTALS-KYBER. Technical Report. National Institute of Standards and Technology.

[48] Peter W. Shor. 1997. Polynomial time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Statist.
Comput. 26 (1997), 1484. arXiv:quant-ph/9508027 [quant-ph]

[49] Ehsan Ebrahimi Targhi and Dominique Unruh. 2016. Post-Quantum Security of the Fujisaki-Okamoto and OAEP Transforms. Springer Berlin
Heidelberg, Berlin, Heidelberg, 192–216.

[50] Henry S. Warren. 2013. Hackers delight. Addison-Wesley.

Manuscript submitted to ACM

https://arxiv.org/abs/quant-ph/9508027

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Cryptographic Definitions
	2.3 Masking

	3 The Saber Algorithm
	3.1 Saber PKE
	3.2 Saber KEM

	4 Side-Channel Resistant Saber
	4.1 Masked Primitives
	4.2 Masked Logical Shift : A2B and A2A Conversion
	4.3 Masked Binomial Sampling

	5 Implementation
	6 Security Evaluation
	6.1 Experimental Results

	7 Results and Comparison
	7.1 Comparison
	7.2 Discussion

	8 Conclusions
	Acknowledgments
	References

