
Constant-time Discrete Gaussian Sampling
–authors’ version–

Angshuman Karmakar1, Sujoy Sinha Roy1, Oscar Reparaz1, Frederik
Vercauteren1,2, and Ingrid Verbauwhede1

1KU Leuven ESAT/COSIC and Imec
Kasteelpark Arenberg 10 bus 2452, B-3001 Leuven-Heverlee, Belgium

2Open Security Research, Fangda 704, Kejinan-12th, Nanshan, 518000 Shenzhen,
China

firstname.lastname@esat.kuleuven.be

Abstract. Sampling from a discrete Gaussian distribution is an indis-
pensable part of lattice-based cryptography. Several recent works have
shown that the timing leakage from a non-constant-time implementation
of the discrete Gaussian sampling algorithm could be exploited to recover
the secret. In this paper, we propose a constant-time implementation of
the Knuth-Yao random walk algorithm for performing constant-time dis-
crete Gaussian sampling. Since the random walk is dictated by a set of in-
put random bits, we can express the generated sample as a function of the
input random bits. Hence, our constant-time implementation expresses
the unique mapping of the input random-bits to the output sample-bits
as a Boolean expression of the random-bits. We use bit-slicing to gener-
ate multiple samples in batches and thus increase the throughput of our
constant-time sampling manifold. We also show a method to relax the
constraints of constant-time sampling negligibly to further increase the
efficiency. Our experiments on an IntelR© i5-Haswell processor show that
our method can be as much as 5.5 times faster than the constant-time im-
plementation of cumulative distribution table based sampling and much
more memory efficient than the Knuth-Yao algorithm with shuffling for
a similar level of security.

Keywords: Knuth-Yao, Constant-time sampling, Lattice-based cryptography

1 Introduction

Public-key cryptography (PKC) eliminated one serious drawback of otherwise
highly efficient symmetric-key cryptography, namely key establishment among
all the communicating parties or the requirement of a central key distribution
authority. The security of such cryptosystems are assured by underlying compu-
tationally hard problems. Since the discovery of the Diffie-Hellman [DH76] key
exchange protocol, the popularity and utility of PKC has grown steadily over
the past few decades. Currently, primitives derived from RSA and ECC are used
extensively for public-key cryptography on a wide range of devices. In compari-
son to symmetric-key cryptography, the major drawbacks of PKC are larger key

sizes and slower running time. To get the best of both worlds, contemporary
security protocols use both schemes in tandem for highly efficient and secure
digital security solutions.

Unfortunately, large-scale quantum computers running Shor’s [Sho97] and
Proos-Zalka’s [PZ03] algorithms can solve the underlying hard problems of RSA
and ECC. In this scenario, lattice-based PKC [Reg04,Ajt96] has become an at-
tractive choice to provide digital security in the post-quantum world. The con-
fidence in security arises from the fact that unlike RSA and ECC, there is no
known algorithm that can use quantum computers to solve the underlying hard
problems of lattice-based cryptography. Hard lattice problems like Learning with
errors (LWE) [Reg04] and Short Integer Solutions [Ajt96] and their ring equiv-
alents R-LWE and R-SIS [LPR10,Mic07] are some of the prominent choices to
build various lattice-based cryptography protocols. In fact, there exists a wide
variety cryptography primitives that can be built on top of these problems.
For example, Digital signature schemes [DDLL13,BLN+16,ABB+16], public-key
encryption [LPR10,LP11], key-exchange protocols [ADPS16,BCD+16], identity-
based encryption [GPV08,CHKP10,ABB10a,ABB10b], fully homomorphic en-
cryption [BV11,BGV14,Bra12,Gen09]. The other features which make lattice-
based cryptography a suitable alternative is, proven worst case to average case
reduction of lattice problems and somewhat simpler operations than other PKC
primitives, namely discrete Gaussian sampling and matrix-vector or polynomial
multiplication.

LWE is a system of approximate linear equations with the secret key be-
ing the solution of the system. LWE uses noise to hide its secret parameters
without which the system can be easily solved using Gaussian elimination. This
noise is typically sampled from a discrete Gaussian distribution. Sampling from
such distribution involves either storing a large table of precomputed values
or computing the exponential function to a very high precision. Hence, Gaus-
sian sampling accounts for a non-negligible share of resources in a lattice-based
cryptography implementation. For example, In the case of BLISS [DDLL13]
and Lyubashevsky’s [Lyu12,WHCB13] signature scheme, the Gaussian sampling
alone takes about 35% and 50% of the total running time of the signature algo-
rithms respectively. Since the beginning of lattice-based cryptography, a lot of
research has been performed to reduce the storage and computational overhead
of sampling [Pei10,DN12,DDLL13,BCG+14,DG14,RVV14]. The discrete Gaus-
sian sampler is arguably most vulnerable to side channel attacks in a lattice-
based cryptography implementation. Currently, as lattice-based cryptography is
becoming more efficient and being implemented in a wide variety of devices, it
is imperative to make the sampling secure against side channel attacks. Differ-
ent methods have been proposed to make the sampling efficient and resource
friendly but there is a lack of research to make the Gaussian sampling secure
against side-channel attacks. This was not a cause for a serious concern as there
was no attack available that could efficiently exploit the side channel leakage
information against the cryptosystem. Recently, Bruinderink et al. [GBHLY16]
has described a very effective side channel attack on the BLISS digital signa-

ture scheme. They exploited the irregular cache memory access pattern of the
Gaussian sampler. Moreover, the authors have also shown that all the presently
known Gaussian samplers are vulnerable to their attack. This work was quickly
followed by Peter Pessl [Pes16], who mounted this attack on the same scheme
with shuffled samples that was proposed as a side channel security measure for
Gaussian sampling by Roy et al. [RRVV14]. The latter attack requires much
more samples (but still practical) than the previous one. Though there are some
simple countermeasures like constant-time table scanning [BCNS15] or the previ-
ously mentioned shuffling method that can eliminate or mitigate the side channel
leakage, they come with a performance cost of the sampling operation and do not
scale very well for larger standard deviations. We also note that, due to the side
channel vulnerability of discrete Gaussian sampling, currently there is a trend to
design lattice-based cryptography schemes that do not use Gaussian sampling in
the performance critical part of the scheme [BLN+16,ABB+16]. These schemes
however require more arithmetic operations and larger modulus for security.
1.1 Our Contributions

In this paper, we describe a method to sample from a discrete Gaussian distri-
bution securely. Our contributions can be summarized as follows.

• Almost all of the currently known efficient samplers use a table of precom-
puted values and binary search, which are the main sources of side channel
leakage of such samplers. In this work, we avoid the use of tables. More
precisely, we analyze the Knuth-Yao discrete Gaussian sampling [DG14] and
observe a unique mapping between the output sample values and input ran-
dom bits of the sampling algorithm. We utilize this observation to express the
output sample values as a Boolean function of the input random bits. During
sampling, each of these Boolean functions are evaluated in constant-time to
generate each sample, thus making the sampling procedure a constant-time
operation. This is described in Section 3.1.
• In Section 3.2, we show how we can exploit a bit-slicing methodology to

generate samples in batches. This increases the throughput of our sampler
by orders of magnitude. This enhancement in performance is achieved by
carefully tweaking the way random input bits are stored and utilizing bit-
wise operators and the wide data path of modern processors.
• In Section 3.3, we illustrate a technique to increase the efficiency of our

sampler by slightly sacrificing the rigidity of constant-time sampling. This
trade-off decreases the latency to generate samples but leaks some informa-
tion about the samples, namely the range of possible values within which the
generated samples lie. We discuss the security implications of such leakage
in Section 3.4.
• In Section 4, we compare our method to other secure discrete Gaussian sam-

plers for a similar level of security. We provide an experimental comparison of
run times using a C implementation on a Intel R© i5-Haswell processor. Addi-
tionally, we describe a method to split a discrete Gaussian distribution with
large standard deviation into many smaller discrete Gaussian distributions
with smaller standard deviation.

• In Sections 4.2 and 4.2, we also provide results of our sampling method
implemented on FPGA and with AVX vector instructions utilizing the wider
data path.

• Finally in Section 5, we provide a side channel analysis of our sampling
algorithm.

2 Discrete Gaussian Sampling

In this section, we provide a brief discussion on discrete Gaussian sampling and
different methods to generate samples from such distribution.

2.1 Definition

The probability distribution function DZ,σ of a discrete Gaussian distribution
defined over Z with mean µ = 0 and standard deviation σ is defined as,

DZ,σ(X = z) =
1

S
e−z

2/2σ2

.

Here X is a random variable defined over Z and S is the normalization constant,
defined as,

S =

∞∑
x=−∞

e−x
2/2σ2

≈ σ
√

2π.

To generate samples over Z, it is sufficient to generate samples over Z+ and
use a single random bit to determine the sign due to the symmetry of discrete
Gaussian distribution across its mean.

Ideally, the support of a Gaussian distribution has range (−∞,∞), but in
most practical applications, it is neither feasible nor required to generate sam-
ples from this range. Instead, tail-cut factor τ is used to generate samples from a
smaller range [−τσ, τσ], ignoring other values beyond this range that has a very
low probability of occurrence. Also, as the probabilities of DZ,σ , x ∈ [−τσ, τσ]
are real numbers, their binary expansion can be infinitely long. In practice, the
probabilities are calculated only up to a certain precision λ depending upon
the requirement of the application. For most lattice-based cryptography appli-
cations the values of τ and σ are chosen as 12 and 128 respectively, such that
the generated samples are statistically very close to the ideal Gaussian distribu-
tion. Traditionally, statistical distance was used to measure this closeness. But
recently the work of Bai et al. [BLL+15] has shown that the value of τ can be
reduced to as low as 6 using the Rényi divergence as the closeness measure. It is
worth noting here that for a Gaussian distribution decreasing τ also decreases
the precision λ. Further Saarinen [Saa15] has proposed that reducing λ to 64
does not harm the security. In this work we assume τ = 12 and λ = 128 and
note that our method can be trivially adapted for other values of τ and λ.

2.2 Sampling from a discrete Gaussian

Sampling from a continuous Gaussian distribution has a wide range of appli-
cations in different fields of natural science, social sciences, mathematics, and
engineering. Hence, it has been studied extensively for long time. Sampling
from a discrete Gaussian distribution is a comparatively less studied topic.
Since the start of their use in lattice-base cryptography, several methods have
been proposed to sample from a discrete Gaussian distribution. Some of them
are rejection sampling [DN12], cumulative distribution table (CDT) based sam-
pling [Pei10], discrete Ziggurat sampling [BCG+14], Knuth-Yao sampling [DG14],
and Bernoulli sampling [DDLL13]. Among these methods, the rejection sampling
does not require any storage of precomputed tables but requires many random
bits and many repetitions. Hence, it does not perform very well in practice. All
other methods use precomputed tables and binary search for efficient sampling.
Here we discuss CDT sampling and Knuth-Yao sampling as these two meth-
ods can be more efficiently [HKR+16] instantiated as leakage-resistant sampling
algorithm than others.

The CDT based sampling: The CDT based sampling precomputes a cu-
mulative distribution function (CDF) table T for i ∈ [−τσ, τσ] according
to the given discrete Gaussian distribution with λ bits of precision, such that
T [i+1]−T [i] = Dσ(i). The sampling phase of the algorithm is basically a search
operation on the CDF table T . First, a random r ∈ [0, 1) is generated then
the table T is searched to find an s, such that T [s + 1] ≥ r > T [s]. If such an
s is found, it is returned as the sample. To reduce the storage requirement for
the sampling, only the interval [0, τσ] needs to be searched, as explained in Sec-
tion 2.1. To improve the efficiency, binary search or improved versions of binary
search such as binary search with guide table [PDG14,DB15] are used. In this
method, the irregular table access pattern of binary search makes the sampling
process vulnerable to cache-timing attacks which was used by Bruinderink et
al. [GBHLY16].

The Knuth-Yao sampling : The Knuth-Yao [KY76] sampling algorithm was
proposed to generate samples from any source of known probability distribu-
tion. The sampling algorithm uses a rooted binary tree which in this context
is also known as a discrete distribution generation (DDG) tree. The DDG tree
is constructed from the probability matrix, which is a matrix constructed from
the samples in the support of the distribution and their corresponding binary
expanded probabilities up to a certain precision. The probability matrix and the
DDG tree are related as follows: the number of leaf nodes in the DDG tree at
ith level is equal to the Hamming weight of the ith column of the probability
matrix. Each leaf node of the DDG tree corresponds to a sample in the sample
space. An example of the probability matrix and the corresponding DDG tree is
shown in Fig. 1 for an arbitrary distribution with a sample space S consisting
of four samples.

3

2

0

I

2

1

R

I

I

I

I

0

1 0

1

1

0

0

1

0

1

0

1
0

1

1

2

3

0 1 1 0

0 1 0 1

0 0 1 0

0 0 1 1

0
p

p

p

p

Fig. 1. A Probability matrix and the DDG tree corresponding to it. The random bits
{0, 1} are used to traverse the tree starting from the root.

The sampling operation is a random walk on the DDG tree. The random
walk starts from the root and at each non-leaf node a random bit is generated
to determine the direction of the random walk in the left or right sub-tree.
The random walk stops when it hits a leaf node and the corresponding sample is
returned. Here, the non-constant running time and branching during the random
walk expose the cache vulnerability of the sampling operation.

Dwarakanath and Galbraith [DG14] first adapted the Knuth-Yao algorithm
to sample from a discrete Gaussian distributions. Their work was later extended
by Roy et al. [RVV14] with a more simplistic design methodology and reduced
memory requirement. We refer the interested readers to their work for further
details.

2.3 Previous works

As noted in Section 1, there has not been much research on the construction
of constant-time Gaussian samplers, largely because of non-existence of efficient
attacks. However, the existing non constant-time Gaussian samplers can be used
for secure Gaussian sampling by applying some simple countermeasures. In this
section we briefly revisit them.

Constant-time table access The table based Gaussian samplers use binary
search for efficiency, which also makes them vulnerable to timing attacks. These
algorithms can be converted to secure sampling algorithms by replacing the
binary search with constant-time linear search of the whole table. This removes
the cache-weakness of the binary search. But this countermeasure does not scale
very well, as it may be an acceptable option for Gaussian distributions with
smaller standard deviations but for larger standard deviations linear search of
the whole table to generate each sample incurs a significant overhead. Bos et
al. [BCNS15] used this method for a leakage-resistant Gaussian sampling in
their key-exchange scheme.

Shuffling Constant-time table access for Knuth-Yao sampling is more com-
plicated and inefficient than the other table-based sampling methods. Roy et
al. [RRVV14] proposed a method to mitigate the problem of side-channel leak-
age of the Knuth-Yao sampler using extra memory. Their method caches the
first k columns of the probability matrix in a table with 2k entries. The table
entries are either a sample value or an intermediate position in the DDG tree.
The sampling operation of this algorithm can be divided in a secure and a non-
secure part. In the secure part, the algorithm generates a k bit random index
and looks for the entry in the table. If the entry is a sample value, then it is
returned. In the non-secure part, if the table entry holds a position in the DDG
tree, then a random walk is commenced from that position to find a sample.
In this scenario, the algorithm leaks the absolute values of the samples due to
the difference in timing to find a sample. As a second countermeasure, the au-
thors suggest a random permutation of the leaked and non-leaked samples after
the sampling to obfuscate the locations of the samples from the attacker. Also,
as the security of this method depends on the number of columns cached, the
memory requirement of this procedure increases exponentially with an increase
in the levels of security.

Fixed step binary search In their work, Howe et al. [HKR+16] proposed a
fixed step binary search for secure Gaussian sampling. In their proposal, the
binary search always runs for O(log(n)) steps where n is the size of the table,
irrespective of whether the sample has been found in a previous step or not.
While this method may work for some specific platform, it is not a generic
solution for constant-time sampling. The binary search will leak secrets on a
wide variety of platforms.

3 Constant-time Knuth-Yao sampling

In this section, we analyze the Knuth-Yao sampling algorithm. We describe our
observation on correlation between samples and input random bit-strings. Based
on this observation we propose a constant-time Knuth-Yao discrete Gaussian
sampling. We also propose two optimization schemes to increase the throughput
of our sampling algorithm. We conclude the section with a security discussion
of our sampler.

Choice of sampling algorithm At this point, we describe our rationale for
choosing the Knuth-Yao sampling algorithm for constant-time sampling. During
our initial investigation for a constant-time Gaussian sampler, we found two
possible methods to devise a constant-time sampler. One is the simple constant-
time linear table search, the other method is to somehow express each sample
as a function of input bit-string and then execute the function in constant-time
for each sample. The former method is a well known method and has been
used before. But, there is no precedence in the literature of the latter method

for constant-time sampling. For the second method we require a well defined
mapping from the input random bit-string to the output samples. We found that
due to the random-walk algorithm of Knuth-Yao sampling it is easier to find such
a mapping (explained later) and hence a function that can be executed efficiently
to find samples from the input random bit-string. We also stress that we do not
claim that such an efficient function cannot be derived from other sampling
algorithms. Further research in this field may yield such efficient functions from
other sampling algorithms too.

Other reasons for choosing the Knuth-Yao algorithm are efficiency and low
entropy consumption. The Knuth-Yao and CDT (or its variants) are very popular
choices for implementation of lattice-based cryptography schemes due to their
very efficient performance across different platforms. Howe at al. [HKR+16] has
also recommended Knuth-Yao and CDT for constant-time Gaussian sampling.

3.1 Our observation: mapping random bits to samples

As explained in Section 2.2, the Knuth-Yao sampling is a random walk that
starts from the root of a DDG tree until it hits a terminal node (Fig. 1). At each
node, a random bit is used to select the sub-tree which will be explored next.
Hence, the path from the root of the tree to each terminal node is determined
by a unique bit string. As each terminal node corresponds to a sample in the
sample space, there exists a mapping from the set of random bit strings to the
sample space.

Clearly, this mapping is many-to-one. For example in Fig. 1, sample 0 is
returned when the bit string is 01 or 110. Or, if the random bits are extracted
from random bit strings of length 4 then sample 0 is returned when the bit string
is 01xx or 110x, where x can be either 0 or 1. Using the above observation, we
can formulate the samples or the bits of the samples (si) as a binary function
of the random bit strings (r = r0 · · · rn−1) as Eq. (1), assuming the samples can
have maximum m bits and the probability matrix has n columns.

s0 = f0(r0, r1, · · · , rn−1)

s1 = f1(r0, r1, · · · , rn−1)

...

sm−1 = fm−1(r0, r1, · · · , rn−1)

(1)

To calculate a bit si of a sample, the respective binary expression f i ap-
plies the corresponding set of binary operators on the input random bit string
(r0r1 · · · rn−1) irrespective of its value. Hence, for any ith bit si of the sample,
the computation time ti is always the same for any random input bit-string r.
As an illustration, the arbitrary distribution given in Fig. 1, the sample space
has only 4 samples, hence m = 2 and n = 4. The bits of the samples (s0, s1)
can be calculated as,

s0 = r̄3r2r̄1r0 ∨ r̄3r̄2r1r̄0

s1 = r̄3r̄2r1

 .

 .

f
i

r

r

r
0

1

0

1

n−1

Fig. 2. Mapping f i : {0, 1}n → {0, 1} from set of random bit strings to the bits of
samples

It is worth noting that to ensure constant-time sampling, all the binary operators
should be applied in the order specified by Eq. (1) for each sample regardless
of the input random bit string. We use a bit-slicing methodology and bit-wise
operators for this purpose. This will be explained in Section 3.2.

Each sample can thus be generated in constant-time by computing each of
its bits in constant-time. Unlike other Gaussian sampling methods, this method
neither requires a large precomputed table nor an expensive computation such as
computation of exponential functions with high precision. However, this method
requires a larger program memory to store the formulae f i.

3.2 Batching the sampling process

Bit-slicing is a Single Instruction Multiple Data (SIMD) operation to improve
the efficiency of a programme by exploiting data level parallelism. Starting from
Biham’s implementation of DES [Bih97], cryptographers have been using this
method to speed up the execution of their algorithms for long time. Also, imple-
mentations using bit-slicing offers some immunity against side-channel attacks.
Earlier, this method has been used for a fast and side-channel secure AES im-
plementations [KS09,RSD06].

In this section, we describe a method to speed up our sampling by generating
multiple samples at a time using bit-slicing. We utilize bit-wise Boolean operators
on full processor words to achieve this. As shown in Eq. (1), each sample bit can
be written as a function of n random bits. In the simplest approach, we can store
the n random bits in dn/we variables, where w is the word length of the processor
and compute the sample bits by extracting the random bits from variables as
required. This way of generating sample bits is very inefficient and has a very
low throughput.

However, using an efficient storage of random bits we can greatly improve
the throughput. Let’s assume, we want to generate k samples. So according to
Eq. (1), we need nk bits. To store these bits efficiently such that we can use
bit-slicing, we take n variables each of which stores k bits. The bit j ∈ [0, k− 1]
of the variable i ∈ [0, n−1] represents the input random bit ri for sample j as in
Eq. (1). In other words, the ith variable stores all the ith input random bits to
generate k samples (Fig. 3). We can then apply the bit-wise operators on these
variables as indicated by Eq. (1). Alternatively, we can rewrite Eq. (1) as :

s′0 = f0(var0, var1, · · · , varn−1)

s′1 = f1(var0, var1, · · · , varn−1)

...

s′m−1 = fm−1(var0, var1, · · · , varn−1)

(2)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0
r 1

r
0

0

r

r

k−1

1

0

r
1

1

r
1

k−1

. . .

r

r

r
n−1
k−1

1

n−1

n−1

0

0

0 1 n−1

f

f

0

f
1

0

00

1 1

k−1

0

k−1

. . .

0

sample
1

sample
0

sample
k−1

var var var

k

m−1

m−1

m−1

m−1

m−1

s

0
s

s

s’s’

s

s

s

Fig. 3. Efficient storage of random bits and sample bits for bit-slicing. Here rji repre-
sents ith input random bit of jth sample. Similarly, sji represents ith output bit of jth

sample.

Where each variable s′t contains the tth sample bits st, t ∈ [0,m − 1] of
k samples. These variables are then used to extract the output sample bits to
construct k samples. Here, evidently the maximum value of k is the word size
w.

Therefore, using bit-wise Boolean operations and efficiently organizing the
storage of input random bits, we can generate w samples simultaneously. This
is explained in Fig. 3.

3.3 Optimization: Dividing the input bit string

In this section, we describe a trade-off that leaks some information about the
samples in favour of decreasing the latency. This method can be applied on top
of the methods already described in Sections 3.1 and 3.2 for more efficient sam-
pling. This optimization is based on the fact that the random walk on the DDG
terminates within the first few levels of the tree with a very high probability. In
other words, the probability of the random walk terminating at a level of the
tree decreases rapidly with an increase in the level. This is explained below.

Let the Hamming weight of column i of the probability matrix be hi and Pi
the probability that Knuth-Yao sampling algorithm finds a sample within the
ith level of the DDG tree.

Pi = h0 · 2−1 + h1 · 2−2 + · · ·+ hi · 2i+1 (3)

Then the probability of not finding a sample within the ith level of the DDG
tree is P ′i = P ′i−1 − hi/2

i+1. Fig. 4 shows this for the Gaussian distribution
with σ ≈ 6.15543 (refer to Section 4.1). It is evident that the probability P ′i
decreases exponentially with an increase in the the level of the DDG tree. For
example, from Fig. 4 we see that the probability of not finding a sample within
level 32 is ≈ 2−28. Hence we can say that most of the samples are found within
the first 32 levels with a very high probability.

Fig. 4. − log2(P ′i) vs Level(i)

We can use the above observation to make the sampling even more effi-
cient. Let’s define a function φiη, which takes a random input bit-string r′ of

length η and outputs the ith bit of a sample if the random walk corresponding
to the bit-string r′ terminates within level η of the DDG tree; else it returns
null. To correlate with Eq. (1), f i = φi128. We now divide the input random

bit string in k chunks of length δj , s.t
∑k−1

0 δj = 128. We also define func-
tions φiη0=δ0 , φ

i
η1=η0+δ1

, · · · , φiηk−1=ηk−2+δk−1
. Finally, we can rewrite the func-

tions f i in Eq. (1) by combining the functions φiηj , j ∈ [0, k − 1] defined on
the smaller chunks of input bit-string. During sampling, we calculate the func-
tions φ0ηj , φ

1
ηj , · · · , φ

m−1
ηj first before calculating functions φ0ηj+1

, φ1ηj+1
, · · · , φm−1ηj+1

.

If the sample is found after calculating φ0ηj , φ
1
ηj , · · · , φ

m−1
ηj we stop the sam-

pling process and output the sample. If the chunks are big enough, we can

say from our previous observation that evaluating only the first functions i.e
φ0η0 , φ

1
η0 , · · · , φ

m−1
η0 will be sufficient to find a sample with very high probability.

We summarize our sampling algorithm in Algo. 1. It is evident that the if-else
blocks in our sampling algorithm inherently introduce some information leakage.
We discuss this in Section 3.4.

As mentioned before, for this Gaussian distribution P ′32 ≈ 2−28, the program
executes the for loop in Algo. 1 more than once with probability 2−28, which
makes it nearly a constant-time algorithm.

Algorithm 1: Discrete Gaussian sampling algorithm (with k chunks
δ0, δ1, · · · , δk−1)

input : Random bit string r0r1 · · · rn−1

output: Sample value s
1 for i = 0 to k − 1 do
2 Fetch next δi random bits;
3 Compute functions φ0

ηi , φ
1
ηi , · · · , φ

m−1
ηi ;

4 if none of the functions return null then
5 Compute s from the sample bits;
6 return s

7 else
8 Continue;

9 return FAIL

To compare the efficiency gained from dividing the input bit string, we exe-
cuted our sampler (Algo. 1) for different chunk sizes δ0. The results are given in
Table 1.

Chunk size δ0 32 64 96 128

Probability of not finding a sample P ′ 2−28 2−59 2−91 2−122

Clock-cycles
(excluding random number generation) 1649 3500 6190 10527

Table 1. Time to generate samples for different chunk size of input bit-string

3.4 Security

The optimization described in Section 3.3 turns the fully constant-time algo-
rithnm to a partially constant-time algorithm. The if-else block in Algo. 1 reveals
to the attacker a range of values [0− a], a ∈ [0, τσ] where our generated sample
lies. In our previous example of the Gaussian distribution with σ ≈ 6.15543, if
we divide the bit string in chunks of 32 bits i.e δ0 = 32, the smallest interval
that the attacker can guess using timing information is [0 − 39] i.e [0 − 6.5σ]
(this value depends on the DDG tree. In our case, the maximum sample value
within 32 levels of the DDG tree is 39). This is in contrast with the shuffling
method [RRVV14] which actually leaks the values of some of the samples and the
leakage could be exploited to mount timing attacks [Pes16]. We argue that for
such a sufficiently wide range of values this leaked information offers no partic-
ular advantage to the attacker. First of all, to the best of our knowledge there is
no attack which will gain an advantage with the knowledge of a shorter range of
samples except the exhaustive search and Arora-Ge [AG11] linearization attack.
In both of these cases, for sufficiently wide interval (in our example [0 − 6.5σ])
computational complexity or the number of LWE samples required is higher
than the best known algorithm to solve LWE. Moreover, Bai et al. [BLL+15]
showed that using Rényi divergence instead of the classical statistical distance
as a security measure, sampling within a shorter interval instead of a large in-
terval of [0 − 12σ] does not harm the security. Here, we want to mention that
our algorithm still outputs samples within [0− 12σ] but this is not always nec-
essary. According to the requirements of the scheme, the width of the intervals
can be increased or decreased by dividing the input random bit-string in smaller
or bigger chunks respectively. Naturally, one can always revert the optimization
from Section 3.3 to achieve a fully constant-time sampler.

4 Performance and comparison

In this section, we compare our method with the CDT based constant-time
algorithm using a C implementation. For the performance measurement, we use
a discrete Gaussian distribution with standard deviation σ ≈ 6.15543. In the
next section, we justify our choice of this standard deviation.

4.1 Splitting the Gaussian distribution

The BLISS-I [DDLL13] signature scheme uses a standard deviation σ = 215.
However, as memory requirement to store the precomputed table increases with
increase in σ, sampling from a Gaussian distribution with such a large standard
deviation is difficult due to large memory requirement. Also, due to the large
precomputed tables, generating samples securely is highly inefficient. Pöppelman
et al. [PDG14] described a method to split this large standard deviation into
two Gaussian distributions with smaller standard deviation and later combin-
ing them to create a distribution with large standard distribution. They used

Algorithm Time (in clockcycles)

Excluding random number generation

CDT sampling
λ = 64 λ = 128

9363 16060

Our algorithm
δ0 = 32 δ0 = 64 δ0 = 96 δ0 = 128

1649 3500 6190 10527

Including random number generation
(SHA-512)

CDT sampling
λ = 64 λ = 128

22361 38509

Our algorithm
δ0 = 32 δ0 = 64 δ0 = 96 δ0 = 128

6803 13530 22212 31065

Table 2. Comparison of clock cycles for different constant time sampling with similar
probability of leakage for σ ≈ 6.15543 to generate 64 samples on an 3.3 GHz intel
i5-Haswell processor using only one core. The SHA-512 implementation from openssl
1.0.1e has been used for pseudo-random number generation.

Kullback-Liebler divergence, which is Rënyi divergence of order 1 [BLL+15] in-
stead of the more usual notion of statistical distance to show that the distribution
created in this way is very close to the actual distribution. The formula to cal-
culate KL divergence of a distribution P from the target distribution Q is shown
below.

DKL(P ||Q) =
∑
i∈S

ln
(P (i)

Q(i)

)
P (i) (4)

We extend their work by splitting the Gaussian distribution further in 4
smaller distributions. We use Algo. 2 instead of a theoretical approach to main-
tain the desired divergence.

We discuss the method by Pöppelman et al. very briefly here. To generate
a sample x ← Dσ, two samples x1, x2 ← Dσ1 are generated, and combined as
x1 + k1x2. The σ, σ1 and k1 are related as σ1 = σ√

1+k21
, for σ = 215, k1 = 11

and σ1 ≈ 19.5. The Kullback-Leibler divergence of the sampled data created in
this way from the actual distribution is ≤ 2−128. We split the standard deviation
one more level. We split σ1 such that σ2 = σ1√

1+k22
. Consequently, to generate

a sample x ← Dσ we generate 4 samples x1, x2, x3, x4 ← Dσ2
and combine

them as x = (x1 + k2x2) + k1(x3 + k2x4) .

Algo. 2 is used to calculate KL-divergence with two level splitting. After
experimenting with different values of τ1 and k2 we found that setting τ1 = 14
and k2 = 3 produces σ2 ≈ 6.15543 which has the desired divergence from a
Gaussian distribution with σ = 215.

Algorithm 2: Calculation of Kullback-Liebler divergence

1 divergence← 0;
2 for i = 0 to 12 · σ do
3 P(i) ← 0;
4 for all possible (x1, x2, x3, x4) ∈ [0, τ1σ2], s.t. i =

(x1 + k2 · x2) + k1 · (x3 + k2 · x4), [k1 = 11, k2 = 3] do

5 P (i)← P (i) +
∏4
j=1Dσ2(xj);

6 Q(i) = Dσ(i);

7 divergence← divergence + ln
(
P(i)
Q(i)

)
P(i);

8 return divergence

4.2 Performance

Our sampling algorithm takes 1649 clock cycles (δ0 = 32, for other values of
δ0 refer to Table 2) to generate 64 samples from σ ≈ 6.15543 on an Intel R©

i5-Haswell processor running CentOS. Per sample, 103 clock cycles are needed
for σ = 215, used in BLISS-I [DDLL13]. If we include the cost to generate the
pseudo-random numbers using SHA-512 from openssl 1.0.1e, it takes 6803 clock
cycles to generate 64 samples with σ = 32 and 425 clock cycles to generate
a single sample with σ = 215. Our high level implementation in C is only
optimized by -O3 optimization of gcc. For efficiency, the Boolean functions f i in
Section 3.1 used to generate samples should be minimized. We used the simple
logic minimization tool ESPRESSO for this purpose1.

As mentioned in Section 2.3, non-constant time methods can be converted to
timing-attack resistant sampling methods using different countermeasures, which
sacrifices their efficiency for security. Also, Howe et al. [HKR+16] has compared
and analyzed such constant-time instantiations of different sampling algorithms.
Their work shows that Knuth-Yao sampling with shuffle and constant-time cu-
mulative distribution table (CDT) based methods are the most efficient for
constant-time sampling. In this section, we compare our method with two of
these methods for a similar probability of leakage.

The constant-time CDT sampler accesses all the elements of the CDF table
for each sample. However, for a fair comparison with our method, instead of
accessing the full table for each sample, we let the sampling method access each
element for a part of the table and if the sample is not found the sampling method

1 The code is available in https://github.com/Angshumank/const_gauss

searches in a bigger part of the table. For instance, in our previous example with
σ ≈ 6.15543 and δ0 = 32, initially we let the sampling algorithm search in
an interval of [0 − 39] or [0 − 6.5σ]. If the sample is not found in that interval,
the sampling process searches in a bigger interval of [0 − 56] or [0 − 9σ] and
so on. This method ensures the probability of leakage is similar to our method.
Since the CDT method performs comparisons between the random string and
the table entries, we use either 64-bit or 128-bit comparisons taking into account
the 64-bit word length of the processor.

We implemented both methods in the C programming language and compiled
with -O3 flag in gcc-4.8 on a CentOS desktop with intel core-i5-Haswell processor.
The results are shown in Table 2.

The Knuth-Yao sampler with shuffling proposed by Roy et al. [RRVV14] is
another method to prevent information leakage from the sampler. The method
is described briefly in Section 2.3. The method caches the first k columns of
probability matrix in a table with 2k entries. To compare it with our method
for a similar probability of leakage with our sampler with δ0 = 32, we need
k = 32 which requires 232 memory and a massive overhead for linear searching
the table. Moreover, Bruinderink et al. [GBHLY16] suggest that this method
only increases the complexity of their atack. Peter Pessl [Pes16] exploited this
weakness of the sampler to break the BLISS signature scheme with an increased
number of signatures.

Results using SIMD instructions New generation of Intel R© (starting with
Sandy Bridge) and AMD R© (starting with Bulldozer) provides support for Ad-
vanced Vector Instructions (AVX). These instructions are an extension of the
x86 instruction set architecture and facilitates SIMD processing on data of width
up to 128 bits. Later, starting with Haswell processors, Intel R© introduced the
AVX2 instruction set which increased this bit width to 256 bits. As described in
Section 3.2, the throughput of our sampling algorithm can be readily increased
by using AVX instruction sets. In Table 3, we report the time taken by our sam-
pler to produce 256 samples at a time using AVX2 instructions. These results
show almost 2x speed-up of our sampling algorithm using AVX2 instructions.

Chunk size δ0 32 64 96 128

Clock-cycles
(excluding random number generation) 2789 6478 11565 19605

Table 3. Time to generate 256 samples using AVX2 instructions.

Results in hardware To evaluate the performance of the proposed constant-
time sampling algorithm in hardware, we designed the architecture of Fig. 5.
We assume that the random bits are generated by an external source and re-
ceived by the architecture in a serial fashion. The 112-bit register random buffer
stores the input random bits. A counter is used to record the number of random
bits received. After random buffer is filled with the input random bits (detected
by the counter), the enable signal becomes true, and then the random bits are
processed by the parallel combinational circuits Block-0 to Block-3. These cir-
cuits implement the Boolean expressions of the sample-bits. In our architecture,
Block-0, Block1, Block2 and Block-3 compute on the random bits of random
buffer with the index ranges 0-31, 27-58, 54-86 and 80-111 respectively. All of
these blocks compute in parallel and the output of the sampling operation is
selected using the output-multiplexer.

&

&

&

&

en

en

en

en

output

Block 0

Block 1

Block 2

Block 3

R
an

d
o
m

 B
u
ff

er

random bits

Fig. 5. Hardware architecture for constant-time sampling

Assuming an 8-bit port for random number input, it requires 14 cycles to
fill random buffer. Only one cycle is spent by the parallel blocks to evaluate the
Boolean expressions of the sample calculation. Hence, the architecture requires
15 cycles to finish one sampling operation.

We evaluated the architecture on a Xilinx Virtex-6 FPGA xc6vcx75t-2ff484.
As per place-and-route report, the architecture consumes 997 slice registers and
2,682 slice LUTs and has a critical path delay of 4.9ns.

5 Evaluation

The implementation from Section 3 follows best-practice guidelines for constant-
time code: constant program flow (no conditional branches), no secret-dependent
memory accesses, and no usage of integer division nor multiplication operations.
However, the fact that the high-level code looks constant time is no guarantee
for the actual execution being constant time. Any piece in the tool chain may
introduce a source of timing variability: in an extreme case, a very clever compiler

would substitute the whole constant-time sampler with a faster, non constant-
time one. Compilers and COTS architectures are currently designed to optimize
for speed, code size, energy or power, but not security.

Thus, we resort to actual measurements to evaluate whether the resulting
executable code runs in constant time on our platform or not. The evaluation of
this section is empirical in nature and thus is bounded to the specific architecture,
compiler and platform used.

5.1 Methodology

To assess timing variability we use leakage detection tests. Leakage detection
tests were introduced by Coron, Naccache and Kocher [CKN00,CNK04] shortly
after the introduction of DPA [KJJ99] and were targeted towards hardware side-
channel evaluations. Nowadays, this technique has been proven to be useful also
for timing variability evaluation. In this section, we follow the methodology and
test code from [RBV17].

Leakage detection for PRNGs Generally speaking, we want to assess whether
or not an adversary gets any advantage in distinguishing output samples from
timing side-channel information. For that, we will deploy timing leakage detec-
tion tests to detect dependency between the execution time of the sampling
procedure and input value to the Gaussian sampler. If the test fails to detect
any dependency, the implementation is deemed secure. Note that the opposite
outcome (there is detected leakage) is a necessary, but not sufficient, condition
for an attack to work.

We design the timing leakage detection test as follows. We define two classes
based on the input seed to the Gaussian sampler (that is, the input seed is
treated as secret, and we aspire to detect any leakage dependent on this secret
value). The two classes are defined as this: one class corresponds to a fix seed
value; the other class is defined as a random seed value (fix-vs-random test).
This choice, in contrast to a fix-vs-fix test, is expected to capture a broad set of
leakages [DS16].

5.2 Platform

We perform the following experiments on the same platform from Section 4.2.
We note that cycle counts are performed with the high-resolution Time Stamp
Counter (RDTSC instruction).

5.3 Constant-time version

The first implementation is the constant-time variant of Section 3.2. This version
does not early abort and is meant to be constant time by design. We carry the
evaluation to confirm that this is actually the case, i.e., the compiler or any other
micro-architectural components do not introduce any source of timing variability.

7350 7400 7450 7500 7550 7600 7650 7700 7750
clock cycles

0

0.2

0.4

0.6

0.8

1

cd
f

Fig. 6. Timing distribution cdfs for two classes in a fix-vs-random timing leakage de-
tection test. Constant time sampler

In Fig. 6 we plot the empirical cumulative distribution functions for both
timing distributions, corresponding to the two classes on input values (fix or
random). The two distributions are actually indistinguishable and their cdfs
overlap. We can see that the distributions are centered around 7450 cycles and
there is a small class-independent variability (≈ 100 cycles). This measurement
noise could be caused by spurious interruptions by the operating system, or by
the processor itself (for example, due to branch mis-predictions). The leakage
detection t-test statistic does not surpass the threshold of ±4.5 and hence does
not detect any leakage with up to 6 million iterations of the bitsliced sampling
process. Various pre-processing options were explored with identical results.

We also perform a Kolmogorov-Smirnov (KS) test. The advantage is that
it may detect that two distributions are different even if they share the same
mean. The value of the statistic is 0.000625 which is lower than the cutoff value
0.001282. Thus, the KS test cannot reject the null hypothesis that both distri-
butions are identical.

5.4 Early-abort sampler

We then proceed to test the optimized variant of Section 3.3. This version early-
aborts if all samples are found within the first tree levels. The two cdfs are plotted
in Fig. 7. The two distributions look indistinguishable, but the t-test can indeed
separate both distributions. After 10 million measurements, the t-statistic takes
value 330, well above the threshold ±4.5. Thus, the test clearly detects leakage.

We augment the study with a deeper investigation on the leakage source. The
reasonable assumption is that the leakage comes from the early abort. We want

5000 5100 5200 5300 5400 5500
clock cycles

0

0.2

0.4

0.6

0.8

1

cd
f

Fig. 7. Timing distribution cdfs (analogous to Fig. 6). Early-abort sampler

to ensure that the timing information leaked to the adversary is only whether
the random walk terminated early or not. To test this, we devise two more
experiments, aiming at decomposing the timing variability.

Inter-stage variability In this first test, we define the two classes as follows:
one class contains random elements that always succeed in the first level of the
tree (first stage); the other class contains random elements that always succeed
in the second level (but not in the first). We expect to see severe leakage. In
Fig. 9 we can see the cdfs of both distributions. The two classes are clearly
separable. The t-statistic gives values around 600 with only 300 000 samples,
indeed confirming the hypothesis of severe leakage.

Intra-stage variability The second test measures timing variability between
inputs that are known to succeed in the first stage. That is, we craft input at
random under the condition that the sampling will succeed in the first stage.
Any leakage detected would indicate that not only whether or not the random
walk terminated early leaks, but also some additional information on sample
values is leaked. The expected behavior is naturally that no leakage is detected.

In Fig. 9 we plot the cdfs for both class-conditional distribution. The distri-
butions are apparently indistinguishable. This is corroborated with a t-test. The
t-statistic achieves a value of 2.7 after 100 million iterations, not surpassing the
threshold of ±4.5 and hence not being able to disprove the null hypothesis of
“leakage not present”. The K-L test does not detect leakage either.

5000 5200 5400 5600 5800
clock cycles

0

0.2

0.4

0.6

0.8

1

cd
f

Fig. 8. Timing distribution cdfs. Early-abort sampler, inter-stage variability

1000 2000 3000 4000 5000
clock cycles

0

0.2

0.4

0.6

0.8

1

cd
f

Fig. 9. Timing distribution cdfs. Early-abort sampler, intra-stage variability

6 Conclusion and Discussion

In this paper, we present a constant-time version of the Knuth-Yao sampling
algorithm. We also present various optimizations to make the sampling algorithm
many times faster than existing leakage resistant discrete Gaussian sampling
algorithms. These optimizations do not require any special hardware and can be
implemented on most modern processors.

We are aware that though this method does not require large data memory
to store large precomputed tables, it requires a larger program memory than
other methods, which is not so much problem for desktop computers as it is
for devices with very limited resources. Future research will try to reduce the
program memory by possibly tweaking the minimization procedure of Boolean
functions or devising encoding schemes to reduce the storage of program memory.
These methods may sacrifice its efficiency to some extent but will be suitable
for devices with limited resources.

There are some simple optimizations that could be applied to make the
method more efficient. For example, as our method does not require frequent
external-memory accesses and has a high degree of parallelism, it can be ex-
ploited to design fast constant-time discrete Gaussian sampling on multi-core
processors. Also, minimizations of the Boolean functions f i in Section 3.1 has a
direct impact on the efficiency of the sampling algorithm. There is a possibility to
use different tools to get a better minimization of the Boolean functions, which
will immediately translate into a faster sampling process. Also, we can see from
our results in Table 2 that generating pseudo-random numbers using SHA-512
takes most of the time in the whole sampling operation. It will be interesting
to test the performance of the sampler using different pseudo-random number
generators. We leave this for further research.

7 Acknowledgements

This work was supported in part by the Research Council KU Leuven: C16/15/058.
In addition, this work was supported in part by the Flemish Government, by the
Hercules Foundation AKUL/11/19, and by the European Commission through
ICT programme under contract through the Horizon 2020 research and innova-
tion programme under contract No H2020-ICT-2014-644371 WITDOM, H2020-
ICT-2014-644209 HEAT, H2020-ICT-2014-645622 PQCRYPTO and Cathedral
ERC Advanced Grant 695305.

References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe
in the standard model. In Henri Gilbert, editor, Advances in Cryptology –
EUROCRYPT 2010: 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, French Riviera, May 30
– June 3, 2010. Proceedings, pages 553–572. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation
in fixed dimension and shorter-ciphertext hierarchical ibe. In Proceedings
of the 30th Annual Conference on Advances in Cryptology, CRYPTO’10,
pages 98–115, Berlin, Heidelberg, 2010. Springer-Verlag.

[ABB+16] Sedat Akleylek, Nina Bindel, Johannes Buchmann, Juliane Krämer, and
Giorgia Azzurra Marson. An efficient lattice-based signature scheme

with provably secure instantiation. In David Pointcheval, Abderrah-
mane Nitaj, and Tajjeeddine Rachidi, editors, Progress in Cryptology
– AFRICACRYPT 2016: 8th International Conference on Cryptology
in Africa, Fes, Morocco, April 13-15, 2016, Proceedings, pages 44–60.
Springer International Publishing, Cham, 2016.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pppelmann, and Peter Schwabe. Post-
quantum key exchange - a new hope. In Proceedings of the 25th USENIX
Security Symposium, pages 327–343, 2016.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of
errors. In Proceedings of the 38th International Colloquim Conference on
Automata, Languages and Programming - Volume Part I, ICALP’11, pages
403–415, Berlin, Heidelberg, 2011. Springer-Verlag.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended ab-
stract). In Proceedings of the Twenty-eighth Annual ACM Symposium on
Theory of Computing, STOC ’96, pages 99–108, New York, NY, USA,
1996. ACM.

[BCD+16] Joppe Bos, Craig Costello, Leo Ducas, Ilya Mironov, Michael Naehrig, Va-
leria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take
off the ring! practical, quantum-secure key exchange from lwe. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, pages 1006–1018, New York, NY, USA, 2016.
ACM.

[BCG+14] Johannes Buchmann, Daniel Cabarcas, Florian Göpfert, Andreas Hülsing,
and Patrick Weiden. Discrete ziggurat: A time-memory trade-off for sam-
pling from a gaussian distribution over the integers. In Revised Selected
Papers on Selected Areas in Cryptography – SAC 2013 - Volume 8282,
pages 402–417, New York, NY, USA, 2014. Springer-Verlag New York,
Inc.

[BCNS15] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-quantum key
exchange for the tls protocol from the ring learning with errors problem.
In 2015 IEEE Symposium on Security and Privacy, pages 553–570, May
2015.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Trans. Comput.
Theory, 6(3):13:1–13:36, July 2014.

[Bih97] Eli Biham. A fast new des implementation in software. In Eli Biham, edi-
tor, Fast Software Encryption: 4th International Workshop, FSE’97 Haifa,
Israel, January 20–22 1997 Proceedings, pages 260–272. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997.

[BLL+15] Shi Bai, Adeline Langlois, Tancrède Lepoint, Damien Stehlé, and Ron Ste-
infeld. Improved security proofs in lattice-based cryptography: Using the
rényi divergence rather than the statistical distance. In Tetsu Iwata and
Jung Hee Cheon, editors, Advances in Cryptology – ASIACRYPT 2015:
21st International Conference on the Theory and Application of Cryptology
and Information Security,Auckland, New Zealand, November 29 – Decem-
ber 3, 2015, Proceedings, Part I, pages 3–24. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2015.

[BLN+16] Paulo S. L. M. Barreto, Patrick Longa, Michael Naehrig, Jefferson E. Ricar-
dini, and Gustavo Zanon. Sharper ring-lwe signatures. Cryptology ePrint
Archive, Report 2016/1026, 2016. http://eprint.iacr.org/2016/1026.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switch-
ing from classical gapsvp. In Reihaneh Safavi-Naini and Ran Canetti, ed-
itors, Advances in Cryptology – CRYPTO 2012: 32nd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
pages 868–886. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[BV11] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic en-
cryption from (standard) lwe. In 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, pages 97–106, Oct 2011.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees,
or how to delegate a lattice basis. In Henri Gilbert, editor, Advances in
Cryptology – EUROCRYPT 2010: 29th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, French Riv-
iera, May 30 – June 3, 2010. Proceedings, pages 523–552. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[CKN00] Jean-Sébastien Coron, Paul C. Kocher, and David Naccache. Statistics and
secret leakage. In Financial Cryptography, volume 1962 of LNCS, pages
157–173. Springer, 2000.

[CNK04] Jean-Sébastien Coron, David Naccache, and Paul C. Kocher. Statistics
and secret leakage. ACM Trans. Embedded Comput. Syst., 3(3):492–508,
2004.

[DB15] Chaohui Du and Guoqiang Bai. Towards efficient discrete gaussian sam-
pling for lattice-based cryptography. In 2015 25th International Confer-
ence on Field Programmable Logic and Applications (FPL), pages 1–6,
Sept 2015.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal gaussians. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO 2013: 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013.
Proceedings, Part I, pages 40–56. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2013.

[DG14] Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from
discrete gaussians for lattice-based cryptography on a constrained de-
vice. Applicable Algebra in Engineering, Communication and Computing,
25(3):159–180, 2014.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, Nov 1976.

[DN12] Léo Ducas and Phong Q. Nguyen. Faster gaussian lattice sampling us-
ing lazy floating-point arithmetic. In Xiaoyun Wang and Kazue Sako,
editors, Advances in Cryptology – ASIACRYPT 2012: 18th International
Conference on the Theory and Application of Cryptology and Information
Security, Beijing, China, December 2-6, 2012. Proceedings, pages 415–432.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[DS16] François Durvaux and François-Xavier Standaert. From improved leakage
detection to the detection of points of interests in leakage traces. In Marc
Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EU-
ROCRYPT 2016 - 35th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Vienna, Austria, May 8-
12, 2016, Proceedings, Part I, volume 9665 of Lecture Notes in Computer
Science, pages 240–262. Springer, 2016.

[GBHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval
Yarom. Flush, gauss, and reload – a cache attack on the bliss lattice-
based signature scheme. In Benedikt Gierlichs and Axel Y. Poschmann,
editors, Cryptographic Hardware and Embedded Systems – CHES 2016:
18th International Conference, Santa Barbara, CA, USA, August 17-19,
2016, Proceedings, pages 323–345. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2016.

[Gen09] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis,
Stanford University, CA, USA, Stanford, CA, USA, 2009. AAI3382729.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for
hard lattices and new cryptographic constructions. In Proceedings of the
Fortieth Annual ACM Symposium on Theory of Computing, STOC ’08,
pages 197–206, New York, NY, USA, 2008. ACM.

[HKR+16] J. Howe, A. Khalid, C. Rafferty, F. Regazzoni, and M. O’Neill. On practical
discrete gaussian samplers for lattice-based cryptography. IEEE Transac-
tions on Computers, PP(99):1–1, 2016.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99,
19th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes
in Computer Science, pages 388–397. Springer, 1999.

[KS09] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant aes-
gcm. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware
and Embedded Systems - CHES 2009: 11th International Workshop Lau-
sanne, Switzerland, September 6-9, 2009 Proceedings, pages 1–17. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009.

[KY76] D. Knuth and A. Yao. Algorithms and Complexity: New Directions and
Recent Results, chapter The complexity of nonuniform random number
generation. Academic Press, 1976.

[LP11] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for
lwe-based encryption. In Aggelos Kiayias, editor, Topics in Cryptology –
CT-RSA 2011: The Cryptographers’ Track at the RSA Conference 2011,
San Francisco, CA, USA, February 14-18, 2011. Proceedings, pages 319–
339. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances
in Cryptology – EUROCRYPT 2010: 29th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, French
Riviera, May 30 – June 3, 2010. Proceedings, pages 1–23. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012: 31st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Cambridge, UK, April 15-
19, 2012. Proceedings, pages 738–755. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and
efficient one-way functions. computational complexity, 16(4):365–411, 2007.

[PDG14] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-
based signatures on reconfigurable hardware. In Lejla Batina and Matthew

Robshaw, editors, Cryptographic Hardware and Embedded Systems – CHES
2014: 16th International Workshop, Busan, South Korea, September 23-
26, 2014. Proceedings, pages 353–370. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

[Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In
Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010: 30th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010.
Proceedings, pages 80–97. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

[Pes16] Peter Pessl. Analyzing the shuffling side-channel countermeasure for
lattice-based signatures. In Orr Dunkelman and Somitra Kumar Sanad-
hya, editors, Progress in Cryptology – INDOCRYPT 2016: 17th Interna-
tional Conference on Cryptology in India, Kolkata, India, December 11-
14, 2016, Proceedings, pages 153–170. Springer International Publishing,
Cham, 2016.

[PZ03] J. Proos and C. Zalka. Shor’s discrete logarithm quantum algorithm for
elliptic curves. eprint arXiv:quant-ph/0301141, January 2003.

[RBV17] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede. Dude, is my code
constant time? In 2017 Design, Automation & Test in Europe Conference
& Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 2017,
page 14, 2017.

[Reg04] Oded Regev. New Lattice-based Cryptographic Constructions, volume 51,
pages 899–942. ACM, New York, NY, USA, November 2004.

[RRVV14] Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Compact and side channel resistant discrete gaussian sampling.
Cryptology ePrint Archive, Report 2014/591, 2014. https://eprint.

iacr.org/2014/591.pdf.
[RSD06] Chester Rebeiro, David Selvakumar, and A. S. L. Devi. Bitslice imple-

mentation of aes. In Proceedings of the 5th International Conference on
Cryptology and Network Security, CANS’06, pages 203–212, Berlin, Hei-
delberg, 2006. Springer-Verlag.

[RVV14] Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Verbauwhede. High
precision discrete gaussian sampling on fpgas. In Revised Selected Papers
on Selected Areas in Cryptography – SAC 2013 - Volume 8282, pages 383–
401, New York, NY, USA, 2014. Springer-Verlag New York, Inc.

[Saa15] Markku-Juhani O. Saarinen. Gaussian sampling precision in lattice cryp-
tography. Cryptology ePrint Archive, Report 2015/953, 2015. http:

//eprint.iacr.org/2015/953.
[Sho97] Peter W. Shor. Polynomial time algorithms for prime factorization and dis-

crete logarithms on a quantum computer. SIAM J. Sci. Statist. Comput.,
26:1484, 1997.

[WHCB13] Patrick Weiden, Andreas Hülsing, Daniel Cabarcas, and Johannes Buch-
mann. Instantiating treeless signature schemes. Cryptology ePrint Archive,
Report 2013/065, 2013. https://eprint.iacr.org/2013/065.pdf.

