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Abstract Sampling from discrete Gaussian distribution has applica-
tions in lattice-based post-quantum cryptography. Several efficient solu-
tions have been proposed in the recent years. However, making a Gaus-
sian sampler secure against timing attacks turned out to be a challenging
research problem. In this work, we observed an important property of
the input random bit strings that generate samples in Knuth-Yao sam-
pling. We delineate a generic step-by-step method to instantiate a dis-
crete Gaussian sampler of arbitrary standard deviation and precision by
efficiently minimizing the Boolean expressions by exploiting this prop-
erty. Discrete Gaussian samplers generated in this method can be up
to 37% faster than the state of the art method. Finally, we show that
the signing algorithm of post-quantum signature scheme Falcon using
our constant-time sampler is at most 33% slower than the fastest non-
constant time sampler.

1 Introduction

Hard lattice problems have been used to construct public-key cryptosystems
since Ajtai’s [2] seminal work in 1996. Shortly after, the discovery of NTRU [20]
and Learning with errors (LWE) [29] further established lattice-based cryptogra-
phy as a viable alternative to the popular RSA or elliptic curve based public-key
cryptography. In the past decade, the looming threat of quantum computers and
widely believed resistance of lattice problems against quantum computers has
given the research in lattice-based cryptography a major thrust. Among these
constructions the cryptosystems based on LWE (or its’ ring variant RLWE [24])
has emerged to be most popular mostly due to their simple operations, security
evaluation and strong worst case to average case reduction. Therefore, it is not
a coincidence that in the NIST’s recent standardization call for post-quantum
cryptographic protocols [1], a majority of the submitted protocols are based on
LWE or RLWE.

These problems usually require an error term to hide its secret keys. Tra-
ditionally, these error terms are sampled from a Gaussian distribution which
itself is a non-trivial task. A lot of effort [26,16,14,9,17,32] have been devoted



into generating these Gaussian samples efficiently. However, in almost all these
methods the sampling process runs in non-constant time which opens up new
avenues of side-channel attacks. Unfortunately, except for a few simple counter-
measures [7,31], it was not known how to generate Gaussian samples that can
resist these attacks. So the current trend is to generate samples from distributions
e.g the binomial distribution [4,8] or the uniform random distribution [11,12,22]
where it is easy to generate samples in constant-time and model those distribu-
tions as Gaussian distribution during security evaluation of the cryptosystem.
This works well with encryption and key-exchange schemes but for signature
schemes [3,5,15] this leads to larger key-sizes and costlier computations. The
work in [21] introduced constant-time discrete Gaussian sampling by evaluating
Boolean expressions. The efficiency of this sampling method was further im-
proved by using bit-slicing. In the current work, we look back at this method to
further improve the speed of this sampling algorithm.

2 Our Contribution

Our contributions in this paper can be summarized as below,

1. The work in [21] established the concept of constant-time discrete Gaussian
sampling by evaluating Boolean expressions. However, that work did not pro-
vide concrete details of generating these Boolean functions. Here, we provide
a detailed description of how to create these Boolean functions that maps
random bits to the samples of an arbitrary discrete Gaussian distribution.

2. By carefully analyzing the the Knuth-Yao sampling for discrete Gaussian
we observed a special property of the input random strings that generate
samples. We show how we can take the leverage of this property to minimize
the Boolean functions efficiently. This minimization technique can speed up
the sampling by up to 37% compared to the simple minimization technique
in [21].

3. Finally, we show that using Gaussian samples in a post-quantum signature
algorithm can be both very practical and secure. We use Falcon signature
algorithm to show that the performance of the algorithm does not degrade
much with respect to the fastest non constant-time sampler and stays within
practical limit even after we replace the non constant-time sampler with our
constant-time sampler.

Organization of the paper: In Sec. 3, we provide some preliminaries which are
useful to understand the rest of the paper. Sec. 4, briefly describes the constant-
time sampler introduced in [21]. Sec. 5, contains description of our Boolean
expression generation and efficient minimization techniques. Sec. 6 provides per-
formance comparison of Falcon signature scheme with non constant-time and
constant-time samplers. We draw conclusion in Sec. 7.
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3 Preliminaries

In this section, we define different notations which we are going to use through-
out this work. Later, we also present a brief description of the discrete Gaussian
distribution and Knuth-Yao sampling which is used to generate samples from
discrete Gaussian distributions. We define Z∗ = {0}∪Z+. All the binary strings
are evaluated in the reverse order, i.e binary evaluation of n-bit string b =
bn−1bn−2 · · · b1b0 with b0 being the LSB, is 2n−1 ·b0+2n−2 ·b1+· · ·+2·bn−2+bn−1.
Boolean and, or, and not operations are denoted by the symbols &, |, ¯respec-
tively. The terms Boolean function and Boolean expression are used interchange-
ably. We use fη to denote Boolean functions that maps η Boolean variables to
a single Boolean variable. If b is a Boolean variable then we denote repetition of
b, i times b . . . b︸ ︷︷ ︸

i

by bi. Also, we denote a Boolean string of length i where each

variable is either 0 or 1 by (0/1)i. For the binary trees, we denote the level where
children of the root exist as the 0-th level, children of these nodes reside at 1-st
level and so on. Hence, starting from root we need i+ 1 steps to reach nodes at
level i. We assume that the standard deviations in our sampler are small and
our sampler can be used as a base sampler in [25,28] where samples from discrete
Gaussian distribution with large standard deviation are generated by combining
samples from discrete Gaussian distribution with small standard deviation. We
also use σ to denote the standard deviation of a Gaussian distribution.

3.1 Discrete Gaussian distribution

The probability distribution function of a discrete Gaussian distribution is given
as,

Dσ(X = z) =
1

σ
√

2π
e−(z−c)

2/2σ2

.

Here, X is a random variable defined over Z. In this work, we always consider
discrete Gaussian distributions that are centered around 0 i.e c = 0. Due to the
symmetry of probability density function it is sufficient to generate samples over
Z+ and use a random bit to determine the sign. For most practical scenario, all
the samples are generated in the interval [0, τσ], where τ is a positive constant
known as tail-cut factor. Also, again for practical reasons the probabilities Dσ(x)
are calculated only up to n-bit precision, we denote this as Dn

σ (x).

3.2 Knuth-Yao Sampling

Dwarakanath and Galbraith [17] first discoursed on the idea of using the well
known Knuth-Yao [23] sampling method to generate samples from discrete Gaus-
sian distributions. This method can be divided into two stages. In the precom-
putation stage, for a particular standard deviation this method first creates a
probability matrix of dimension (τσ + 1) × n where a row consists of Dn

σ (v) if
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Figure 1: Probability matrix and corresponding DDG tree for σ = 2 and n = 6. Red,
blue and green nodes denote the root, intermediate and leaf nodes respectively.

v = 0 and 2 · Dn
σ (v) for all other v ∈ [1, τσ]. Using this probability matrix a

binary tree named discrete distribution generation (DDG) tree is created such
that, hamming weight of i-th column of the probability matrix equals the num-
ber of internal nodes in the i-th level of the tree and each leaf node contains a
sample value in the sample space [0, τσ]. An example is shown in Fig. 1. During
sampling, a random walk is started from the root node using random bits at ev-
ery step to decide between the bottom or top subtree. The sampling stops when
this random walk hits a leaf node and the sample value associated with the leaf
node is returned as sample. It is worthwhile to note here that for a distribution
D with finite support s.t

∑
x∈Supp(D) Pn(x) = 1 where Pn(x) is the probability

of x up to n-bit floating point precision under the distribution D, the DDG tree
is finite and it is possible to generate samples that follow the distribution D ex-
actly. Whereas, for distributions like discrete Gaussian distributions with infinite
support the DDG tree grows infinitely and it is not possible to generate samples
that follow the discrete Gaussian distribution exactly. In this case, the τ and n
is chosen such that the statistical distance between the generated distribution
and the actual distribution is lower than 2−λ where λ is a security parameter.

In the following section, we describe an algorithm to generate samples from
discrete Gaussian distribution using Knuth-Yao sampling efficiently.

3.3 Column scanning Knuth-Yao sampling

The column scanning Knuth-Yao sampling algorithm from [32] generates the
DDG tree on-the-fly, thus making the sampling process time and memory effi-
cient. This is shown in Alg. 1. We denote the Hamming weight of column i of
the probability matrix P as hi. Define, GAPi as,

GAPi = (b0 · 2i + b1 · 2i−1 + · · ·+ bi)− (h0 · 2i + h1 · 2i−1 + · · ·+ hi) (1)
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Algorithm 1: Knuth-Yao column scanning Sampling

input : Probability matrix P
output: Sample value s

1 d← 0;// Distance between the visited and the rightmost internal node

2 Hit← 0;// 1 when sampling process hits a terminal node

3 col← 0;// column number of probability matrix

4 while Hit=0 do
5 r ← RandomBit();
6 d← 2 ∗ d+ r;
7 for row=MAXROW down to 0 do
8 d← d− P [row][col];
9 if d=-1 then

10 s← row;
11 Hit← 1;
12 ExitForLoop();

13 col← col + 1;

14 return s

here bj is the output of RandomBit() during the j-th iteration of the while loop
in Alg. 1. It is evident from the above algorithm that a sample is found in the
i-th column if and only if GAPi < 0 and GAPi′ ≥ 0, 0 ≤ i′ < i

4 Previous work

For quite some time, there have been efforts to mitigate the side channel infor-
mation leakage from Gaussian samplers but they either sacrifice efficiency [7]
for constant-time operation or do not provide adequate security [31]. The bit-
sliced discrete Gaussian sampler in [21] proposed an efficient and constant-time
Gaussian sampler. The key observation in that work was that there exists an
unique path from root to each leaf of the DDG tree since it is a binary tree. This
path is determined by the input random bits to the sampler. This implies that
there exists a many-to-one mapping between the set of input random bit strings
(b0b1 · · · bn−1) to the set of sample bits. Further, this mapping can be expressed
as a set of Boolean functions f ιn, ι ∈ [0,m− 1], here m is the maximum possible
bit length of any sample. This is shown in Fig. 2. Now, each sample bit can
be calculated in constant-time by executing the corresponding Boolean function
completely. The above method for sampling, though being a constant-time al-
gorithm, has very poor efficiency. So, the next key observation was that modern
processors has wide word length and bit wise Boolean operators which can be
exploited to generate multiple sample in a batch in a single instruction multi-
ple data (SIMD) fashion. In this method, assuming word length w, a variable
bvari , i ∈ [0, n − 1] is packed with w input random bits b0i , b

1
i , · · · , bw−1i . These

random variables are then used to evaluate Boolean function f ιn using bitwise
Boolean operators to generate variables svarι , ι ∈ [0,m,−1] which are packed
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Figure 2: Mapping n random bits to output sample bits and corresponding Boolean
functions.

with w output sample bits s0ι , s
1
ι , · · · , sw−1ι . These variables are then unpacked

to generate w samples at a time. Despite the overhead of packing and unpacking
bits this method was shown to be approximately two times faster(σ = 6.15543)
than the best known alternative for constant-time sampling i.e cumulative dis-
tribution table(CDT) based sampling with linear search [7].

5 Our work

In this section, we first prove the Theorem 1, which establishes an important
property of the structure of the input random bit strings which generate the sam-
ples. We then describe our Boolean minimization strategy for discrete Gaussian
sampling. In this section, we also consider that the Knuth-Yao sampler always
takes input random bit strings of length n. However, it is possible that a sample
is found on the c-th level of the DDG tree or equivalently the sampler needs only
c+1 bits to generate the sample. The remaining n− (c+1) bits do not influence
the outcome of the sampling, we call them don’t care(x) bits.

Theorem 1 All the random bit strings which generate samples are of the form
xi(0/1)j01k, where i, j, k ∈ Z∗, i+ j + k + 1 = n and x is the don’t care bits.

Proof. It is enough to show that there is no random bit string of the form
xi1k

′
, k′ ∈ Z∗ which generates a sample, i.e the sampling process do not hit any

leaf node when the input random bit string is 1k
′
. We prove this by contradiction,

let’s assume that the bit string 1k
′

hits a leaf node at k′− 1-th level of the DDG
tree. So, GAPk′

< 0. Since the random bit string is 1k
′

this implies that for
all 2k

′
different input random bit strings GAPk′

< 0. In other words, all the
random input bit strings generate some sample or hit some leaf nodes of the
DDG tree. So, the DDG tree is a finite tree as the tree beyond k′ − 1-th level
is not reachable by the Knuth-Yao sampling anymore and becomes redundant.
Hence, by the property of Knuth-Yao sampling we can say that the DDG tree
up to level k′ − 1 is able to generate samples exactly from the discrete Gaussian
distribution of the given standard deviation. Or, in other words if the samples

6



in the DDG tree up to k′ − 1-th level lies in the interval [0, τ ′σ], then

τ ′σ∑
x=−τσ

Dn
σ (x) = 1

But, this is impossible as discrete Gaussian distribution has infinite tail and the
probabilities being real numbers have infinite precision, so the above summa-
tion will never be equal to 1. Hence, our assumption that the input bit string
xi1k

′
, k′ ∈ Z∗ generates a sample is therefore wrong. ut

Also, experimentally we have seen that j is bounded by a small ∆ i.e jmax ≤ ∆.
For example for σ = 1, 2, 6.15543 and 215 the ∆ is 4, 4, 6, and 15 respectively. In
the next sections, we will show that by using these two facts we can develop a
very efficient minimization technique for a fast constant-time Gaussian sampler.

5.1 Efficient minimization

To instantiate an efficient discrete Gaussian sampler with a specific standard
deviation, we first enumerate the number of leaves in the DDG tree and the
random bit strings that hit those leaf nodes. We create a list L of these random bit
strings xi(0/1)j01k with their corresponding binary decomposed sample values.

It is evident form Sec. 3.2 that the size of this list is
∑n−1
i=0 hi.

Now, using this list L, it is possible to generate the Boolean functions f ι

that simply maps the input random bit strings to the sample bits. To improve
the efficiency, we can use synthesis tools to minimize these Boolean expressions,
since minimizing these Boolean expressions is equivalent to the well known cir-
cuit minimization problem which is a NP-complete problem. Also, as the number
of variable n is large, these tools can only use heuristic minimization algorithms
which can generate number of complications. Firstly, the behaviour of these
heuristic algorithms is very unpredictable which may cause the resulting min-
imized expressions or in turn the discrete Gaussian sampler behave in a very
unexpected manner, secondly minimization is not very efficient as the tools can
use only heuristic algorithms, and finally most of these efficient heuristic algo-
rithms are intellectual property of their respective corporations and the output
of these algorithms cannot be put in the public domain, rendering them unusable
for discrete Gaussian samplers for lattice based cryptography implementations
which are mostly open source.

To overcome these problems we propose an alternate but efficient minimiza-
tion strategy, we first sort the input random bit strings xi(0/1)j01k and their
corresponding sample bits in the list L in the ascending order of k. This makes
all the input random bit strings with equal number of consecutive 1’s from the
LSB become adjacent in the list L this is shown in Fig. 3 for a discrete Gaussian
sampler with σ = 2. In the next step, we divide the list L in sublists l0, l1, · · · ln′

such that all the input random bit string in the sublist lκ has κ ∈ [0, n′] con-
secutive 1’s from the LSB or is of the form xi(0/1)j01κ. As in the sublist lκ,
the κ + 1 least significant bits are fixed, the output sample bits in this sublist
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Figure 3: Dividing a List L in sublists lκ for n = 16 and σ = 2. The rightmost bit is
the LSB in both the columns.

are determined by the next j random bits only. Now, we recall that jmax ≤ ∆.
Hence, we can generate Boolean functions f ι∆, that maps ∆ input random bits
to the output sample bits for each sublist. Since, ∆ is small, we can now use
very efficient minimization techniques to minimize the Boolean expressions f ι∆.
It is even practically feasible to use Karnaugh map or brute force techniques to
minimize the expressions. In this work we used the open source tool Espresso
with -Dso -S1 options for exact minimization of each expression. We generate
these Boolean expressions f ι,t∆ , t ∈ [0, n′] for all the sublists l0, l1, · · · ln′ and for all
ι ∈ [0,m− 1]. In the next section, we will discuss how we can join these Boolean
expressions together to create a constant-time discrete Gaussian sampler.

5.2 Constant-time sampling

We first recall a method to execute a non constant-time if-else block ν =
α ? β0 : β1 in constant-time as ν = (α&β0)|(ᾱ&β1) where α, βi are binary
variables. It is easy to extend this to a long if-elseif-...-else block as ν =
(α0&β0)|(ᾱ0&((α1&β1)|(ᾱ1&(. . . |(ᾱn&βn+1))))). Such methods for constant-time
execution of if-else blocks have been known since as early as constant-time bit
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L as in Sec.4.1

Sort L and
divide in sublists

l0, l1, · · · ln′

From each
list lκ, κ ∈

[0, n′], generate
minimized Boolean

function f ι,κ
∆

Combine the
functions f ι,κ

∆

using constant-
time if-elseif-
...-else blocks

σ, n f ι
n

Figure 4: Flowchart efficient minimization of Boolean expressions f ι for constant-
time discrete Gaussian sampling.

sliced implementation of DES [6] and their constant-time behaviour have been
studied well in the literature.

Now, consider the binary variable cκ = b0&b1& . . .&bκ−1&b̄κ where bi’s are
the input random bits to the Gaussian sampler. Also, we recall from the previous
section that the input random bits of sublist lκ are of the form xi(0/1)j01κ. Now,
we make the following claim,

Claim 1 cκ equals 1 if and only if the random bit string belongs to sublist lκ.

The above claim can be proven easily by using the structure of input random bits
of list lκ and the definition of the variable cκ. We leave this proof to the reader.
Using, Claim 1 and the constant-time if-elseif-...-else blocks as discussed in the
beginning of this section we can combine the Boolean expressions f ι,t∆ , t ∈ [0, n′]
to create a constant time Gaussian sampler with precision n as shown in Eqn. 2,

f ιn = c0 ? f ι,0∆ : (c1 ? f ι,1∆ : (. . . : (cn′−1 ? f ι,n
′−1

∆ : f ι,n
′

∆ ))) (2)

So far, we used only binary variables α, β, cκ, b etc., to describe our methods. All
of these methods can be trivially transformed into the bit- sliced SIMD setting
as described in Sec.3.2 of [21] by using variables of larger bit lengths instead
of binary variables and replacing single bit Boolean operators to their bit wise
counterparts. We assert that our construction of the Boolean expression f ιn runs
in constant-time as long as each of the Boolean expressions f ι,t∆ runs in constant-

time. Now, each of f ι,t∆ is Boolean expression that computes ι-th bit of a sample
from ∆ random bits. Constant-time behaviour of such functions has been proven
and analyzed rigorously in [21]. Moreover, we used the tool "dudect" described
in [30] to affirm the constant running time of our algorithm. The whole process
for efficient minimization of f ιn is shown as a flowchart in Fig. 4. We will provide
a tool that implements the strategies mentioned here.1 Fig. 5 shows histogram
plots constant-time discrete Gaussian sampling of σ = 2 and 6.15543 using the
methods described above.

6 Results and application to Falcon signatures

In this section, we provide performance results of our constant-time discrete
Gaussian sampler. Since the lattice based signature scheme Falcon [18] uses

1 Tool and the code at https://github.com/Angshumank/const_gauss_split
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Figure 5: Histogram plot for σ = 2 and σ = 6.15543 using 64× 107 samples.

discrete Gaussian samples during signing, we chose this scheme as our target
application. Before describing our results later in this section, we give below
a small description of the Falcon signature and the necessity of constant-time
Gaussian sampling in the scheme.

Falcon signature scheme : The post-quantum signature scheme Falcon [18]
has been submitted to NIST’s [10] ongoing effort to standardize post-quantum
protocols. It is a well known fact that post-quantum schemes are most often
faster than their pre-quantum RSA or discrete logarithm based schemes but
they tend to have a larger keys or signatures. As noted by the authors, the
design of Falcon focuses on minimizing the combined bitsize of the public key
and the signature. Indeed, among the lattice based signature schemes submit-
ted to the NIST’s standardization procedure Falcon has the smallest combined
bitsize of public key and signature, this is partly due to their choice of Gaussian
distribution and NTRU lattices. During the signing of messages Falcon requires
samples from a discrete Gaussian sampler with σ low enough to produce optimal
short vectors as required by the security of the scheme but no too low to leak
secret information about the basis of the lattice. Depending on the number field
used this σ can be either 2 or

√
5. In our work, we only used the considered the

instance of Falcon with σ = 2, the other instance can be realized using the same
methods described above. For more details about the Falcon signature scheme
we refer the interested readers to the detailed documentation [18].
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The Falcon signature scheme is a relatively newer scheme and robustness
against side channel attacks of this scheme has not been analyzed rigorously
like older lattice based signature schemes [14]. Though at this moment we are
not aware of any attacks like [19,27] on Falcon which exploits non constant-
time Gaussian sampler, the authors of Falcon have specifically mentioned that
use of non constant-time Gaussian sampler during signing can be potentially
harmful to the security of the scheme and serious effort should be dedicated for
implementing constant-time Gaussian sampler.

For comparison, we plugged in our constant-time Gaussian sampler in the
implementation [18] of Falcon provided by the authors and compare our results
with two of their fastest non constant-time samplers, CDT sampler [26] and the
byte-scanning CDT sampler [13]. Additionally, we also provided a comparison
with the linear search based constant-time CDT sampler [7] with our sampler.
The precision n(= 128), the tail-cut τ(= 13) and the pseudo-random number
generator have been kept same for all the instances. We compiled all implemen-
tations using gcc-5.4 with flags -O3 -fomit-frame-pointer -march=native

-std=c99. The computation times are measured on a single core of a Intel(R)
Core(TM) i7-6600U processor running at 2.60GHz and disabling hyper-threading,
Turbo-Boost, and multi-core support as standard practice on Ubuntu 16.04 run-
ning on a Dell Latitude E7470 laptop. As our target processor has 64-bits our
sampler can generate 64 samples in a batch. The results are shown in Table. 1

Security
level

Non constant-time
(Signs/Sec)

Constant-time
(Signs/Sec)

Byte-scanning
CDT

CDT
Linear search

CDT
This Work

Level 1
(N=256)

10327 8041 6080 7025

Level 2
(N=512

5220 4064 3027 3527

Level 3
(N=1024)

2640 2014 1519 1754

Table 1: Comparing performances of Falcon-sign with non constant-time and constant-
time samplers with ChaCha as the pseudo random number generator. N is a security
parameter which refers to the degree of quotient polynomial used to define the number
field used in Falcon.

We can see from Table. 1 that replacing the our constant-time sampler with
the fastest non constant-time sampler reduces the performance of signing algo-
rithm by approximately 32% at worst, whereas replacing our sampler with non
constant-time CDT sampler slows down the signing algorithm by at most 13%.
Also, the signing algorithm with our sampler is at least 15% faster than the
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linear search based CDT sampling2. It is very important to note that the table
based methods such as byte-scanning CDT, CDT or linear search CDT also gets
advantage of the caching in our target Intel processors for fast table search due
to the small size of the tables. Overall, these results show that removing side-
channel vulnerabilities of non constant-time discrete Gaussian sampler with our
constant-time Gaussian sampler does not hamper the performance of signing
algorithm to a large extent.

In Table 2, we compare the performance of the Gaussian sampler with our
efficient minimization technique and the Gaussian sampler with simple minimiza-
tion described in [21]. We can see that for σ = 2 we get around 37% improvement,
but the improvement for σ = 6.15543 is approximately 11%, the reason behind
this is that for σ = 6.15543 in [21] the output of the minimization tool has been
manually optimized further for efficiency.

Constant-time
sampler in [21]

This work Improvement

σ = 2 3,787 2,293 37%

σ = 6.15543 11,136 9,880 11%

Table 2: Comparing discrete Gaussian sampler with our efficient minimization with
the previous described in [21]. The numbers in the table are in clockcycles and do not
include the overhead for generating the pseudo-random numbers.

7 Conclusion

We can see that the sampling from Gaussian distributions can be efficient using
the methods described in [21] and this work. But there is a fixed cost of gen-
erating pseudorandom numbers that makes the whole sampling process slower.
As mentioned in [21], we have also noticed in this work that 80 − 85% of the
total time is spent on generating the pseudorandom numbers. It is possible to
reduce this overhead by using some different method for generating the pseudo-
random numbers. For example, if used ChaCha stream ciphers (as in the Falcon
reference implementation) instead of Keccak to generate pseudorandom numbers
this overhead reduces to approximately 60%. It is also possible to use more plat-
form specific alternatives like AES-NI instructions on Intel processors to reduce
this overhead. Also, a good research direction is to develop statistical measures
like Rényi [28] divergences or max-log [25] distances to reduce the precision re-
quirement of discrete Gaussian sampling and hence reducing the requirement of
pseudorandom numbers. One of the reason the centered binomial distribution [4]

2 It should be noted that secret dependent rejection of Falcon-Sign can still leak infor-
mation. It is inherent to Falcon-Sign and does not depend on the behaviour of our
sampler. We thank Leo Ducas for pointing this out.
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samplers are efficient is that they need very few pseudorandom bits to generate
a sample. Our experiments suggest that improvements in the direction of reduc-
ing the requirement of pseudorandom bits per sample and efficient generation
of these bits combined with the methods described here can make the discrete
Gaussian sampling very competitive.
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